e2e219eda0
also extended by the REX.B field on Hammer) is passed to instructions. I rearranged the bxInstruction_c to free up a field to be used to pass this info when mod-rm bytes are not used. This got rid of the ugly ((i->b1 & 7) + i->rex_b) code. Probably shaved just a very little run time off Hammer emulation, and even less on x86-32. The resultant is a little cleaner anyways.
526 lines
12 KiB
C++
526 lines
12 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: stack32.cc,v 1.15 2002-09-20 23:17:51 kevinlawton Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
|
|
|
|
|
|
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
#if BX_USE_CPU_SMF
|
|
#define this (BX_CPU(0))
|
|
#endif
|
|
|
|
|
|
#if BX_SUPPORT_X86_64==0
|
|
// Make life easier for merging 64&32-bit code.
|
|
#define RBP EBP
|
|
#endif
|
|
|
|
|
|
|
|
void
|
|
BX_CPU_C::POP_Ed(bxInstruction_c *i)
|
|
{
|
|
Bit32u val32;
|
|
|
|
pop_32(&val32);
|
|
|
|
if (i->modC0()) {
|
|
BX_WRITE_32BIT_REGZ(i->rm(), val32);
|
|
}
|
|
else {
|
|
// Note: there is one little weirdism here. When 32bit addressing
|
|
// is used, it is possible to use ESP in the modrm addressing.
|
|
// If used, the value of ESP after the pop is used to calculate
|
|
// the address.
|
|
if (i->as32L() && (!i->modC0()) && (i->rm()==4) && (i->sibBase()==4)) {
|
|
// call method on BX_CPU_C object
|
|
BX_CPU_CALL_METHOD (i->ResolveModrm, (i));
|
|
}
|
|
write_virtual_dword(i->seg(), RMAddr(i), &val32);
|
|
}
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::PUSH_ERX(bxInstruction_c *i)
|
|
{
|
|
push_32(BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx);
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::POP_ERX(bxInstruction_c *i)
|
|
{
|
|
Bit32u erx;
|
|
|
|
pop_32(&erx);
|
|
BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].dword.erx = erx;
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::PUSH_CS(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L())
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
|
|
else
|
|
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value);
|
|
}
|
|
void
|
|
BX_CPU_C::PUSH_DS(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L())
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
|
|
else
|
|
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value);
|
|
}
|
|
void
|
|
BX_CPU_C::PUSH_ES(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L())
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
|
|
else
|
|
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value);
|
|
}
|
|
void
|
|
BX_CPU_C::PUSH_FS(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L())
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
|
|
else
|
|
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value);
|
|
}
|
|
void
|
|
BX_CPU_C::PUSH_GS(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L())
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
|
|
else
|
|
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value);
|
|
}
|
|
void
|
|
BX_CPU_C::PUSH_SS(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L())
|
|
push_32(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
|
|
else
|
|
push_16(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value);
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::POP_DS(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L()) {
|
|
Bit32u ds;
|
|
pop_32(&ds);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], (Bit16u) ds);
|
|
}
|
|
else {
|
|
Bit16u ds;
|
|
pop_16(&ds);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS], ds);
|
|
}
|
|
}
|
|
void
|
|
BX_CPU_C::POP_ES(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L()) {
|
|
Bit32u es;
|
|
pop_32(&es);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], (Bit16u) es);
|
|
}
|
|
else {
|
|
Bit16u es;
|
|
pop_16(&es);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES], es);
|
|
}
|
|
}
|
|
void
|
|
BX_CPU_C::POP_FS(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L()) {
|
|
Bit32u fs;
|
|
pop_32(&fs);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], (Bit16u) fs);
|
|
}
|
|
else {
|
|
Bit16u fs;
|
|
pop_16(&fs);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS], fs);
|
|
}
|
|
}
|
|
void
|
|
BX_CPU_C::POP_GS(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L()) {
|
|
Bit32u gs;
|
|
pop_32(&gs);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], (Bit16u) gs);
|
|
}
|
|
else {
|
|
Bit16u gs;
|
|
pop_16(&gs);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS], gs);
|
|
}
|
|
}
|
|
void
|
|
BX_CPU_C::POP_SS(bxInstruction_c *i)
|
|
{
|
|
if (i->os32L()) {
|
|
Bit32u ss;
|
|
pop_32(&ss);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], (Bit16u) ss);
|
|
}
|
|
else {
|
|
Bit16u ss;
|
|
pop_16(&ss);
|
|
load_seg_reg(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS], ss);
|
|
}
|
|
|
|
// POP SS inhibits interrupts, debug exceptions and single-step
|
|
// trap exceptions until the execution boundary following the
|
|
// next instruction is reached.
|
|
// Same code as MOV_SwEw()
|
|
BX_CPU_THIS_PTR inhibit_mask |=
|
|
BX_INHIBIT_INTERRUPTS | BX_INHIBIT_DEBUG;
|
|
BX_CPU_THIS_PTR async_event = 1;
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::PUSHAD32(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("PUSHAD: not supported on an 8086"));
|
|
#else
|
|
Bit32u temp_ESP;
|
|
Bit32u esp;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
temp_ESP = ESP;
|
|
else
|
|
temp_ESP = SP;
|
|
|
|
|
|
if (protected_mode()) {
|
|
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, 32) ) {
|
|
BX_PANIC(("PUSHAD(): stack doesn't have enough room!"));
|
|
exception(BX_SS_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
if (temp_ESP < 32)
|
|
BX_PANIC(("pushad: eSP < 32"));
|
|
}
|
|
|
|
esp = ESP;
|
|
|
|
/* ??? optimize this by using virtual write, all checks passed */
|
|
push_32(EAX);
|
|
push_32(ECX);
|
|
push_32(EDX);
|
|
push_32(EBX);
|
|
push_32(esp);
|
|
push_32(EBP);
|
|
push_32(ESI);
|
|
push_32(EDI);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::POPAD32(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("POPAD not supported on an 8086"));
|
|
#else /* 286+ */
|
|
Bit32u edi, esi, ebp, etmp, ebx, edx, ecx, eax;
|
|
|
|
if (protected_mode()) {
|
|
if ( !can_pop(32) ) {
|
|
BX_PANIC(("pop_ad: not enough bytes on stack"));
|
|
exception(BX_SS_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* ??? optimize this */
|
|
pop_32(&edi);
|
|
pop_32(&esi);
|
|
pop_32(&ebp);
|
|
pop_32(&etmp); /* value for ESP discarded */
|
|
pop_32(&ebx);
|
|
pop_32(&edx);
|
|
pop_32(&ecx);
|
|
pop_32(&eax);
|
|
|
|
EDI = edi;
|
|
ESI = esi;
|
|
EBP = ebp;
|
|
EBX = ebx;
|
|
EDX = edx;
|
|
ECX = ecx;
|
|
EAX = eax;
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::PUSH_Id(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("PUSH_Iv: not supported on 8086!"));
|
|
#else
|
|
|
|
Bit32u imm32;
|
|
|
|
imm32 = i->Id();
|
|
|
|
push_32(imm32);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::PUSH_Ed(bxInstruction_c *i)
|
|
{
|
|
Bit32u op1_32;
|
|
|
|
/* op1_32 is a register or memory reference */
|
|
if (i->modC0()) {
|
|
op1_32 = BX_READ_32BIT_REG(i->rm());
|
|
}
|
|
else {
|
|
/* pointer, segment address pair */
|
|
read_virtual_dword(i->seg(), RMAddr(i), &op1_32);
|
|
}
|
|
|
|
push_32(op1_32);
|
|
}
|
|
|
|
|
|
void
|
|
BX_CPU_C::ENTER_IwIb(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("ENTER_IwIb: not supported by 8086!"));
|
|
#else
|
|
Bit32u frame_ptr32;
|
|
Bit16u frame_ptr16;
|
|
Bit8u level;
|
|
static Bit8u first_time = 1;
|
|
|
|
level = i->Ib2();
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
level %= 32;
|
|
/* ??? */
|
|
if (first_time && level>0) {
|
|
BX_ERROR(("enter() with level > 0. The emulation of this instruction may not be complete. This warning will be printed only once per bochs run."));
|
|
first_time = 0;
|
|
}
|
|
//if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b && i->os32L()==0) {
|
|
// BX_INFO(("enter(): stacksize!=opsize: I'm unsure of the code for this"));
|
|
// BX_PANIC((" The Intel manuals are a mess on this one!"));
|
|
// }
|
|
|
|
if ( protected_mode() ) {
|
|
Bit32u bytes_to_push, temp_ESP;
|
|
|
|
if (level == 0) {
|
|
if (i->os32L())
|
|
bytes_to_push = 4 + i->Iw();
|
|
else
|
|
bytes_to_push = 2 + i->Iw();
|
|
}
|
|
else { /* level > 0 */
|
|
if (i->os32L())
|
|
bytes_to_push = 4 + (level-1)*4 + 4 + i->Iw();
|
|
else
|
|
bytes_to_push = 2 + (level-1)*2 + 2 + i->Iw();
|
|
}
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
temp_ESP = ESP;
|
|
else
|
|
temp_ESP = SP;
|
|
if ( !can_push(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache, temp_ESP, bytes_to_push) ) {
|
|
BX_PANIC(("ENTER: not enough room on stack!"));
|
|
exception(BX_SS_EXCEPTION, 0, 0);
|
|
}
|
|
}
|
|
|
|
if (i->os32L())
|
|
push_32(EBP);
|
|
else
|
|
push_16(BP);
|
|
|
|
// can just do frame_ptr32 = ESP for either case ???
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
frame_ptr32 = ESP;
|
|
else
|
|
frame_ptr32 = SP;
|
|
|
|
if (level > 0) {
|
|
/* do level-1 times */
|
|
while (--level) {
|
|
if (i->os32L()) {
|
|
Bit32u temp32;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* 32bit stacksize */
|
|
EBP -= 4;
|
|
read_virtual_dword(BX_SEG_REG_SS, EBP, &temp32);
|
|
ESP -= 4;
|
|
write_virtual_dword(BX_SEG_REG_SS, ESP, &temp32);
|
|
}
|
|
else { /* 16bit stacksize */
|
|
BP -= 4;
|
|
read_virtual_dword(BX_SEG_REG_SS, BP, &temp32);
|
|
SP -= 4;
|
|
write_virtual_dword(BX_SEG_REG_SS, SP, &temp32);
|
|
}
|
|
}
|
|
else { /* 16bit opsize */
|
|
Bit16u temp16;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* 32bit stacksize */
|
|
EBP -= 2;
|
|
read_virtual_word(BX_SEG_REG_SS, EBP, &temp16);
|
|
ESP -= 2;
|
|
write_virtual_word(BX_SEG_REG_SS, ESP, &temp16);
|
|
}
|
|
else { /* 16bit stacksize */
|
|
BP -= 2;
|
|
read_virtual_word(BX_SEG_REG_SS, BP, &temp16);
|
|
SP -= 2;
|
|
write_virtual_word(BX_SEG_REG_SS, SP, &temp16);
|
|
}
|
|
}
|
|
} /* while (--level) */
|
|
|
|
/* push(frame pointer) */
|
|
if (i->os32L()) {
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* 32bit stacksize */
|
|
ESP -= 4;
|
|
write_virtual_dword(BX_SEG_REG_SS, ESP, &frame_ptr32);
|
|
}
|
|
else {
|
|
SP -= 4;
|
|
write_virtual_dword(BX_SEG_REG_SS, SP, &frame_ptr32);
|
|
}
|
|
}
|
|
else { /* 16bit opsize */
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* 32bit stacksize */
|
|
frame_ptr16 = frame_ptr32;
|
|
ESP -= 2;
|
|
write_virtual_word(BX_SEG_REG_SS, ESP, &frame_ptr16);
|
|
}
|
|
else {
|
|
frame_ptr16 = frame_ptr32;
|
|
SP -= 2;
|
|
write_virtual_word(BX_SEG_REG_SS, SP, &frame_ptr16);
|
|
}
|
|
}
|
|
} /* if (level > 0) ... */
|
|
|
|
if (i->os32L())
|
|
RBP = frame_ptr32;
|
|
else
|
|
BP = frame_ptr32;
|
|
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) { /* 32bit stacksize */
|
|
ESP = ESP - i->Iw();
|
|
}
|
|
else { /* 16bit stack */
|
|
SP = SP - i->Iw();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void
|
|
BX_CPU_C::LEAVE(bxInstruction_c *i)
|
|
{
|
|
#if BX_CPU_LEVEL < 2
|
|
BX_PANIC(("LEAVE: not supported by 8086!"));
|
|
#else
|
|
Bit32u temp_EBP;
|
|
|
|
|
|
invalidate_prefetch_q();
|
|
|
|
#if BX_CPU_LEVEL >= 3
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
temp_EBP = EBP;
|
|
else
|
|
#endif
|
|
temp_EBP = BP;
|
|
|
|
if ( protected_mode() ) {
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.c_ed) { /* expand up */
|
|
if (temp_EBP <= BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled) {
|
|
BX_PANIC(("LEAVE: BP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].limit"));
|
|
exception(BX_SS_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
}
|
|
else { /* normal */
|
|
if (temp_EBP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled) {
|
|
BX_PANIC(("LEAVE: BP > BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].limit"));
|
|
exception(BX_SS_EXCEPTION, 0, 0);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// delete frame
|
|
#if BX_CPU_LEVEL >= 3
|
|
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
|
|
ESP = EBP;
|
|
else
|
|
#endif
|
|
SP = BP;
|
|
|
|
// restore frame pointer
|
|
#if BX_CPU_LEVEL >= 3
|
|
if (i->os32L()) {
|
|
Bit32u temp32;
|
|
|
|
pop_32(&temp32);
|
|
RBP = temp32;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
Bit16u temp16;
|
|
|
|
pop_16(&temp16);
|
|
BP = temp16;
|
|
}
|
|
#endif
|
|
}
|