Bochs/bochs/cpu/smm.cc
Stanislav Shwartsman d972e4a4b7 Fixed CR3 restore in RSM instruction
Added HALT state indication (actually make existant one working for single CPU)
2006-04-10 19:05:21 +00:00

829 lines
36 KiB
C++
Executable File

/////////////////////////////////////////////////////////////////////////
// $Id: smm.cc,v 1.16 2006-04-10 19:05:21 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2006 Stanislav Shwartsman
// Written by Stanislav Shwartsman <stl at fidonet.org.il>
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#include "smm.h"
#define LOG_THIS BX_CPU_THIS_PTR
#if BX_CPU_LEVEL >= 3
#if BX_SUPPORT_X86_64==0
#define RIP EIP
#endif
//
// Some of the CPU field must be saved and restored in order to continue the
// simulation correctly after the RSM instruction:
//
// ---------------------------------------------------------------
//
// 1. General purpose registers: EAX-EDI, R8-R15
// 2. EIP, RFLAGS
// 3. Segment registers CS, DS, SS, ES, FS, GS
// fields: valid - not required, initialized according to selector value
// p - must be saved/restored
// dpl - must be saved/restored
// segment - must be 1 for seg registers, not required to save
// type - must be 0 for seg registers, not required to save
// executable - must be saved/restored
// c_ed - must be saved/restored
// r_w - must be saved/restored
// a - must be saved/restored
// base - must be saved/restored
// limit - must be saved/restored
// g - must be saved/restored
// d_b - must be saved/restored
// l - must be saved/restored
// avl - must be saved/restored
// 4. GDTR, IDTR
// fields: base, limit
// 5. LDTR, TR
// fields: base, limit, anything else ?
// 6. Debug Registers DR0-DR7, only DR6 and DR7 are saved
// 7. Control Registers: CR0, CR1 is always 0, CR2 is NOT saved, CR3, CR4, EFER
// 8. SMBASE
// 9. MSR/FPU/XMM/APIC are NOT saved accoring to Intel docs
//
#define SMM_SAVE_STATE_MAP_SIZE 128
void BX_CPU_C::RSM(bxInstruction_c *i)
{
/* If we are not in System Management Mode, then #UD should be generated */
if (! BX_CPU_THIS_PTR smm_mode()) {
BX_INFO(("RSM not in System Management Mode !"));
UndefinedOpcode(i);
}
invalidate_prefetch_q();
BX_INFO(("RSM: Resuming from System Management Mode !"));
BX_CPU_THIS_PTR nmi_disable = 0;
BX_CPU_THIS_PTR in_smm = 0;
Bit32u saved_state[SMM_SAVE_STATE_MAP_SIZE], n;
// reset reserved bits
for(n=0;n<SMM_SAVE_STATE_MAP_SIZE;n++) saved_state[n] = 0;
bx_phy_address base = BX_CPU_THIS_PTR smbase + 0x10000;
// could be optimized with reading of only non-reserved bytes
for(n=0;n<SMM_SAVE_STATE_MAP_SIZE;n++) {
base -= 4;
BX_CPU_THIS_PTR mem->readPhysicalPage(BX_CPU_THIS, base, 4, &saved_state[n]);
}
// restore the CPU state from SMRAM
if (! smram_restore_state(saved_state)) {
BX_PANIC(("RSM: Incorrect state when restoring CPU state - shutdown !"));
shutdown();
}
debug(RIP);
}
void BX_CPU_C::enter_system_management_mode(void)
{
invalidate_prefetch_q();
debug(BX_CPU_THIS_PTR prev_eip);
BX_INFO(("Enter to System Management Mode !"));
BX_CPU_THIS_PTR in_smm = 1;
Bit32u saved_state[SMM_SAVE_STATE_MAP_SIZE], n;
// reset reserved bits
for(n=0;n<SMM_SAVE_STATE_MAP_SIZE;n++) saved_state[n] = 0;
// prepare CPU state to be saved in the SMRAM
BX_CPU_THIS_PTR smram_save_state(saved_state);
bx_phy_address base = BX_CPU_THIS_PTR smbase + 0x10000;
// could be optimized with reading of only non-reserved bytes
for(n=0;n<SMM_SAVE_STATE_MAP_SIZE;n++) {
base -= 4;
BX_CPU_THIS_PTR mem->writePhysicalPage(BX_CPU_THIS, base, 4, &saved_state[n]);
}
BX_CPU_THIS_PTR setEFlags(0x2); // Bit1 is always set
BX_CPU_THIS_PTR prev_eip = RIP = 0x00008000;
BX_CPU_THIS_PTR dr7 = 0x00000400;
// CR0 - PE, EM, TS, and PG flags set to 0; others unmodified
BX_CPU_THIS_PTR cr0.pe = 0; // real mode (bit 0)
BX_CPU_THIS_PTR cr0.em = 0; // emulate math coprocessor (bit 2)
BX_CPU_THIS_PTR cr0.ts = 0; // no task switch (bit 3)
BX_CPU_THIS_PTR cr0.pg = 0; // paging disabled (bit 31)
BX_CPU_THIS_PTR cr0.val32 &= 0x7ffffff2;
BX_CPU_THIS_PTR cpu_mode = BX_MODE_IA32_REAL;
// paging mode was changed - flush TLB
TLB_flush(1); // 1 = Flush Global entries also
#if BX_CPU_LEVEL >= 4
BX_CPU_THIS_PTR cr4.setRegister(0);
#endif
// EFER.LME = 0, EFER.LME = 1
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR msr.lme = 0;
BX_CPU_THIS_PTR msr.lma = 0;
#endif
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value = BX_CPU_THIS_PTR smbase >> 4;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.index = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.ti = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.rpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment = 1; /* data/code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.type = 11; /* executable/readable/access code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.executable = 1; /* data/stack segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.c_ed = 0; /* normal expand up */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.r_w = 1; /* writeable */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.a = 1; /* accessed */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.base = BX_CPU_THIS_PTR smbase;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.limit_scaled = 0xffffffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.avl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.g = 1; /* page granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.d_b = 0; /* 16bit default size */
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.u.segment.l = 0; /* 16bit default size */
#endif
#if BX_SUPPORT_ICACHE
BX_CPU_THIS_PTR updateFetchModeMask();
#endif
/* DS (Data Segment) and descriptor cache */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value = 0x0000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.index = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.ti = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.rpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.valid = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.p = 1;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.dpl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment = 1; /* data/code segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.type = 3; /* read/write/access */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.executable = 0; /* data/stack segment */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.c_ed = 0; /* normal expand up */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.r_w = 1; /* writeable */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.a = 1; /* accessed */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.base = 0x00000000;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit = 0xffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.limit_scaled = 0xffffffff;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.avl = 0;
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.g = 1; /* byte granular */
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.d_b = 0; /* 16bit default size */
#if BX_SUPPORT_X86_64
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.u.segment.l = 0; /* 16bit default size */
#endif
// use DS segment as template for the others
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS] = BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS];
}
#define SMRAM_TRANSLATE(addr) (((0x8000 - (addr)) >> 2) - 1)
#define SMRAM_FIELD(state, addr) (state[SMRAM_TRANSLATE(addr)])
#if BX_SUPPORT_X86_64
BX_CPP_INLINE Bit64u SMRAM_FIELD64(const Bit32u *saved_state, unsigned hi, unsigned lo)
{
Bit64u tmp = ((Bit64u) SMRAM_FIELD(saved_state, hi)) << 32;
tmp |= (Bit64u) SMRAM_FIELD(saved_state, lo);
return tmp;
}
void BX_CPU_C::smram_save_state(Bit32u *saved_state)
{
// --- General Purpose Registers --- //
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RAX_HI32) = RAX >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RAX_LO32) = RAX & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RCX_HI32) = RCX >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RCX_LO32) = RCX & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RDX_HI32) = RDX >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RDX_LO32) = RDX & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RBX_HI32) = RBX >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RBX_LO32) = RBX & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RSP_HI32) = RSP >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RSP_LO32) = RSP & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RBP_HI32) = RBP >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RBP_LO32) = RBP & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RSI_HI32) = RSI >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RSI_LO32) = RSI & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RDI_HI32) = RDI >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RDI_LO32) = RDI & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R8_HI32) = R8 >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R8_LO32) = R8 & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R9_HI32) = R9 >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R9_LO32) = R9 & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R10_HI32) = R10 >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R10_LO32) = R10 & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R11_HI32) = R11 >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R11_LO32) = R11 & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R12_HI32) = R12 >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R12_LO32) = R12 & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R13_HI32) = R13 >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R13_LO32) = R13 & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R14_HI32) = R14 >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R14_LO32) = R14 & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R15_HI32) = R15 >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_R15_LO32) = R15 & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RIP_HI32) = RIP >> 32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RIP_LO32) = RIP & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_RFLAGS32) = read_eflags();
// --- Debug and Control Registers --- //
SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR6) = BX_CPU_THIS_PTR dr6;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR7) = BX_CPU_THIS_PTR dr7;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR0) = BX_CPU_THIS_PTR cr0.val32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR3) = BX_CPU_THIS_PTR cr3;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR4) = BX_CPU_THIS_PTR cr4.getRegister();
/* base+0x7f44 to base+0x7f04 is reserved */
SMRAM_FIELD(saved_state, SMRAM_SMBASE_OFFSET) = BX_CPU_THIS_PTR smbase;
SMRAM_FIELD(saved_state, SMRAM_SMM_REVISION_ID) = SMM_REVISION_ID;
/* base+0x7ef8 to base+0x7ed8 is reserved */
SMRAM_FIELD(saved_state, SMRAM_OFFSET_EFER) = BX_CPU_THIS_PTR get_EFER();
/* base+0x7ecc is reserved */
/* base+0x7ec8 is I/O Instruction Restart, Auto-Halt Restart and NMI Mask */
/* base+0x7ec4 is reserved */
/* base+0x7ec0 is SMM I/O Trap */
/* base+0x7ebc to base+0x7ea0 is reserved */
// --- Task Register --- //
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
SMRAM_FIELD(saved_state, SMRAM_TR_BASE_LO32) = BX_CPU_THIS_PTR tr.cache.u.tss286.base;
SMRAM_FIELD(saved_state, SMRAM_TR_LIMIT) = BX_CPU_THIS_PTR tr.cache.u.tss286.limit;
} else {
SMRAM_FIELD(saved_state, SMRAM_TR_BASE_HI32) = BX_CPU_THIS_PTR tr.cache.u.tss386.base >> 32;
SMRAM_FIELD(saved_state, SMRAM_TR_BASE_LO32) = BX_CPU_THIS_PTR tr.cache.u.tss386.base & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_TR_LIMIT) = BX_CPU_THIS_PTR tr.cache.u.tss386.limit;
}
SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) = BX_CPU_THIS_PTR tr.selector.value |
(((Bit32u) get_segment_ar_data(&BX_CPU_THIS_PTR tr.cache)) << 16);
// --- IDTR --- //
SMRAM_FIELD(saved_state, SMRAM_IDTR_BASE_HI32) = BX_CPU_THIS_PTR idtr.base >> 32;
SMRAM_FIELD(saved_state, SMRAM_IDTR_BASE_LO32) = BX_CPU_THIS_PTR idtr.base & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_IDTR_LIMIT) = BX_CPU_THIS_PTR idtr.limit;
// --- LDTR --- //
SMRAM_FIELD(saved_state, SMRAM_LDTR_BASE_HI32) = BX_CPU_THIS_PTR ldtr.cache.u.ldt.base >> 32;
SMRAM_FIELD(saved_state, SMRAM_LDTR_BASE_LO32) = BX_CPU_THIS_PTR ldtr.cache.u.ldt.base & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_LDTR_LIMIT) = BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit;
SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) = BX_CPU_THIS_PTR ldtr.selector.value |
(((Bit32u) get_segment_ar_data(&BX_CPU_THIS_PTR ldtr.cache)) << 16);
// --- GDTR --- //
SMRAM_FIELD(saved_state, SMRAM_GDTR_BASE_HI32) = BX_CPU_THIS_PTR gdtr.base >> 32;
SMRAM_FIELD(saved_state, SMRAM_GDTR_BASE_LO32) = BX_CPU_THIS_PTR gdtr.base & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_GDTR_LIMIT) = BX_CPU_THIS_PTR gdtr.limit;
// --- GS selector --- //
bx_segment_reg_t *seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS]);
SMRAM_FIELD(saved_state, SMRAM_GS_BASE_HI32) = seg->cache.u.segment.base >> 32;
SMRAM_FIELD(saved_state, SMRAM_GS_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_GS_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
// --- FS selector --- //
seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]);
SMRAM_FIELD(saved_state, SMRAM_FS_BASE_HI32) = seg->cache.u.segment.base >> 32;
SMRAM_FIELD(saved_state, SMRAM_FS_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_FS_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
// --- DS selector --- //
seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]);
SMRAM_FIELD(saved_state, SMRAM_DS_BASE_HI32) = seg->cache.u.segment.base >> 32;
SMRAM_FIELD(saved_state, SMRAM_DS_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_DS_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
// --- SS selector --- //
seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]);
SMRAM_FIELD(saved_state, SMRAM_SS_BASE_HI32) = seg->cache.u.segment.base >> 32;
SMRAM_FIELD(saved_state, SMRAM_SS_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_SS_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
// --- CS selector --- //
seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]);
SMRAM_FIELD(saved_state, SMRAM_CS_BASE_HI32) = seg->cache.u.segment.base >> 32;
SMRAM_FIELD(saved_state, SMRAM_CS_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_CS_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
// --- ES selector --- //
seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]);
SMRAM_FIELD(saved_state, SMRAM_ES_BASE_HI32) = seg->cache.u.segment.base >> 32;
SMRAM_FIELD(saved_state, SMRAM_ES_BASE_LO32) = seg->cache.u.segment.base & 0xffffffff;
SMRAM_FIELD(saved_state, SMRAM_ES_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
}
bx_bool BX_CPU_C::smram_restore_state(const Bit32u *saved_state)
{
Bit32u temp_cr0 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR0);
Bit32u temp_eflags = SMRAM_FIELD(saved_state, SMRAM_OFFSET_RFLAGS32);
Bit32u temp_efer = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EFER);
bx_bool pe = (temp_cr0 & 0x01);
bx_bool nw = (temp_cr0 >> 29) & 0x01;
bx_bool cd = (temp_cr0 >> 30) & 0x01;
bx_bool pg = (temp_cr0 >> 31) & 0x01;
// check CR0 conditions for entering to shutdown state
if (pg && !pe) {
BX_PANIC(("SMM restore: attempt to set CR0.PG with CR0.PE cleared !"));
return 0;
}
if (nw && !cd) {
BX_PANIC(("SMM restore: attempt to set CR0.NW with CR0.CD cleared !"));
return 0;
}
// shutdown if write to reserved CR4 bits
if (! SetCR4(SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR4))) {
BX_PANIC(("SMM restore: incorrect CR4 state !"));
return 0;
}
BX_CPU_THIS_PTR msr.sce = (temp_efer >> 0) & 1;
BX_CPU_THIS_PTR msr.lme = (temp_efer >> 8) & 1;
BX_CPU_THIS_PTR msr.lma = (temp_efer >> 10) & 1;
BX_CPU_THIS_PTR msr.nxe = (temp_efer >> 11) & 1;
BX_CPU_THIS_PTR msr.ffxsr = (temp_efer >> 14) & 1;
if (BX_CPU_THIS_PTR msr.lma) {
if (temp_eflags & EFlagsVMMask) {
BX_PANIC(("SMM restore: If EFER.LMA = 1 => RFLAGS.VM=0 !"));
return 0;
}
if (!BX_CPU_THIS_PTR cr4.get_PAE() || !pg || !pe || !BX_CPU_THIS_PTR msr.lme) {
BX_PANIC(("SMM restore: If EFER.LMA = 1 <=> CR4.PAE, CR0.PG, CR0.PE, EFER.LME=1 !"));
return 0;
}
}
if (BX_CPU_THIS_PTR cr4.get_PAE() && pg && pe && BX_CPU_THIS_PTR msr.lme) {
if (! BX_CPU_THIS_PTR msr.lma) {
BX_PANIC(("SMM restore: If EFER.LMA = 1 <=> CR4.PAE, CR0.PG, CR0.PE, EFER.LME=1 !"));
return 0;
}
}
// hack CR0 to be able to back to long mode correctly
BX_CPU_THIS_PTR cr0.pe = 0; // real mode (bit 0)
BX_CPU_THIS_PTR cr0.pg = 0; // paging disabled (bit 31)
BX_CPU_THIS_PTR cr0.val32 &= 0x7ffffffe;
SetCR0(temp_cr0);
setEFlags(temp_eflags);
bx_phy_address temp_cr3 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR3);
CR3_change(temp_cr3);
RAX = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RAX_HI32, SMRAM_OFFSET_RAX_LO32);
RBX = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RBX_HI32, SMRAM_OFFSET_RBX_LO32);
RCX = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RCX_HI32, SMRAM_OFFSET_RCX_LO32);
RDX = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RDX_HI32, SMRAM_OFFSET_RDX_LO32);
RSP = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RSP_HI32, SMRAM_OFFSET_RSP_LO32);
RBP = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RBP_HI32, SMRAM_OFFSET_RBP_LO32);
RSI = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RSI_HI32, SMRAM_OFFSET_RSI_LO32);
RDI = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RDI_HI32, SMRAM_OFFSET_RDI_LO32);
R8 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R8_HI32, SMRAM_OFFSET_R8_LO32);
R9 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R9_HI32, SMRAM_OFFSET_R9_LO32);
R10 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R10_HI32, SMRAM_OFFSET_R10_LO32);
R11 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R11_HI32, SMRAM_OFFSET_R11_LO32);
R12 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R12_HI32, SMRAM_OFFSET_R12_LO32);
R13 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R13_HI32, SMRAM_OFFSET_R13_LO32);
R14 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R14_HI32, SMRAM_OFFSET_R14_LO32);
R15 = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_R15_HI32, SMRAM_OFFSET_R15_LO32);
RIP = SMRAM_FIELD64(saved_state, SMRAM_OFFSET_RIP_HI32, SMRAM_OFFSET_RIP_LO32);
BX_CPU_THIS_PTR dr6 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR6);
BX_CPU_THIS_PTR dr7 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR7);
BX_CPU_THIS_PTR gdtr.base = SMRAM_FIELD64(saved_state, SMRAM_GDTR_BASE_HI32, SMRAM_GDTR_BASE_LO32);
BX_CPU_THIS_PTR gdtr.limit = SMRAM_FIELD(saved_state, SMRAM_GDTR_LIMIT);
BX_CPU_THIS_PTR idtr.base = SMRAM_FIELD64(saved_state, SMRAM_IDTR_BASE_HI32, SMRAM_IDTR_BASE_LO32);
BX_CPU_THIS_PTR idtr.limit = SMRAM_FIELD(saved_state, SMRAM_IDTR_LIMIT);
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS],
SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) & 0xffff,
SMRAM_FIELD64(saved_state, SMRAM_CS_BASE_HI32, SMRAM_CS_BASE_LO32),
SMRAM_FIELD(saved_state, SMRAM_CS_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment CS !"));
return 0;
}
}
handleCpuModeChange();
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS],
SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) & 0xffff,
SMRAM_FIELD64(saved_state, SMRAM_DS_BASE_HI32, SMRAM_DS_BASE_LO32),
SMRAM_FIELD(saved_state, SMRAM_DS_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment DS !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS],
SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) & 0xffff,
SMRAM_FIELD64(saved_state, SMRAM_SS_BASE_HI32, SMRAM_SS_BASE_LO32),
SMRAM_FIELD(saved_state, SMRAM_SS_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment SS !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES],
SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) & 0xffff,
SMRAM_FIELD64(saved_state, SMRAM_ES_BASE_HI32, SMRAM_ES_BASE_LO32),
SMRAM_FIELD(saved_state, SMRAM_ES_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment ES !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS],
SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) & 0xffff,
SMRAM_FIELD64(saved_state, SMRAM_FS_BASE_HI32, SMRAM_FS_BASE_LO32),
SMRAM_FIELD(saved_state, SMRAM_FS_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment FS !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS],
SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) & 0xffff,
SMRAM_FIELD64(saved_state, SMRAM_GS_BASE_HI32, SMRAM_GS_BASE_LO32),
SMRAM_FIELD(saved_state, SMRAM_GS_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment GS !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR ldtr,
SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) & 0xffff,
SMRAM_FIELD64(saved_state, SMRAM_LDTR_BASE_HI32, SMRAM_LDTR_BASE_LO32),
SMRAM_FIELD(saved_state, SMRAM_LDTR_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) >> 16))
{
if (BX_CPU_THIS_PTR ldtr.cache.type != BX_SYS_SEGMENT_LDT) {
BX_PANIC(("SMM restore: LDTR is not LDT descriptor type !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR tr,
SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) & 0xffff,
SMRAM_FIELD64(saved_state, SMRAM_TR_BASE_HI32, SMRAM_TR_BASE_LO32),
SMRAM_FIELD(saved_state, SMRAM_TR_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) >> 16))
{
if (BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_AVAIL_286_TSS &&
BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_BUSY_286_TSS &&
BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_AVAIL_386_TSS &&
BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_BUSY_386_TSS)
{
BX_PANIC(("SMM restore: TR is not TSS descriptor type !"));
return 0;
}
}
if (SMM_REVISION_ID & SMM_SMBASE_RELOCATION)
BX_CPU_THIS_PTR smbase = SMRAM_FIELD(saved_state, SMRAM_SMBASE_OFFSET);
return 1;
}
#else /* BX_SUPPORT_X86_64 == 0 */
void BX_CPU_C::smram_save_state(Bit32u *saved_state)
{
SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR0) = BX_CPU_THIS_PTR cr0.val32;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR3) = BX_CPU_THIS_PTR cr3;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_EFLAGS) = read_eflags();
SMRAM_FIELD(saved_state, SMRAM_OFFSET_EIP) = EIP;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_EDI) = EDI;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_ESI) = ESI;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_EBP) = EBP;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_ESP) = ESP;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_EBX) = EBX;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_EDX) = EDX;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_ECX) = ECX;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_EAX) = EAX;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR6) = BX_CPU_THIS_PTR dr6;
SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR7) = BX_CPU_THIS_PTR dr7;
SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR) = BX_CPU_THIS_PTR tr.selector.value;
SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR) = BX_CPU_THIS_PTR ldtr.selector.value;
SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR) =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].selector.value;
SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR) =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].selector.value;
SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR) =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].selector.value;
SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR) =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].selector.value;
SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR) =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].selector.value;
SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR) =
BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].selector.value;
// --- SS selector --- //
bx_segment_reg_t *seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS]);
SMRAM_FIELD(saved_state, SMRAM_SS_BASE) = seg->cache.u.segment.base;
SMRAM_FIELD(saved_state, SMRAM_SS_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
// --- CS selector --- //
seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS]);
SMRAM_FIELD(saved_state, SMRAM_CS_BASE) = seg->cache.u.segment.base;
SMRAM_FIELD(saved_state, SMRAM_CS_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
// --- ES selector --- //
seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES]);
SMRAM_FIELD(saved_state, SMRAM_ES_BASE) = seg->cache.u.segment.base;
SMRAM_FIELD(saved_state, SMRAM_ES_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
// --- LDTR --- //
SMRAM_FIELD(saved_state, SMRAM_LDTR_BASE) = BX_CPU_THIS_PTR ldtr.cache.u.ldt.base;
SMRAM_FIELD(saved_state, SMRAM_LDTR_LIMIT) = BX_CPU_THIS_PTR ldtr.cache.u.ldt.limit;
SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) = BX_CPU_THIS_PTR ldtr.selector.value |
(((Bit32u) get_segment_ar_data(&BX_CPU_THIS_PTR ldtr.cache)) << 16);
// --- GDTR --- //
SMRAM_FIELD(saved_state, SMRAM_GDTR_BASE) = BX_CPU_THIS_PTR gdtr.base;
SMRAM_FIELD(saved_state, SMRAM_GDTR_LIMIT) = BX_CPU_THIS_PTR gdtr.limit;
/* base+0x7f6c is reserved */
/* base+0x7f68 is reserved */
// --- Task Register --- //
if (BX_CPU_THIS_PTR tr.cache.type <= 3) {
SMRAM_FIELD(saved_state, SMRAM_TR_BASE) = BX_CPU_THIS_PTR tr.cache.u.tss286.base;
SMRAM_FIELD(saved_state, SMRAM_TR_LIMIT) = BX_CPU_THIS_PTR tr.cache.u.tss286.limit;
} else {
SMRAM_FIELD(saved_state, SMRAM_TR_BASE) = BX_CPU_THIS_PTR tr.cache.u.tss386.base;
SMRAM_FIELD(saved_state, SMRAM_TR_LIMIT) = BX_CPU_THIS_PTR tr.cache.u.tss386.limit;
}
SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) = BX_CPU_THIS_PTR tr.selector.value |
(((Bit32u) get_segment_ar_data(&BX_CPU_THIS_PTR tr.cache)) << 16);
// --- IDTR --- //
SMRAM_FIELD(saved_state, SMRAM_IDTR_BASE) = BX_CPU_THIS_PTR idtr.base;
SMRAM_FIELD(saved_state, SMRAM_IDTR_LIMIT) = BX_CPU_THIS_PTR idtr.limit;
/* base+0x7f50 is reserved */
// --- GS selector --- //
seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS]);
SMRAM_FIELD(saved_state, SMRAM_GS_BASE) = seg->cache.u.segment.base;
SMRAM_FIELD(saved_state, SMRAM_GS_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
// --- FS selector --- //
seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS]);
SMRAM_FIELD(saved_state, SMRAM_FS_BASE) = seg->cache.u.segment.base;
SMRAM_FIELD(saved_state, SMRAM_FS_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
// --- DS selector --- //
seg = &(BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS]);
SMRAM_FIELD(saved_state, SMRAM_DS_BASE) = seg->cache.u.segment.base;
SMRAM_FIELD(saved_state, SMRAM_DS_LIMIT) = seg->cache.u.segment.limit;
SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) = seg->selector.value |
(((Bit32u) get_segment_ar_data(&seg->cache)) << 16);
/* base+0x7f28 to base+7f18 is reserved */
#if BX_CPU_LEVEL >= 4
SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR4) = BX_CPU_THIS_PTR cr4.getRegister();
#endif
/* base+0x7f02 is Auto HALT restart field (2 byte) */
/* base+0x7f00 is I/O restart field (2 byte) */
SMRAM_FIELD(saved_state, SMRAM_SMM_REVISION_ID) = SMM_REVISION_ID;
SMRAM_FIELD(saved_state, SMRAM_SMBASE_OFFSET) = BX_CPU_THIS_PTR smbase;
/* base+0x7ef4 to base+0x7e00 is reserved */
}
bx_bool BX_CPU_C::smram_restore_state(const Bit32u *saved_state)
{
Bit32u temp_cr0 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR0);
Bit32u temp_eflags = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EFLAGS);
Bit32u temp_cr3 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR3);
bx_bool pe = (temp_cr0 & 0x01);
bx_bool nw = (temp_cr0 >> 29) & 0x01;
bx_bool cd = (temp_cr0 >> 30) & 0x01;
bx_bool pg = (temp_cr0 >> 31) & 0x01;
// check conditions for entering to shutdown state
if (pg && !pe) {
BX_PANIC(("SMM restore: attempt to set CR0.PG with CR0.PE cleared !"));
return 0;
}
if (nw && !cd) {
BX_PANIC(("SMM restore: attempt to set CR0.NW with CR0.CD cleared !"));
return 0;
}
SetCR0(temp_cr0);
CR3_change(temp_cr3);
setEFlags(temp_eflags);
#if BX_CPU_LEVEL >= 4
if (! SetCR4(SMRAM_FIELD(saved_state, SMRAM_OFFSET_CR4))) {
BX_PANIC(("SMM restore: incorrect CR4 state !"));
return 0;
}
#endif
EIP = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EIP);
EDI = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EDI);
ESI = SMRAM_FIELD(saved_state, SMRAM_OFFSET_ESI);
EBP = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EBP);
ESP = SMRAM_FIELD(saved_state, SMRAM_OFFSET_ESP);
EBX = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EBX);
EDX = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EDX);
ECX = SMRAM_FIELD(saved_state, SMRAM_OFFSET_ECX);
EAX = SMRAM_FIELD(saved_state, SMRAM_OFFSET_EAX);
BX_CPU_THIS_PTR dr6 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR6);
BX_CPU_THIS_PTR dr7 = SMRAM_FIELD(saved_state, SMRAM_OFFSET_DR7);
BX_CPU_THIS_PTR gdtr.base = SMRAM_FIELD(saved_state, SMRAM_GDTR_BASE);
BX_CPU_THIS_PTR gdtr.limit = SMRAM_FIELD(saved_state, SMRAM_GDTR_LIMIT);
BX_CPU_THIS_PTR idtr.base = SMRAM_FIELD(saved_state, SMRAM_IDTR_BASE);
BX_CPU_THIS_PTR idtr.limit = SMRAM_FIELD(saved_state, SMRAM_IDTR_LIMIT);
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS],
SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) & 0xffff,
SMRAM_FIELD(saved_state, SMRAM_CS_BASE),
SMRAM_FIELD(saved_state, SMRAM_CS_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_CS_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_CS].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment CS !"));
return 0;
}
}
handleCpuModeChange();
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS],
SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) & 0xffff,
SMRAM_FIELD(saved_state, SMRAM_DS_BASE),
SMRAM_FIELD(saved_state, SMRAM_DS_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_DS_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_DS].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment DS !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS],
SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) & 0xffff,
SMRAM_FIELD(saved_state, SMRAM_SS_BASE),
SMRAM_FIELD(saved_state, SMRAM_SS_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_SS_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment SS !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES],
SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) & 0xffff,
SMRAM_FIELD(saved_state, SMRAM_ES_BASE),
SMRAM_FIELD(saved_state, SMRAM_ES_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_ES_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_ES].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment ES !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS],
SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) & 0xffff,
SMRAM_FIELD(saved_state, SMRAM_FS_BASE),
SMRAM_FIELD(saved_state, SMRAM_FS_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_FS_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_FS].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment FS !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS],
SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) & 0xffff,
SMRAM_FIELD(saved_state, SMRAM_GS_BASE),
SMRAM_FIELD(saved_state, SMRAM_GS_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_GS_SELECTOR_AR) >> 16))
{
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_GS].cache.segment) {
BX_PANIC(("SMM restore: restored valid non segment GS !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR ldtr,
SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) & 0xffff,
SMRAM_FIELD(saved_state, SMRAM_LDTR_BASE),
SMRAM_FIELD(saved_state, SMRAM_LDTR_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_LDTR_SELECTOR_AR) >> 16))
{
if (BX_CPU_THIS_PTR ldtr.cache.type != BX_SYS_SEGMENT_LDT) {
BX_PANIC(("SMM restore: LDTR is not LDT descriptor type !"));
return 0;
}
}
if (set_segment_ar_data(&BX_CPU_THIS_PTR tr,
SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) & 0xffff,
SMRAM_FIELD(saved_state, SMRAM_TR_BASE),
SMRAM_FIELD(saved_state, SMRAM_TR_LIMIT),
SMRAM_FIELD(saved_state, SMRAM_TR_SELECTOR_AR) >> 16))
{
if (BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_AVAIL_286_TSS &&
BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_BUSY_286_TSS &&
BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_AVAIL_386_TSS &&
BX_CPU_THIS_PTR tr.cache.type != BX_SYS_SEGMENT_BUSY_386_TSS)
{
BX_PANIC(("SMM restore: TR is not TSS descriptor type !"));
return 0;
}
}
if (SMM_REVISION_ID & SMM_SMBASE_RELOCATION) {
BX_CPU_THIS_PTR smbase = SMRAM_FIELD(saved_state, SMRAM_SMBASE_OFFSET);
#if BX_CPU_LEVEL < 6
if (BX_CPU_THIS_PTR smbase & 0x7fff) {
BX_PANIC(("SMM restore: SMBASE must be aligned to 32K !"));
return 0;
}
#endif
}
return 1;
}
#endif /* BX_SUPPORT_X86_64 */
#endif /* BX_CPU_LEVEL >= 3 */