Bochs/bochs/bochs.h
2019-12-09 16:44:36 +00:00

660 lines
19 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001-2019 The Bochs Project
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
// bochs.h is the master header file for all C++ code. It includes all
// the system header files needed by bochs, and also includes all the bochs
// C++ header files. Because bochs.h and the files that it includes has
// structure and class definitions, it cannot be called from C code.
//
#ifndef BX_BOCHS_H
# define BX_BOCHS_H 1
#include "config.h" /* generated by configure script from config.h.in */
#ifndef __QNXNTO__
extern "C" {
#endif
#ifdef WIN32
// In a win32 compile (including cygwin), windows.h is required for several
// files in gui and iodev. It is important to include it here in a header
// file so that WIN32-specific data types can be used in fields of classes.
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#if defined(__sun__)
#undef EAX
#undef ECX
#undef EDX
#undef EBX
#undef ESP
#undef EBP
#undef ESI
#undef EDI
#undef EIP
#undef CS
#undef DS
#undef ES
#undef SS
#undef FS
#undef GS
#endif
#include <assert.h>
#include <errno.h>
#ifndef WIN32
# include <unistd.h>
#else
# include <io.h>
#endif
#include <time.h>
#if BX_WITH_MACOS
# include <types.h>
# include <stat.h>
# include <cstdio>
# include <unistd.h>
#elif BX_WITH_CARBON
# include <sys/types.h>
# include <sys/stat.h>
# include <sys/param.h> /* for MAXPATHLEN */
# include <sys/time.h>
# include <utime.h>
#else
# ifndef WIN32
# include <sys/time.h>
# endif
# include <sys/types.h>
# include <sys/stat.h>
#endif
#include <ctype.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#ifdef macintosh
# define SuperDrive "[fd:]"
#endif
#ifndef __QNXNTO__
}
#endif
#include "osdep.h" /* platform dependent includes and defines */
#include "bx_debug/debug.h"
#include "gui/siminterface.h"
// BX_SHARE_PATH should be defined by the makefile. If not, give it
// a value of NULL to avoid compile problems.
#ifndef BX_SHARE_PATH
#define BX_SHARE_PATH NULL
#endif
// prototypes
int bx_begin_simulation(int argc, char *argv[]);
void bx_stop_simulation();
char *bx_find_bochsrc(void);
const char *get_builtin_variable(const char *varname);
int bx_parse_cmdline(int arg, int argc, char *argv[]);
int bx_read_configuration(const char *rcfile);
int bx_write_configuration(const char *rcfile, int overwrite);
void bx_reset_options(void);
void bx_set_log_actions_by_device(bx_bool panic_flag);
// special config parameter and options functions for plugins
void bx_init_std_nic_options(const char *name, bx_list_c *menu);
void bx_init_usb_options(const char *usb_name, const char *pname, int maxports);
int bx_parse_param_from_list(const char *context, const char *input, bx_list_c *list);
int bx_parse_nic_params(const char *context, const char *param, bx_list_c *base);
int bx_parse_usb_port_params(const char *context, bx_bool devopt,
const char *param, int maxports, bx_list_c *base);
int bx_write_param_list(FILE *fp, bx_list_c *base, const char *optname, bx_bool multiline);
int bx_write_usb_options(FILE *fp, int maxports, bx_list_c *base);
Bit32u crc32(const Bit8u *buf, int len);
// used to print param tree from debugger
void print_tree(bx_param_c *node, int level = 0, bx_bool xml = false);
#if BX_ENABLE_STATISTICS
// print statistics
void print_statistics_tree(bx_param_c *node, int level = 0);
#define INC_STAT(stat) (++(stat))
#else
#define INC_STAT(stat)
#endif
//
// some macros to interface the CPU and memory to external environment
// so that these functions can be redirected to the debugger when
// needed.
//
#define BXRS_PARAM_SPECIAL(parent, name, maxvalue, save_handler, restore_handler) \
{ \
bx_param_num_c *param = new bx_param_num_c(parent, #name, "", "", 0, maxvalue, 0); \
param->set_base(BASE_HEX); \
param->set_sr_handlers(this, save_handler, restore_handler); \
}
#define BXRS_PARAM_SPECIAL64(parent, name, save_handler, restore_handler) \
BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT64U, save_handler, restore_handler)
#define BXRS_PARAM_SPECIAL32(parent, name, save_handler, restore_handler) \
BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT32U, save_handler, restore_handler)
#define BXRS_PARAM_SPECIAL16(parent, name, save_handler, restore_handler) \
BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT16U, save_handler, restore_handler)
#define BXRS_PARAM_SPECIAL8(parent, name, save_handler, restore_handler) \
BXRS_PARAM_SPECIAL(parent, name, BX_MAX_BIT8U, save_handler, restore_handler)
#define BXRS_HEX_PARAM_SIMPLE32(parent, name) \
new bx_shadow_num_c(parent, #name, (Bit32u*)&(name), BASE_HEX)
#define BXRS_HEX_PARAM_SIMPLE64(parent, name) \
new bx_shadow_num_c(parent, #name, (Bit64u*)&(name), BASE_HEX)
#define BXRS_HEX_PARAM_SIMPLE(parent, name) \
new bx_shadow_num_c(parent, #name, &(name), BASE_HEX)
#define BXRS_HEX_PARAM_FIELD(parent, name, field) \
new bx_shadow_num_c(parent, #name, &(field), BASE_HEX)
#define BXRS_DEC_PARAM_SIMPLE(parent, name) \
new bx_shadow_num_c(parent, #name, &(name), BASE_DEC)
#define BXRS_DEC_PARAM_FIELD(parent, name, field) \
new bx_shadow_num_c(parent, #name, &(field), BASE_DEC)
#define BXRS_PARAM_BOOL(parent, name, field) \
new bx_shadow_bool_c(parent, #name, (bx_bool*)(&(field)))
// =-=-=-=-=-=-=- Normal optimized use -=-=-=-=-=-=-=-=-=-=-=-=-=-=
// some pc_systems functions just redirect to the IO devices so optimize
// by eliminating call here
//
// #define BX_INP(addr, len) bx_pc_system.inp(addr, len)
// #define BX_OUTP(addr, val, len) bx_pc_system.outp(addr, val, len)
#define BX_INP(addr, len) bx_devices.inp(addr, len)
#define BX_OUTP(addr, val, len) bx_devices.outp(addr, val, len)
#define BX_TICK1() bx_pc_system.tick1()
#define BX_TICKN(n) bx_pc_system.tickn(n)
#define BX_INTR bx_pc_system.INTR
#define BX_RAISE_INTR() bx_pc_system.raise_INTR()
#define BX_CLEAR_INTR() bx_pc_system.clear_INTR()
#define BX_HRQ bx_pc_system.HRQ
#if BX_SUPPORT_SMP
#define BX_CPU(x) (bx_cpu_array[x])
#else
#define BX_CPU(x) (&bx_cpu)
#endif
#define BX_MEM(x) (&bx_mem)
#define BX_SET_ENABLE_A20(enabled) bx_pc_system.set_enable_a20(enabled)
#define BX_GET_ENABLE_A20() bx_pc_system.get_enable_a20()
#if BX_SUPPORT_A20
# define A20ADDR(x) ((bx_phy_address)(x) & bx_pc_system.a20_mask)
#else
# define A20ADDR(x) ((bx_phy_address)(x))
#endif
// you can't use static member functions on the CPU, if there are going
// to be 2 cpus. Check this early on.
#if BX_SUPPORT_SMP
# if BX_USE_CPU_SMF
# error For SMP simulation, BX_USE_CPU_SMF must be 0.
# endif
#endif
//
// Ways for the the external environment to report back information
// to the debugger.
//
#if BX_DEBUGGER
# define BX_DBG_ASYNC_INTR bx_guard.async.irq
# define BX_DBG_ASYNC_DMA bx_guard.async.dma
# define BX_DBG_DMA_REPORT(addr, len, what, val) \
if (bx_guard.report.dma) bx_dbg_dma_report(addr, len, what, val)
# define BX_DBG_IAC_REPORT(vector, irq) \
if (bx_guard.report.irq) bx_dbg_iac_report(vector, irq)
# define BX_DBG_A20_REPORT(val) \
if (bx_guard.report.a20) bx_dbg_a20_report(val)
# define BX_DBG_IO_REPORT(port, size, op, val) \
if (bx_guard.report.io) bx_dbg_io_report(port, size, op, val)
# define BX_DBG_LIN_MEMORY_ACCESS(cpu, lin, phy, len, memtype, rw, data) \
bx_dbg_lin_memory_access(cpu, lin, phy, len, memtype, rw, data)
# define BX_DBG_PHY_MEMORY_ACCESS(cpu, phy, len, memtype, rw, why, data) \
bx_dbg_phy_memory_access(cpu, phy, len, memtype, rw, why, data)
#else // #if BX_DEBUGGER
// debugger not compiled in, use empty stubs
# define BX_DBG_ASYNC_INTR 1
# define BX_DBG_ASYNC_DMA 1
# define BX_DBG_DMA_REPORT(addr, len, what, val) /* empty */
# define BX_DBG_IAC_REPORT(vector, irq) /* empty */
# define BX_DBG_A20_REPORT(val) /* empty */
# define BX_DBG_IO_REPORT(port, size, op, val) /* empty */
# define BX_DBG_LIN_MEMORY_ACCESS(cpu, lin, phy, len, memtype, rw, data) /* empty */
# define BX_DBG_PHY_MEMORY_ACCESS(cpu, phy, len, memtype, rw, attr, data) /* empty */
#endif // #if BX_DEBUGGER
#define MAGIC_LOGNUM 0x12345678
typedef class BOCHSAPI logfunctions
{
char *name;
char *prefix;
int onoff[N_LOGLEV];
class iofunctions *logio;
// default log actions for all devices, declared and initialized
// in logio.cc.
BOCHSAPI_CYGONLY static int default_onoff[N_LOGLEV];
public:
logfunctions(void);
logfunctions(class iofunctions *);
virtual ~logfunctions(void);
void info(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3);
void error(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3);
void panic(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3);
void ldebug(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3);
void fatal1(const char *fmt, ...) BX_CPP_AttrPrintf(2, 3);
void fatal(int level, const char *prefix, const char *fmt, va_list ap, int exit_status);
void warn(int level, const char *prefix, const char *fmt, va_list ap);
void ask(int level, const char *prefix, const char *fmt, va_list ap);
void put(const char *p);
void put(const char *n, const char *p);
void setio(class iofunctions *);
void setonoff(int loglev, int value) {
assert (loglev >= 0 && loglev < N_LOGLEV);
onoff[loglev] = value;
}
const char *get_name() const { return name; }
const char *getprefix() const { return prefix; }
int getonoff(int level) const {
assert (level>=0 && level<N_LOGLEV);
return onoff[level];
}
static void set_default_action(int loglev, int action) {
assert (loglev >= 0 && loglev < N_LOGLEV);
assert (action >= 0 && action < N_ACT);
default_onoff[loglev] = action;
}
static int get_default_action(int loglev) {
assert (loglev >= 0 && loglev < N_LOGLEV);
return default_onoff[loglev];
}
} logfunc_t;
#define BX_LOGPREFIX_LEN 20
class BOCHSAPI iofunctions {
int magic;
char logprefix[BX_LOGPREFIX_LEN + 1];
FILE *logfd;
class logfunctions *log;
void init(void);
void flush(void);
// Log Class types
public:
iofunctions(void);
iofunctions(FILE *);
iofunctions(int);
iofunctions(const char *);
~iofunctions(void);
void out(int level, const char *pre, const char *fmt, va_list ap);
void init_log(const char *fn);
void init_log(int fd);
void init_log(FILE *fs);
void exit_log();
void set_log_prefix(const char *prefix);
int get_n_logfns() const { return n_logfn; }
logfunc_t *get_logfn(int index) { return logfn_list[index]; }
void add_logfn(logfunc_t *fn);
void remove_logfn(logfunc_t *fn);
void set_log_action(int loglevel, int action);
const char *getlevel(int i) const;
const char *getaction(int i) const;
int isaction(const char *val) const;
protected:
int n_logfn;
#define MAX_LOGFNS 512
logfunc_t *logfn_list[MAX_LOGFNS];
const char *logfn;
};
typedef class iofunctions iofunc_t;
#define SAFE_GET_IOFUNC() \
((io==NULL)? (io=new iofunc_t("/dev/stderr")) : io)
#define SAFE_GET_GENLOG() \
((genlog==NULL)? (genlog=new logfunc_t(SAFE_GET_IOFUNC())) : genlog)
#if BX_NO_LOGGING
#define BX_INFO(x)
#define BX_DEBUG(x)
#define BX_ERROR(x)
#define BX_PANIC(x) (LOG_THIS panic) x
#define BX_FATAL(x) (LOG_THIS fatal1) x
#define BX_ASSERT(x)
#else
#define BX_INFO(x) (LOG_THIS info) x
#define BX_DEBUG(x) (LOG_THIS ldebug) x
#define BX_ERROR(x) (LOG_THIS error) x
#define BX_PANIC(x) (LOG_THIS panic) x
#define BX_FATAL(x) (LOG_THIS fatal1) x
#if BX_ASSERT_ENABLE
#define BX_ASSERT(x) do {if (!(x)) BX_PANIC(("failed assertion \"%s\" at %s:%d\n", #x, __FILE__, __LINE__));} while (0)
#else
#define BX_ASSERT(x)
#endif
#endif
BOCHSAPI extern iofunc_t *io;
BOCHSAPI extern logfunc_t *genlog;
#ifndef UNUSED
# define UNUSED(x) ((void)x)
#endif
//Generic MAX and MIN Functions
#define BX_MAX(a,b) ((a) > (b) ? (a) : (b))
#define BX_MIN(a,b) ((a) < (b) ? (a) : (b))
#if BX_SUPPORT_X86_64
#define FMT_ADDRX FMT_ADDRX64
#else
#define FMT_ADDRX FMT_ADDRX32
#endif
#if BX_PHY_ADDRESS_LONG
#define FMT_PHY_ADDRX FMT_PHY_ADDRX64
#else
#define FMT_PHY_ADDRX FMT_ADDRX32
#endif
#define FMT_LIN_ADDRX FMT_ADDRX
#if BX_GDBSTUB
// defines for GDB stub
void bx_gdbstub_init(void);
void bx_gdbstub_break(void);
int bx_gdbstub_check(unsigned int eip);
#define GDBSTUB_STOP_NO_REASON (0xac0)
#if BX_SUPPORT_SMP
#error GDB stub was written for single processor support. If multiprocessor support is added, then we can remove this check.
// The big problem is knowing which CPU gdb is referring to. In other words,
// what should we put for "n" in BX_CPU(n)->dbg_xlate_linear2phy() and
// BX_CPU(n)->dword.eip, etc.
#endif
#endif
typedef struct {
bx_bool interrupts;
bx_bool exceptions;
bx_bool print_timestamps;
#if BX_DEBUGGER
bx_bool magic_break_enabled;
#endif
#if BX_GDBSTUB
bx_bool gdbstub_enabled;
#endif
#if BX_SUPPORT_APIC
bx_bool apic;
#endif
#if BX_DEBUG_LINUX
bx_bool linux_syscall;
#endif
} bx_debug_t;
#if BX_SHOW_IPS
BOCHSAPI_MSVCONLY void bx_show_ips_handler(void);
#endif
void CDECL bx_signal_handler(int signum);
int bx_atexit(void);
BOCHSAPI extern bx_debug_t bx_dbg;
#if BX_SUPPORT_APIC
// determinted by XAPIC option
BOCHSAPI extern Bit32u apic_id_mask;
#endif
// memory access type (read/write/execute/rw)
#define BX_READ 0
#define BX_WRITE 1
#define BX_EXECUTE 2
#define BX_RW 3
// types of reset
#define BX_RESET_SOFTWARE 10
#define BX_RESET_HARDWARE 11
#include "memory/memory-bochs.h"
#include "pc_system.h"
#include "gui/gui.h"
/* --- EXTERNS --- */
#if BX_GUI_SIGHANDLER
extern bx_bool bx_gui_sighandler;
#endif
// This value controls how often each I/O device's timer handler
// gets called. The timer is set up in iodev/devices.cc.
#define BX_IODEV_HANDLER_PERIOD 1000 // microseconds
#define BX_PATHNAME_LEN 512
#define BX_KBD_XT_TYPE 0
#define BX_KBD_AT_TYPE 1
#define BX_KBD_MF_TYPE 2
#define BX_N_OPTROM_IMAGES 4
#define BX_N_OPTRAM_IMAGES 4
#define BX_N_SERIAL_PORTS 4
#define BX_N_PARALLEL_PORTS 2
#define BX_N_PCI_SLOTS 5
#define BX_N_USER_PLUGINS 8
void bx_center_print(FILE *file, const char *line, unsigned maxwidth);
#include "instrument.h"
BX_CPP_INLINE Bit16u bx_bswap16(Bit16u val16)
{
return (val16<<8) | (val16>>8);
}
#if !defined(__MORPHOS__)
#if BX_HAVE___BUILTIN_BSWAP32
#define bx_bswap32 __builtin_bswap32
#else
BX_CPP_INLINE Bit32u bx_bswap32(Bit32u val32)
{
val32 = ((val32<<8) & 0xFF00FF00) | ((val32>>8) & 0x00FF00FF);
return (val32<<16) | (val32>>16);
}
#endif
#if BX_HAVE___BUILTIN_BSWAP64
#define bx_bswap64 __builtin_bswap64
#else
BX_CPP_INLINE Bit64u bx_bswap64(Bit64u val64)
{
Bit32u lo = bx_bswap32((Bit32u)(val64 >> 32));
Bit32u hi = bx_bswap32((Bit32u)(val64 & 0xFFFFFFFF));
return ((Bit64u)hi << 32) | (Bit64u)lo;
}
#endif
#endif // !MorphOS
// These are some convenience macros which abstract out accesses between
// a variable in native byte ordering to/from guest (x86) memory, which is
// always in little endian format. You must deal with alignment (if your
// system cares) and endian rearranging. Don't assume anything. You could
// put some platform specific asm() statements here, to make use of native
// instructions to help perform these operations more efficiently than C++.
#ifdef BX_LITTLE_ENDIAN
BX_CPP_INLINE void WriteHostWordToLittleEndian(Bit16u *hostPtr, Bit16u nativeVar16)
{
*(hostPtr) = nativeVar16;
}
BX_CPP_INLINE void WriteHostDWordToLittleEndian(Bit32u *hostPtr, Bit32u nativeVar32)
{
*(hostPtr) = nativeVar32;
}
BX_CPP_INLINE void WriteHostQWordToLittleEndian(Bit64u *hostPtr, Bit64u nativeVar64)
{
#ifdef ANDROID
// Resolve problems with unaligned access
((Bit8u *)(hostPtr))[0] = (Bit8u) (nativeVar64);
((Bit8u *)(hostPtr))[1] = (Bit8u) ((nativeVar64)>>8);
((Bit8u *)(hostPtr))[2] = (Bit8u) ((nativeVar64)>>16);
((Bit8u *)(hostPtr))[3] = (Bit8u) ((nativeVar64)>>24);
((Bit8u *)(hostPtr))[4] = (Bit8u) ((nativeVar64)>>32);
((Bit8u *)(hostPtr))[5] = (Bit8u) ((nativeVar64)>>40);
((Bit8u *)(hostPtr))[6] = (Bit8u) ((nativeVar64)>>48);
((Bit8u *)(hostPtr))[7] = (Bit8u) ((nativeVar64)>>56);
#else
*(hostPtr) = nativeVar64;
#endif
}
BX_CPP_INLINE Bit16u ReadHostWordFromLittleEndian(Bit16u *hostPtr)
{
return *(hostPtr);
}
BX_CPP_INLINE Bit32u ReadHostDWordFromLittleEndian(Bit32u *hostPtr)
{
return *(hostPtr);
}
BX_CPP_INLINE Bit64u ReadHostQWordFromLittleEndian(Bit64u *hostPtr)
{
#ifdef ANDROID
// Resolve problems with unaligned access
Bit64u nativeVar64 = ((Bit64u) ((Bit8u *)(hostPtr))[0]) |
(((Bit64u) ((Bit8u *)(hostPtr))[1])<<8) |
(((Bit64u) ((Bit8u *)(hostPtr))[2])<<16) |
(((Bit64u) ((Bit8u *)(hostPtr))[3])<<24) |
(((Bit64u) ((Bit8u *)(hostPtr))[4])<<32) |
(((Bit64u) ((Bit8u *)(hostPtr))[5])<<40) |
(((Bit64u) ((Bit8u *)(hostPtr))[6])<<48) |
(((Bit64u) ((Bit8u *)(hostPtr))[7])<<56);
return nativeVar64
#else
return *(hostPtr);
#endif
}
#else // !BX_LITTLE_ENDIAN
#ifdef __MORPHOS__
#define bx_bswap16 bx_ppc_bswap16
#define bx_bswap32 bx_ppc_bswap32
#define bx_bswap64 bx_ppc_bswap64
BX_CPP_INLINE void WriteHostWordToLittleEndian(Bit16u *hostPtr, Bit16u nativeVar16)
{
bx_ppc_store_le16(hostPtr, nativeVar16);
}
BX_CPP_INLINE void WriteHostDWordToLittleEndian(Bit32u *hostPtr, Bit32u nativeVar32)
{
bx_ppc_store_le32(hostPtr, nativeVar32);
}
BX_CPP_INLINE void WriteHostQWordToLittleEndian(Bit64u *hostPtr, Bit64u nativeVar64)
{
bx_ppc_store_le64(hostPtr, nativeVar64);
}
BX_CPP_INLINE Bit16u ReadHostWordFromLittleEndian(Bit16u *hostPtr)
{
return bx_ppc_load_le16(hostPtr);
}
BX_CPP_INLINE Bit32u ReadHostDWordFromLittleEndian(Bit32u *hostPtr)
{
return bx_ppc_load_le32(hostPtr);
}
BX_CPP_INLINE Bit64u ReadHostQWordFromLittleEndian(Bit64u *hostPtr)
{
return bx_ppc_load_le64(hostPtr);
}
#else // !__MORPHOS__
BX_CPP_INLINE void WriteHostWordToLittleEndian(Bit16u *hostPtr, Bit16u nativeVar16)
{
*(hostPtr) = bx_bswap16(nativeVar16);
}
BX_CPP_INLINE void WriteHostDWordToLittleEndian(Bit32u *hostPtr, Bit32u nativeVar32)
{
*(hostPtr) = bx_bswap32(nativeVar32);
}
BX_CPP_INLINE void WriteHostQWordToLittleEndian(Bit64u *hostPtr, Bit64u nativeVar64)
{
*(hostPtr) = bx_bswap64(nativeVar64);
}
BX_CPP_INLINE Bit16u ReadHostWordFromLittleEndian(Bit16u *hostPtr)
{
return bx_bswap16(*hostPtr);
}
BX_CPP_INLINE Bit32u ReadHostDWordFromLittleEndian(Bit32u *hostPtr)
{
return bx_bswap32(*hostPtr);
}
BX_CPP_INLINE Bit64u ReadHostQWordFromLittleEndian(Bit64u *hostPtr)
{
return bx_bswap64(*hostPtr);
}
#endif
#endif
#endif /* BX_BOCHS_H */