Bochs/bochs/cpu/tlb.h
Stanislav Shwartsman f90e5f4f44 Add initial implementation of the CET (Control Flow Enforcement Technology) emulation according to SDM071
Only missing items (to be added soon):
  - Supervisor Shadow Stack EPT Control is not implemented yet
  - SMM placing for SSP
Currently have to be added manually to some CPUID model, for example to ICL-U
To enable configure with --enable-cet
2019-12-20 07:42:07 +00:00

261 lines
7.4 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2015-2019 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#ifndef BX_TLB_H
#define BX_TLB_H
#if BX_SUPPORT_X86_64
const bx_address LPF_MASK = BX_CONST64(0xfffffffffffff000);
#else
const bx_address LPF_MASK = 0xfffff000;
#endif
#if BX_PHY_ADDRESS_LONG
const bx_phy_address PPF_MASK = BX_CONST64(0xfffffffffffff000);
#else
const bx_phy_address PPF_MASK = 0xfffff000;
#endif
BX_CPP_INLINE Bit32u PAGE_OFFSET(bx_address laddr)
{
return Bit32u(laddr) & 0xfff;
}
BX_CPP_INLINE bx_address LPFOf(bx_address laddr) { return laddr & LPF_MASK; }
BX_CPP_INLINE bx_address PPFOf(bx_phy_address paddr) { return paddr & PPF_MASK; }
BX_CPP_INLINE bx_address AlignedAccessLPFOf(bx_address laddr, unsigned alignment_mask)
{
return laddr & (LPF_MASK | alignment_mask);
}
// BX_TLB_INDEX_OF(lpf): This macro is passed the linear page frame
// (top bits of the linear address). It must map these bits to
// one of the TLB cache slots, given the size of BX_TLB_SIZE.
// There will be a many-to-one mapping to each TLB cache slot.
// When there are collisions, the old entry is overwritten with
// one for the newest access.
#define BX_DTLB_ENTRY_OF(lpf, len) (BX_CPU_THIS_PTR DTLB.get_entry_of((lpf), (len)))
#define BX_DTLB_INDEX_OF(lpf, len) (BX_CPU_THIS_PTR DTLB.get_index_of((lpf), (len)))
#define BX_ITLB_ENTRY_OF(lpf) (BX_CPU_THIS_PTR ITLB.get_entry_of(lpf))
#define BX_ITLB_INDEX_OF(lpf) (BX_CPU_THIS_PTR ITLB.get_index_of(lpf))
typedef bx_ptr_equiv_t bx_hostpageaddr_t;
#if BX_SUPPORT_X86_64
const bx_address BX_INVALID_TLB_ENTRY = BX_CONST64(0xffffffffffffffff);
#else
const bx_address BX_INVALID_TLB_ENTRY = 0xffffffff;
#endif
// accessBits in DTLB
const Bit32u TLB_SysReadOK = 0x01;
const Bit32u TLB_UserReadOK = 0x02;
const Bit32u TLB_SysWriteOK = 0x04;
const Bit32u TLB_UserWriteOK = 0x08;
const Bit32u TLB_SysReadShadowStackOK = 0x10;
const Bit32u TLB_UserReadShadowStackOK = 0x20;
const Bit32u TLB_SysWriteShadowStackOK = 0x40;
const Bit32u TLB_UserWriteShadowStackOK = 0x80;
// accessBits in ITLB
const Bit32u TLB_SysExecuteOK = 0x01;
const Bit32u TLB_UserExecuteOK = 0x02;
// global
const Bit32u TLB_GlobalPage = 0x80000000;
#if BX_SUPPORT_PKEYS
// check if page from a TLB entry can be written
#define isWriteOK(tlbEntry, user) \
(tlbEntry->accessBits & (0x04 << (user)) & BX_CPU_THIS_PTR wr_pkey[tlbEntry->pkey])
// check if page from a TLB entry can be read
#define isReadOK(tlbEntry, user) \
(tlbEntry->accessBits & (0x01 << (user)) & BX_CPU_THIS_PTR rd_pkey[tlbEntry->pkey])
#if BX_SUPPORT_CET
// check if page from a TLB entry can be written for shadow stack access
#define isShadowStackWriteOK(tlbEntry, user) \
(tlbEntry->accessBits & (0x40 << (user)) & BX_CPU_THIS_PTR wr_pkey[tlbEntry->pkey])
// check if page from a TLB entry can be read
#define isShadowStackReadOK(tlbEntry, user) \
(tlbEntry->accessBits & (0x10 << (user)) & BX_CPU_THIS_PTR rd_pkey[tlbEntry->pkey])
#endif
#else // ! BX_SUPPORT_PKEYS
// check if page from a TLB entry can be written
#define isWriteOK(tlbEntry, user) \
(tlbEntry->accessBits & (0x04 << (user)))
// check if page from a TLB entry can be read
#define isReadOK(tlbEntry, user) \
(tlbEntry->accessBits & (0x01 << (user)))
#if BX_SUPPORT_CET
// check if page from a TLB entry can be written for shadow stack access
#define isShadowStackWriteOK(tlbEntry, user) \
(tlbEntry->accessBits & (0x40 << (user)))
// check if page from a TLB entry can be read
#define isShadowStackReadOK(tlbEntry, user) \
(tlbEntry->accessBits & (0x10 << (user)))
#endif
#endif
enum {
BX_MEMTYPE_UC = 0,
BX_MEMTYPE_WC = 1,
BX_MEMTYPE_RESERVED2 = 2,
BX_MEMTYPE_RESERVED3 = 3,
BX_MEMTYPE_WT = 4,
BX_MEMTYPE_WP = 5,
BX_MEMTYPE_WB = 6,
BX_MEMTYPE_UC_WEAK = 7, // PAT only
BX_MEMTYPE_INVALID = 8
};
typedef unsigned BxMemtype;
// avoid wasting cycles to determine memory type if not required
#if BX_SUPPORT_MEMTYPE
#define MEMTYPE(memtype) (memtype)
#else
#define MEMTYPE(memtype) (BX_MEMTYPE_UC)
#endif
struct bx_TLB_entry
{
bx_address lpf; // linear page frame
bx_phy_address ppf; // physical page frame
bx_hostpageaddr_t hostPageAddr;
Bit32u accessBits;
#if BX_SUPPORT_PKEYS
Bit32u pkey;
#endif
Bit32u lpf_mask; // linear address mask of the page size
#if BX_SUPPORT_MEMTYPE
Bit32u memtype; // keep it Bit32u for alignment
#endif
bx_TLB_entry() { invalidate(); }
BX_CPP_INLINE bx_bool valid() const { return lpf != BX_INVALID_TLB_ENTRY; }
BX_CPP_INLINE void invalidate() {
lpf = BX_INVALID_TLB_ENTRY;
accessBits = 0;
}
BX_CPP_INLINE Bit32u get_memtype() const { return MEMTYPE(memtype); }
};
template <unsigned size>
struct TLB {
bx_TLB_entry entry[size];
#if BX_CPU_LEVEL >= 5
bx_bool split_large;
#endif
public:
TLB() { flush(); }
BX_CPP_INLINE unsigned get_index_of(bx_address lpf, unsigned len = 0)
{
const Bit32u tlb_mask = ((size-1) << 12);
return (((unsigned(lpf) + len) & tlb_mask) >> 12);
}
BX_CPP_INLINE bx_TLB_entry *get_entry_of(bx_address lpf, unsigned len = 0)
{
return &entry[get_index_of(lpf, len)];
}
BX_CPP_INLINE void flush(void)
{
for (unsigned n=0; n < size; n++)
entry[n].invalidate();
#if BX_CPU_LEVEL >= 5
split_large = false; // flushing whole TLB
#endif
}
#if BX_CPU_LEVEL >= 6
BX_CPP_INLINE void flushNonGlobal(void)
{
Bit32u lpf_mask = 0;
for (unsigned n=0; n<size; n++) {
bx_TLB_entry *tlbEntry = &entry[n];
if (tlbEntry->valid()) {
if (!(tlbEntry->accessBits & TLB_GlobalPage))
tlbEntry->invalidate();
else
lpf_mask |= tlbEntry->lpf_mask;
}
}
split_large = (lpf_mask > 0xfff);
}
#endif
BX_CPP_INLINE void invlpg(bx_address laddr)
{
#if BX_CPU_LEVEL >= 5
if (split_large) {
Bit32u lpf_mask = 0;
// make sure INVLPG handles correctly large pages
for (unsigned n=0; n<size; n++) {
bx_TLB_entry *tlbEntry = &entry[n];
if (tlbEntry->valid()) {
bx_address entry_lpf_mask = tlbEntry->lpf_mask;
if ((laddr & ~entry_lpf_mask) == (tlbEntry->lpf & ~entry_lpf_mask)) {
tlbEntry->invalidate();
}
else {
lpf_mask |= entry_lpf_mask;
}
}
}
split_large = (lpf_mask > 0xfff);
}
else
#endif
{
bx_TLB_entry *tlbEntry = get_entry_of(laddr);
if (LPFOf(tlbEntry->lpf) == LPFOf(laddr))
tlbEntry->invalidate();
}
}
};
#endif