782 lines
18 KiB
C++
782 lines
18 KiB
C++
/////////////////////////////////////////////////////////////////////////
|
|
// $Id: io.cc,v 1.59 2008-05-03 17:33:30 sshwarts Exp $
|
|
/////////////////////////////////////////////////////////////////////////
|
|
//
|
|
// Copyright (C) 2001 MandrakeSoft S.A.
|
|
//
|
|
// MandrakeSoft S.A.
|
|
// 43, rue d'Aboukir
|
|
// 75002 Paris - France
|
|
// http://www.linux-mandrake.com/
|
|
// http://www.mandrakesoft.com/
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
/////////////////////////////////////////////////////////////////////////
|
|
|
|
#define NEED_CPU_REG_SHORTCUTS 1
|
|
#include "bochs.h"
|
|
#include "cpu.h"
|
|
#define LOG_THIS BX_CPU_THIS_PTR
|
|
|
|
#include "iodev/iodev.h"
|
|
|
|
#if BX_SUPPORT_X86_64==0
|
|
// Make life easier for merging cpu64 and cpu32 code.
|
|
#define RDI EDI
|
|
#define RSI ESI
|
|
#define RAX EAX
|
|
#define RCX ECX
|
|
#endif
|
|
|
|
//
|
|
// Repeat Speedups methods
|
|
//
|
|
|
|
#if BX_SupportRepeatSpeedups
|
|
Bit32u BX_CPU_C::FastRepINSW(bxInstruction_c *i, bx_address dstOff, Bit16u port, Bit32u wordCount)
|
|
{
|
|
Bit32u wordsFitDst;
|
|
signed int pointerDelta;
|
|
Bit8u *hostAddrDst;
|
|
unsigned count;
|
|
|
|
bx_segment_reg_t *dstSegPtr = &BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES];
|
|
if (!(dstSegPtr->cache.valid & SegAccessWOK4G))
|
|
return 0;
|
|
|
|
bx_address laddrDst = BX_CPU_THIS_PTR get_laddr(BX_SEG_REG_ES, dstOff);
|
|
// check that the address is word aligned
|
|
if (laddrDst & 1) return 0;
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrDst = v2h_write_byte(laddrDst, CPL);
|
|
#else
|
|
bx_phy_address paddrDst;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG())
|
|
paddrDst = dtranslate_linear(laddrDst, CPL, BX_WRITE);
|
|
else
|
|
paddrDst = laddrDst;
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrDst = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrDst), BX_WRITE, DATA_ACCESS);
|
|
#endif
|
|
|
|
// Check that native host access was not vetoed for that page
|
|
if (!hostAddrDst) return 0;
|
|
|
|
// See how many words can fit in the rest of this page.
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
// Counting downward
|
|
// 1st word must cannot cross page boundary because it is word aligned
|
|
wordsFitDst = (2 + (PAGE_OFFSET(laddrDst))) >> 1;
|
|
pointerDelta = -2;
|
|
}
|
|
else {
|
|
// Counting upward
|
|
wordsFitDst = (0x1000 - PAGE_OFFSET(laddrDst)) >> 1;
|
|
pointerDelta = 2;
|
|
}
|
|
|
|
// Restrict word count to the number that will fit in this page.
|
|
if (wordCount > wordsFitDst)
|
|
wordCount = wordsFitDst;
|
|
|
|
// If after all the restrictions, there is anything left to do...
|
|
if (wordCount) {
|
|
for (count=0; count<wordCount; ) {
|
|
bx_devices.bulkIOQuantumsTransferred = 0;
|
|
if (BX_CPU_THIS_PTR get_DF()==0) { // Only do accel for DF=0
|
|
bx_devices.bulkIOHostAddr = hostAddrDst;
|
|
bx_devices.bulkIOQuantumsRequested = (wordCount - count);
|
|
}
|
|
else
|
|
bx_devices.bulkIOQuantumsRequested = 0;
|
|
Bit16u temp16 = BX_INP(port, 2);
|
|
if (bx_devices.bulkIOQuantumsTransferred) {
|
|
hostAddrDst = bx_devices.bulkIOHostAddr;
|
|
count += bx_devices.bulkIOQuantumsTransferred;
|
|
}
|
|
else {
|
|
WriteHostWordToLittleEndian(hostAddrDst, temp16);
|
|
hostAddrDst += pointerDelta;
|
|
count++;
|
|
}
|
|
// Terminate early if there was an event.
|
|
if (BX_CPU_THIS_PTR async_event) break;
|
|
}
|
|
|
|
// Reset for next non-bulk IO
|
|
bx_devices.bulkIOQuantumsRequested = 0;
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Bit32u BX_CPU_C::FastRepOUTSW(bxInstruction_c *i, unsigned srcSeg, bx_address srcOff, Bit16u port, Bit32u wordCount)
|
|
{
|
|
Bit32u wordsFitSrc;
|
|
signed int pointerDelta;
|
|
Bit8u *hostAddrSrc;
|
|
unsigned count;
|
|
|
|
bx_segment_reg_t *srcSegPtr = &BX_CPU_THIS_PTR sregs[srcSeg];
|
|
if (!(srcSegPtr->cache.valid & SegAccessROK4G))
|
|
return 0;
|
|
|
|
bx_address laddrSrc = BX_CPU_THIS_PTR get_laddr(srcSeg, srcOff);
|
|
// check that the address is word aligned
|
|
if (laddrSrc & 1) return 0;
|
|
|
|
#if BX_SupportGuest2HostTLB
|
|
hostAddrSrc = v2h_read_byte(laddrSrc, CPL);
|
|
#else
|
|
bx_phy_address paddrSrc;
|
|
|
|
if (BX_CPU_THIS_PTR cr0.get_PG())
|
|
paddrSrc = dtranslate_linear(laddrSrc, CPL, BX_READ);
|
|
else
|
|
paddrSrc = laddrSrc;
|
|
|
|
// If we want to write directly into the physical memory array,
|
|
// we need the A20 address.
|
|
hostAddrSrc = BX_MEM(0)->getHostMemAddr(BX_CPU_THIS,
|
|
A20ADDR(paddrSrc), BX_READ, DATA_ACCESS);
|
|
#endif
|
|
|
|
// Check that native host access was not vetoed for that page
|
|
if (!hostAddrSrc) return 0;
|
|
|
|
// See how many words can fit in the rest of this page.
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
// Counting downward
|
|
// 1st word must cannot cross page boundary because it is word aligned
|
|
wordsFitSrc = (2 + (PAGE_OFFSET(laddrSrc))) >> 1;
|
|
pointerDelta = (unsigned) -2;
|
|
}
|
|
else {
|
|
// Counting upward
|
|
wordsFitSrc = (0x1000 - PAGE_OFFSET(laddrSrc)) >> 1;
|
|
pointerDelta = 2;
|
|
}
|
|
|
|
// Restrict word count to the number that will fit in this page.
|
|
if (wordCount > wordsFitSrc)
|
|
wordCount = wordsFitSrc;
|
|
|
|
// If after all the restrictions, there is anything left to do...
|
|
if (wordCount) {
|
|
for (count=0; count<wordCount; ) {
|
|
bx_devices.bulkIOQuantumsTransferred = 0;
|
|
if (BX_CPU_THIS_PTR get_DF()==0) { // Only do accel for DF=0
|
|
bx_devices.bulkIOHostAddr = hostAddrSrc;
|
|
bx_devices.bulkIOQuantumsRequested = (wordCount - count);
|
|
}
|
|
else
|
|
bx_devices.bulkIOQuantumsRequested = 0;
|
|
Bit16u temp16;
|
|
ReadHostWordFromLittleEndian(hostAddrSrc, temp16);
|
|
BX_OUTP(port, temp16, 2);
|
|
if (bx_devices.bulkIOQuantumsTransferred) {
|
|
hostAddrSrc = bx_devices.bulkIOHostAddr;
|
|
count += bx_devices.bulkIOQuantumsTransferred;
|
|
}
|
|
else {
|
|
hostAddrSrc += pointerDelta;
|
|
count++;
|
|
}
|
|
// Terminate early if there was an event.
|
|
if (BX_CPU_THIS_PTR async_event) break;
|
|
}
|
|
|
|
// Reset for next non-bulk IO
|
|
bx_devices.bulkIOQuantumsRequested = 0;
|
|
|
|
return count;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
//
|
|
// REP INS methods
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_INSB_YbDX(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSB_YbDX);
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as32L()) {
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_INSW_YwDX(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSW_YwDX);
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as32L()) {
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_INSD_YdDX(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::INSD_YdDX);
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as32L()) {
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RDI); // always clear upper part of RDI
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//
|
|
// INSB/INSW/INSD methods
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSB_YbDX(bxInstruction_c *i)
|
|
{
|
|
Bit8u value8=0;
|
|
|
|
if (! BX_CPU_THIS_PTR allow_io(DX, 1)) {
|
|
BX_DEBUG(("INSB_YbDX: I/O access not allowed !"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L()) {
|
|
// Write a zero to memory, to trigger any segment or page
|
|
// faults before reading from IO port.
|
|
write_virtual_byte(BX_SEG_REG_ES, RDI, value8);
|
|
|
|
value8 = BX_INP(DX, 1);
|
|
|
|
/* no seg override possible */
|
|
write_virtual_byte(BX_SEG_REG_ES, RDI, value8);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
RDI--;
|
|
else
|
|
RDI++;
|
|
}
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
// Write a zero to memory, to trigger any segment or page
|
|
// faults before reading from IO port.
|
|
write_virtual_byte(BX_SEG_REG_ES, EDI, value8);
|
|
|
|
value8 = BX_INP(DX, 1);
|
|
|
|
/* no seg override possible */
|
|
write_virtual_byte(BX_SEG_REG_ES, EDI, value8);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF()) {
|
|
RDI = EDI - 1;
|
|
}
|
|
else {
|
|
RDI = EDI + 1;
|
|
}
|
|
}
|
|
else {
|
|
// Write a zero to memory, to trigger any segment or page
|
|
// faults before reading from IO port.
|
|
write_virtual_byte(BX_SEG_REG_ES, DI, value8);
|
|
|
|
value8 = BX_INP(DX, 1);
|
|
|
|
/* no seg override possible */
|
|
write_virtual_byte(BX_SEG_REG_ES, DI, value8);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
DI--;
|
|
else
|
|
DI++;
|
|
}
|
|
}
|
|
|
|
// input word from port to string
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSW_YwDX(bxInstruction_c *i)
|
|
{
|
|
Bit16u value16=0;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L()) {
|
|
Bit64u rdi = RDI;
|
|
|
|
// Write a zero to memory, to trigger any segment or page
|
|
// faults before reading from IO port.
|
|
write_virtual_word(BX_SEG_REG_ES, rdi, value16);
|
|
|
|
value16 = BX_INP(DX, 2);
|
|
|
|
/* no seg override allowed */
|
|
write_virtual_word(BX_SEG_REG_ES, rdi, value16);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
rdi -= 2;
|
|
else
|
|
rdi += 2;
|
|
|
|
RDI = rdi;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
Bit32u edi;
|
|
Bit32u incr = 2;
|
|
|
|
if (i->as32L())
|
|
edi = EDI;
|
|
else
|
|
edi = DI;
|
|
|
|
#if (BX_SupportRepeatSpeedups) && (BX_DEBUGGER == 0)
|
|
/* If conditions are right, we can transfer IO to physical memory
|
|
* in a batch, rather than one instruction at a time.
|
|
*/
|
|
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event)
|
|
{
|
|
Bit32u wordCount;
|
|
|
|
if (i->as32L())
|
|
wordCount = ECX;
|
|
else
|
|
wordCount = CX;
|
|
|
|
BX_ASSERT(wordCount > 0);
|
|
|
|
wordCount = FastRepINSW(i, edi, DX, wordCount);
|
|
if (wordCount)
|
|
{
|
|
// Decrement the ticks count by the number of iterations, minus
|
|
// one, since the main cpu loop will decrement one. Also,
|
|
// the count is predecremented before examined, so defintely
|
|
// don't roll it under zero.
|
|
BX_TICKN(wordCount-1);
|
|
|
|
if (i->as32L())
|
|
RCX = ECX - (wordCount-1);
|
|
else
|
|
CX -= (wordCount-1);
|
|
|
|
incr = wordCount << 1; // count * 2.
|
|
goto doIncr;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Write a zero to memory, to trigger any segment or page
|
|
// faults before reading from IO port.
|
|
write_virtual_word(BX_SEG_REG_ES, edi, value16);
|
|
|
|
value16 = BX_INP(DX, 2);
|
|
|
|
/* no seg override allowed */
|
|
write_virtual_word(BX_SEG_REG_ES, edi, value16);
|
|
|
|
#if (BX_SupportRepeatSpeedups) && (BX_DEBUGGER == 0)
|
|
doIncr:
|
|
#endif
|
|
|
|
if (i->as32L()) {
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
RDI = EDI - incr;
|
|
else
|
|
RDI = EDI + incr;
|
|
}
|
|
else {
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
DI -= incr;
|
|
else
|
|
DI += incr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// input doubleword from port to string
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::INSD_YdDX(bxInstruction_c *i)
|
|
{
|
|
if (! BX_CPU_THIS_PTR allow_io(DX, 4)) {
|
|
BX_DEBUG(("INSD_YdDX: I/O access not allowed !"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L()) {
|
|
Bit64u rdi = RDI;
|
|
|
|
// Write a zero to memory, to trigger any segment or page
|
|
// faults before reading from IO port.
|
|
write_virtual_dword(BX_SEG_REG_ES, rdi, 0);
|
|
|
|
Bit32u value32 = BX_INP(DX, 4);
|
|
|
|
/* no seg override allowed */
|
|
write_virtual_dword(BX_SEG_REG_ES, rdi, value32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
rdi -= 4;
|
|
else
|
|
rdi += 4;
|
|
|
|
RDI = rdi;
|
|
}
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
Bit32u edi = EDI;
|
|
|
|
// Write a zero to memory, to trigger any segment or page
|
|
// faults before reading from IO port.
|
|
write_virtual_dword(BX_SEG_REG_ES, edi, 0);
|
|
|
|
Bit32u value32 = BX_INP(DX, 4);
|
|
|
|
/* no seg override allowed */
|
|
write_virtual_dword(BX_SEG_REG_ES, edi, value32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
edi -= 4;
|
|
else
|
|
edi += 4;
|
|
|
|
RDI = edi;
|
|
}
|
|
else {
|
|
Bit16u di = DI;
|
|
|
|
// Write a zero to memory, to trigger any segment or page
|
|
// faults before reading from IO port.
|
|
write_virtual_dword(BX_SEG_REG_ES, di, 0);
|
|
|
|
Bit32u value32 = BX_INP(DX, 4);
|
|
|
|
/* no seg override allowed */
|
|
write_virtual_dword(BX_SEG_REG_ES, di, value32);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
di -= 4;
|
|
else
|
|
di += 4;
|
|
|
|
DI = di;
|
|
}
|
|
}
|
|
|
|
//
|
|
// REP OUTS methods
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_OUTSB_DXXb(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSB_DXXb);
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as32L()) {
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_OUTSW_DXXw(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSW_DXXw);
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as32L()) {
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::REP_OUTSD_DXXd(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR repeat(i, &BX_CPU_C::OUTSD_DXXd);
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as32L()) {
|
|
BX_CLEAR_64BIT_HIGH(BX_64BIT_REG_RSI); // always clear upper part of RSI
|
|
}
|
|
#endif
|
|
}
|
|
|
|
//
|
|
// OUTSB/OUTSW/OUTSD methods
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSB_DXXb(bxInstruction_c *i)
|
|
{
|
|
if (! BX_CPU_THIS_PTR allow_io(DX, 1)) {
|
|
BX_DEBUG(("OUTSB_DXXb: I/O access not allowed !"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
Bit8u value8;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L()) {
|
|
Bit64u rsi = RSI;
|
|
|
|
value8 = read_virtual_byte(i->seg(), rsi);
|
|
BX_OUTP(DX, value8, 1);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
rsi--;
|
|
else
|
|
rsi++;
|
|
|
|
RSI = rsi;
|
|
}
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
Bit32u esi = ESI;
|
|
|
|
value8 = read_virtual_byte(i->seg(), esi);
|
|
BX_OUTP(DX, value8, 1);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
esi--;
|
|
else
|
|
esi++;
|
|
|
|
RSI = esi;
|
|
}
|
|
else {
|
|
Bit16u si = SI;
|
|
|
|
value8 = read_virtual_byte(i->seg(), si);
|
|
BX_OUTP(DX, value8, 1);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
si--;
|
|
else
|
|
si++;
|
|
|
|
SI = si;
|
|
}
|
|
}
|
|
|
|
// output word string to port
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSW_DXXw(bxInstruction_c *i)
|
|
{
|
|
if (! BX_CPU_THIS_PTR allow_io(DX, 2)) {
|
|
BX_DEBUG(("OUTSW_DXXw: I/O access not allowed !"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
Bit16u value16;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L()) {
|
|
Bit64u rsi = RSI;
|
|
|
|
value16 = read_virtual_word(i->seg(), rsi);
|
|
BX_OUTP(DX, value16, 2);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
rsi -= 2;
|
|
else
|
|
rsi += 2;
|
|
|
|
RSI = rsi;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
Bit32u esi;
|
|
Bit32u incr = 2;
|
|
|
|
if (i->as32L())
|
|
esi = ESI;
|
|
else
|
|
esi = SI;
|
|
|
|
#if (BX_SupportRepeatSpeedups) && (BX_DEBUGGER == 0)
|
|
/* If conditions are right, we can transfer IO to physical memory
|
|
* in a batch, rather than one instruction at a time.
|
|
*/
|
|
if (i->repUsedL() && !BX_CPU_THIS_PTR async_event) {
|
|
Bit32u wordCount;
|
|
|
|
if (i->as32L())
|
|
wordCount = ECX;
|
|
else
|
|
wordCount = CX;
|
|
|
|
wordCount = FastRepOUTSW(i, i->seg(), esi, DX, wordCount);
|
|
if (wordCount) {
|
|
// Decrement eCX. Note, the main loop will decrement 1 also, so
|
|
// decrement by one less than expected, like the case above.
|
|
BX_TICKN(wordCount-1); // Main cpu loop also decrements one more.
|
|
|
|
if (i->as32L())
|
|
RCX = ECX - (wordCount-1);
|
|
else
|
|
CX -= (wordCount-1);
|
|
incr = wordCount << 1; // count * 2.
|
|
}
|
|
else {
|
|
value16 = read_virtual_word(i->seg(), esi);
|
|
BX_OUTP(DX, value16, 2);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
value16 = read_virtual_word(i->seg(), esi);
|
|
BX_OUTP(DX, value16, 2);
|
|
}
|
|
|
|
if (i->as32L()) {
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
RSI = ESI - incr;
|
|
else
|
|
RSI = ESI + incr;
|
|
}
|
|
else {
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
SI = SI - incr;
|
|
else
|
|
SI = SI + incr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// output doubleword string to port
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUTSD_DXXd(bxInstruction_c *i)
|
|
{
|
|
if (! BX_CPU_THIS_PTR allow_io(DX, 4)) {
|
|
BX_DEBUG(("OUTSD_DXXd: I/O access not allowed !"));
|
|
exception(BX_GP_EXCEPTION, 0, 0);
|
|
}
|
|
|
|
Bit32u value32;
|
|
|
|
#if BX_SUPPORT_X86_64
|
|
if (i->as64L()) {
|
|
Bit64u rsi = RSI;
|
|
|
|
value32 = read_virtual_dword(i->seg(), rsi);
|
|
BX_OUTP(DX, value32, 4);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
rsi -= 4;
|
|
else
|
|
rsi += 4;
|
|
|
|
RSI = rsi;
|
|
}
|
|
else
|
|
#endif
|
|
if (i->as32L()) {
|
|
Bit32u esi = ESI;
|
|
|
|
value32 = read_virtual_dword(i->seg(), esi);
|
|
BX_OUTP(DX, value32, 4);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
esi -= 4;
|
|
else
|
|
esi += 4;
|
|
|
|
RSI = esi;
|
|
}
|
|
else {
|
|
Bit16u si = SI;
|
|
|
|
value32 = read_virtual_dword(i->seg(), si);
|
|
BX_OUTP(DX, value32, 4);
|
|
|
|
if (BX_CPU_THIS_PTR get_DF())
|
|
si -= 4;
|
|
else
|
|
si += 4;
|
|
|
|
SI = si;
|
|
}
|
|
}
|
|
|
|
//
|
|
// non repeatable IN/OUT methods
|
|
//
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_ALIb(bxInstruction_c *i)
|
|
{
|
|
AL = BX_CPU_THIS_PTR inp8(i->Ib());
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_AXIb(bxInstruction_c *i)
|
|
{
|
|
AX = BX_CPU_THIS_PTR inp16(i->Ib());
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_EAXIb(bxInstruction_c *i)
|
|
{
|
|
RAX = BX_CPU_THIS_PTR inp32(i->Ib());
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_IbAL(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR outp8(i->Ib(), AL);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_IbAX(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR outp16(i->Ib(), AX);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_IbEAX(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR outp32(i->Ib(), EAX);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_ALDX(bxInstruction_c *i)
|
|
{
|
|
AL = BX_CPU_THIS_PTR inp8(DX);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_AXDX(bxInstruction_c *i)
|
|
{
|
|
AX = BX_CPU_THIS_PTR inp16(DX);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::IN_EAXDX(bxInstruction_c *i)
|
|
{
|
|
RAX = BX_CPU_THIS_PTR inp32(DX);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_DXAL(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR outp8(DX, AL);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_DXAX(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR outp16(DX, AX);
|
|
}
|
|
|
|
void BX_CPP_AttrRegparmN(1) BX_CPU_C::OUT_DXEAX(bxInstruction_c *i)
|
|
{
|
|
BX_CPU_THIS_PTR outp32(DX, EAX);
|
|
}
|