Bochs/bochs/disasm/dis_groups.cc
2020-02-21 19:08:25 +00:00

820 lines
21 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2005-2011 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#include <stdio.h>
#include <assert.h>
#include "disasm.h"
#include "osdep.h"
#if BX_DEBUGGER
#include "../bx_debug/debug.h"
#define SYMBOLIC_JUMP(fmt) fmt " %s"
#define GET_SYMBOL(addr) bx_dbg_disasm_symbolic_address((addr), 0)
#else
#define SYMBOLIC_JUMP(fmt) fmt "%s"
#define GET_SYMBOL(addr) ""
#endif
#if BX_SUPPORT_X86_64 == 0
#define BX_64BIT_REG_RAX BX_32BIT_REG_EAX
#define BX_64BIT_REG_RCX BX_32BIT_REG_ECX
#define BX_64BIT_REG_RSI BX_32BIT_REG_ESI
#define BX_64BIT_REG_RDI BX_32BIT_REG_EDI
#endif
#if BX_DEBUGGER
extern "C" {
bx_address bx_dbg_get_laddr(Bit16u sel, bx_address ofs);
}
#endif
void disassembler::Apw(const x86_insn *insn)
{
Bit16u imm16 = fetch_word();
Bit16u cs_selector = fetch_word();
#if BX_DEBUGGER
// get the linear adress from the selector/offset adress
bx_address laddr = bx_dbg_get_laddr(cs_selector, imm16);
// get the symbol
const char *ptStrSymbol = bx_dbg_disasm_symbolic_address(laddr, 0);
if (ptStrSymbol != NULL)
{
// with global symbol
dis_sprintf("0x%04x:%04x <%s>", (unsigned) cs_selector, (unsigned) imm16, ptStrSymbol);
}
else
#endif
{
// as usual
dis_sprintf("0x%04x:%04x", (unsigned) cs_selector, (unsigned) imm16);
}
}
void disassembler::Apd(const x86_insn *insn)
{
Bit32u imm32 = fetch_dword();
Bit16u cs_selector = fetch_word();
#if BX_DEBUGGER
bx_address laddr = bx_dbg_get_laddr(cs_selector, imm32);
const char *ptStrSymbol = bx_dbg_disasm_symbolic_address(laddr, 0);
if (ptStrSymbol != NULL)
{
// with global symbol
dis_sprintf("0x%04x:%08x <%s>", (unsigned) cs_selector, (unsigned) imm32, ptStrSymbol);
}
else
#endif
{
// as usual
dis_sprintf("0x%04x:%08x", (unsigned) cs_selector, (unsigned) imm32);
}
}
// 8-bit general purpose registers
void disassembler::AL_Reg(const x86_insn *insn) { dis_sprintf("%s", general_8bit_regname[BX_8BIT_REG_AL]); }
void disassembler::CL_Reg(const x86_insn *insn) { dis_sprintf("%s", general_8bit_regname[BX_8BIT_REG_CL]); }
// 16-bit general purpose registers
void disassembler::AX_Reg(const x86_insn *insn) {
dis_sprintf("%s", general_16bit_regname[BX_16BIT_REG_AX]);
}
void disassembler::DX_Reg(const x86_insn *insn) {
dis_sprintf("%s", general_16bit_regname[BX_16BIT_REG_DX]);
}
// 32-bit general purpose registers
void disassembler::EAX_Reg(const x86_insn *insn)
{
dis_sprintf("%s", general_32bit_regname[BX_32BIT_REG_EAX]);
}
// 64-bit general purpose registers
void disassembler::RAX_Reg(const x86_insn *insn)
{
dis_sprintf("%s", general_64bit_regname[BX_64BIT_REG_RAX]);
}
void disassembler::RCX_Reg(const x86_insn *insn)
{
dis_sprintf("%s", general_64bit_regname[BX_64BIT_REG_RCX]);
}
// segment registers
void disassembler::CS(const x86_insn *insn) { dis_sprintf("%s", segment_name[BX_SEG_REG_CS]); }
void disassembler::DS(const x86_insn *insn) { dis_sprintf("%s", segment_name[BX_SEG_REG_DS]); }
void disassembler::ES(const x86_insn *insn) { dis_sprintf("%s", segment_name[BX_SEG_REG_ES]); }
void disassembler::SS(const x86_insn *insn) { dis_sprintf("%s", segment_name[BX_SEG_REG_SS]); }
void disassembler::FS(const x86_insn *insn) { dis_sprintf("%s", segment_name[BX_SEG_REG_FS]); }
void disassembler::GS(const x86_insn *insn) { dis_sprintf("%s", segment_name[BX_SEG_REG_GS]); }
void disassembler::Sw(const x86_insn *insn) { dis_sprintf("%s", segment_name[insn->nnn]); }
// control register
void disassembler::Cd(const x86_insn *insn)
{
if (intel_mode)
dis_sprintf ("cr%d", insn->nnn);
else
dis_sprintf("%%cr%d", insn->nnn);
}
void disassembler::Cq(const x86_insn *insn) { Cd(insn); }
// debug register
void disassembler::Dd(const x86_insn *insn)
{
if (intel_mode)
dis_sprintf ("dr%d", insn->nnn);
else
dis_sprintf("%%dr%d", insn->nnn);
}
void disassembler::Dq(const x86_insn *insn) { Dd(insn); }
// 8-bit general purpose register
void disassembler::Reg8(const x86_insn *insn)
{
unsigned reg = (insn->b1 & 7) | insn->rex_b;
if (reg < 4 || insn->extend8b)
dis_sprintf("%s", general_8bit_regname_rex[reg]);
else
dis_sprintf("%s", general_8bit_regname[reg]);
}
// 16-bit general purpose register
void disassembler::RX(const x86_insn *insn)
{
dis_sprintf("%s", general_16bit_regname[(insn->b1 & 7) | insn->rex_b]);
}
// 32-bit general purpose register
void disassembler::ERX(const x86_insn *insn)
{
dis_sprintf("%s", general_32bit_regname[(insn->b1 & 7) | insn->rex_b]);
}
// 64-bit general purpose register
void disassembler::RRX(const x86_insn *insn)
{
dis_sprintf("%s", general_64bit_regname[(insn->b1 & 7) | insn->rex_b]);
}
// general purpose register or memory operand
void disassembler::Eb(const x86_insn *insn)
{
if (insn->mod == 3) {
if (insn->rm < 4 || insn->extend8b)
dis_sprintf("%s", general_8bit_regname_rex[insn->rm]);
else
dis_sprintf("%s", general_8bit_regname[insn->rm]);
}
else
(this->*resolve_modrm)(insn, B_SIZE);
}
void disassembler::Ew(const x86_insn *insn)
{
if (insn->mod == 3)
dis_sprintf("%s", general_16bit_regname[insn->rm]);
else
(this->*resolve_modrm)(insn, W_SIZE);
}
void disassembler::Ed(const x86_insn *insn)
{
if (insn->mod == 3)
dis_sprintf("%s", general_32bit_regname[insn->rm]);
else
(this->*resolve_modrm)(insn, D_SIZE);
}
void disassembler::Eq(const x86_insn *insn)
{
if (insn->mod == 3)
dis_sprintf("%s", general_64bit_regname[insn->rm]);
else
(this->*resolve_modrm)(insn, Q_SIZE);
}
void disassembler::Ey(const x86_insn *insn)
{
if (insn->os_64) Eq(insn);
else Ed(insn);
}
void disassembler::Ebd(const x86_insn *insn)
{
if (insn->mod == 3)
dis_sprintf("%s", general_32bit_regname[insn->rm]);
else
(this->*resolve_modrm)(insn, B_SIZE);
}
void disassembler::Ewd(const x86_insn *insn)
{
if (insn->mod == 3)
dis_sprintf("%s", general_32bit_regname[insn->rm]);
else
(this->*resolve_modrm)(insn, W_SIZE);
}
// general purpose register
void disassembler::Gb(const x86_insn *insn)
{
if (insn->nnn < 4 || insn->extend8b)
dis_sprintf("%s", general_8bit_regname_rex[insn->nnn]);
else
dis_sprintf("%s", general_8bit_regname[insn->nnn]);
}
void disassembler::Gw(const x86_insn *insn)
{
dis_sprintf("%s", general_16bit_regname[insn->nnn]);
}
void disassembler::Gd(const x86_insn *insn)
{
dis_sprintf("%s", general_32bit_regname[insn->nnn]);
}
void disassembler::Gq(const x86_insn *insn)
{
dis_sprintf("%s", general_64bit_regname[insn->nnn]);
}
void disassembler::Gy(const x86_insn *insn)
{
if (insn->os_64) Gq(insn);
else Gd(insn);
}
// vex encoded general purpose register
void disassembler::By(const x86_insn *insn)
{
if (insn->os_64)
dis_sprintf("%s", general_64bit_regname[insn->vex_vvv]);
else
dis_sprintf("%s", general_32bit_regname[insn->vex_vvv]);
}
// immediate
void disassembler::I1(const x86_insn *insn)
{
if (! intel_mode) dis_putc('$');
dis_sprintf("0x01");
}
void disassembler::Ib(const x86_insn *insn)
{
if (! intel_mode) dis_putc('$');
dis_sprintf("0x%02x", (unsigned) fetch_byte());
}
void disassembler::Iw(const x86_insn *insn)
{
if (! intel_mode) dis_putc('$');
dis_sprintf("0x%04x", (unsigned) fetch_word());
}
void disassembler::IbIb(const x86_insn *insn)
{
Bit8u ib1 = fetch_byte();
Bit8u ib2 = fetch_byte();
if (intel_mode) {
dis_sprintf("0x%02x, 0x%02x", ib1, ib2);
}
else {
dis_sprintf("$0x%02x, $0x%02x", ib2, ib1);
}
}
void disassembler::IwIb(const x86_insn *insn)
{
Bit16u iw = fetch_word();
Bit8u ib = fetch_byte();
if (intel_mode) {
dis_sprintf("0x%04x, 0x%02x", iw, ib);
}
else {
dis_sprintf("$0x%02x, $0x%04x", ib, iw);
}
}
void disassembler::Id(const x86_insn *insn)
{
if (! intel_mode) dis_putc('$');
dis_sprintf("0x%08x", (unsigned) fetch_dword());
}
void disassembler::Iq(const x86_insn *insn)
{
Bit64u value = fetch_qword();
if (! intel_mode) dis_putc('$');
dis_sprintf("0x%08x%08x", GET32H(value), GET32L(value));
}
// sign extended immediate
void disassembler::sIbw(const x86_insn *insn)
{
if (! intel_mode) dis_putc('$');
Bit16u imm16 = (Bit8s) fetch_byte();
dis_sprintf("0x%04x", (unsigned) imm16);
}
// sign extended immediate
void disassembler::sIbd(const x86_insn *insn)
{
if (! intel_mode) dis_putc('$');
Bit32u imm32 = (Bit8s) fetch_byte();
dis_sprintf ("0x%08x", (unsigned) imm32);
}
// sign extended immediate
void disassembler::sIbq(const x86_insn *insn)
{
if (! intel_mode) dis_putc('$');
Bit64u imm64 = (Bit8s) fetch_byte();
dis_sprintf ("0x%08x%08x", GET32H(imm64), GET32L(imm64));
}
// sign extended immediate
void disassembler::sIdq(const x86_insn *insn)
{
if (! intel_mode) dis_putc('$');
Bit64u imm64 = (Bit32s) fetch_dword();
dis_sprintf ("0x%08x%08x", GET32H(imm64), GET32L(imm64));
}
// floating point
void disassembler::ST0(const x86_insn *insn)
{
if (intel_mode)
dis_sprintf ("st(0)");
else
dis_sprintf("%%st(0)");
}
void disassembler::STi(const x86_insn *insn)
{
if (intel_mode)
dis_sprintf ("st(%d)", insn->rm & 7);
else
dis_sprintf("%%st(%d)", insn->rm & 7);
}
// 16-bit general purpose register
void disassembler::Rw(const x86_insn *insn)
{
dis_sprintf("%s", general_16bit_regname[insn->rm]);
}
// 32-bit general purpose register
void disassembler::Rd(const x86_insn *insn)
{
dis_sprintf("%s", general_32bit_regname[insn->rm]);
}
// 64-bit general purpose register
void disassembler::Rq(const x86_insn *insn)
{
dis_sprintf("%s", general_64bit_regname[insn->rm]);
}
void disassembler::Ry(const x86_insn *insn)
{
if (insn->os_64) Rq(insn);
else Rd(insn);
}
// mmx register
void disassembler::Pq(const x86_insn *insn)
{
if (intel_mode)
dis_sprintf ("mm%d", insn->nnn & 0x7);
else
dis_sprintf("%%mm%d", insn->nnn & 0x7);
}
void disassembler::Nq(const x86_insn *insn)
{
if (intel_mode)
dis_sprintf ("mm%d", insn->rm & 0x7);
else
dis_sprintf("%%mm%d", insn->rm & 0x7);
}
void disassembler::Qd(const x86_insn *insn)
{
if (insn->mod == 3)
{
if (intel_mode)
dis_sprintf ("mm%d", insn->rm & 0x7);
else
dis_sprintf("%%mm%d", insn->rm & 0x7);
}
else
(this->*resolve_modrm)(insn, D_SIZE);
}
void disassembler::Qq(const x86_insn *insn)
{
if (insn->mod == 3)
{
if (intel_mode)
dis_sprintf ("mm%d", insn->rm & 0x7);
else
dis_sprintf("%%mm%d", insn->rm & 0x7);
}
else
(this->*resolve_modrm)(insn, Q_SIZE);
}
// xmm/ymm register
void disassembler::Udq(const x86_insn *insn)
{
dis_sprintf("%s%d", vector_reg_name[insn->vex_l], insn->rm);
}
void disassembler::Ups(const x86_insn *insn) { Udq(insn); }
void disassembler::Upd(const x86_insn *insn) { Udq(insn); }
void disassembler::Uq(const x86_insn *insn) { Udq(insn); }
void disassembler::Vq(const x86_insn *insn)
{
dis_sprintf("%s%d", vector_reg_name[insn->vex_l], insn->nnn);
}
void disassembler::Vdq(const x86_insn *insn) { Vq(insn); }
void disassembler::Vss(const x86_insn *insn) { Vq(insn); }
void disassembler::Vsd(const x86_insn *insn) { Vq(insn); }
void disassembler::Vps(const x86_insn *insn) { Vq(insn); }
void disassembler::Vpd(const x86_insn *insn) { Vq(insn); }
void disassembler::VIb(const x86_insn *insn)
{
unsigned vreg = fetch_byte() >> 4;
if (! insn->is_64) vreg &= 7;
dis_sprintf("%s%d", vector_reg_name[insn->vex_l], vreg);
}
void disassembler::Hdq(const x86_insn *insn)
{
dis_sprintf("%s%d", vector_reg_name[insn->vex_l], insn->vex_vvv);
}
void disassembler::Hps(const x86_insn *insn) { Hdq(insn); }
void disassembler::Hpd(const x86_insn *insn) { Hdq(insn); }
void disassembler::Hss(const x86_insn *insn) { Hdq(insn); }
void disassembler::Hsd(const x86_insn *insn) { Hdq(insn); }
void disassembler::Wb(const x86_insn *insn)
{
if (insn->mod == 3) Udq(insn);
else
(this->*resolve_modrm)(insn, B_SIZE);
}
void disassembler::Ww(const x86_insn *insn)
{
if (insn->mod == 3) Udq(insn);
else
(this->*resolve_modrm)(insn, W_SIZE);
}
void disassembler::Wd(const x86_insn *insn)
{
if (insn->mod == 3) Udq(insn);
else
(this->*resolve_modrm)(insn, D_SIZE);
}
void disassembler::Wq(const x86_insn *insn)
{
if (insn->mod == 3) Udq(insn);
else
(this->*resolve_modrm)(insn, Q_SIZE);
}
void disassembler::Wdq(const x86_insn *insn)
{
if (insn->mod == 3) Udq(insn);
else
(this->*resolve_modrm)(insn, XMM_SIZE + insn->vex_l);
}
void disassembler::Wsd(const x86_insn *insn) { Wq(insn); }
void disassembler::Wss(const x86_insn *insn) { Wd(insn); }
void disassembler::Wpd(const x86_insn *insn) { Wdq(insn); }
void disassembler::Wps(const x86_insn *insn) { Wdq(insn); }
// direct memory access
void disassembler::OP_O(const x86_insn *insn, unsigned size)
{
const char *seg;
if (insn->is_seg_override())
seg = segment_name[insn->seg_override];
else
seg = segment_name[BX_SEG_REG_DS];
print_datasize(size);
if (insn->as_64) {
Bit64u imm64 = fetch_qword();
dis_sprintf("%s:0x%08x%08x", seg, GET32H(imm64), GET32L(imm64));
}
else if (insn->as_32) {
Bit32u imm32 = fetch_dword();
dis_sprintf("%s:0x%08x", seg, (unsigned) imm32);
}
else {
Bit16u imm16 = fetch_word();
dis_sprintf("%s:0x%04x", seg, (unsigned) imm16);
}
}
void disassembler::Ob(const x86_insn *insn) { OP_O(insn, B_SIZE); }
void disassembler::Ow(const x86_insn *insn) { OP_O(insn, W_SIZE); }
void disassembler::Od(const x86_insn *insn) { OP_O(insn, D_SIZE); }
void disassembler::Oq(const x86_insn *insn) { OP_O(insn, Q_SIZE); }
// memory operand
void disassembler::OP_M(const x86_insn *insn, unsigned size)
{
if(insn->mod == 3)
dis_sprintf("(bad)");
else
(this->*resolve_modrm)(insn, size);
}
void disassembler::Ma(const x86_insn *insn) { OP_M(insn, X_SIZE); }
void disassembler::Mp(const x86_insn *insn) { OP_M(insn, X_SIZE); }
void disassembler::Ms(const x86_insn *insn) { OP_M(insn, X_SIZE); }
void disassembler::Mx(const x86_insn *insn) { OP_M(insn, X_SIZE); }
void disassembler::Mb(const x86_insn *insn) { OP_M(insn, B_SIZE); }
void disassembler::Mw(const x86_insn *insn) { OP_M(insn, W_SIZE); }
void disassembler::Md(const x86_insn *insn) { OP_M(insn, D_SIZE); }
void disassembler::Mq(const x86_insn *insn) { OP_M(insn, Q_SIZE); }
void disassembler::Mt(const x86_insn *insn) { OP_M(insn, T_SIZE); }
void disassembler::Mdq(const x86_insn *insn) { OP_M(insn, XMM_SIZE + insn->vex_l); }
void disassembler::Mps(const x86_insn *insn) { OP_M(insn, XMM_SIZE + insn->vex_l); }
void disassembler::Mpd(const x86_insn *insn) { OP_M(insn, XMM_SIZE + insn->vex_l); }
void disassembler::Mss(const x86_insn *insn) { OP_M(insn, D_SIZE); }
void disassembler::Msd(const x86_insn *insn) { OP_M(insn, Q_SIZE); }
// gather VSib
void disassembler::VSib(const x86_insn *insn)
{
if(insn->mod == 3)
dis_sprintf("(bad)");
else
(this->*resolve_modrm)(insn, (XMM_SIZE + insn->vex_l) | VSIB_Index);
}
// string instructions
void disassembler::OP_X(const x86_insn *insn, unsigned size)
{
const char *rsi, *seg;
if (insn->as_64) {
rsi = general_64bit_regname[BX_64BIT_REG_RSI];
}
else {
if (insn->as_32)
rsi = general_32bit_regname[BX_32BIT_REG_ESI];
else
rsi = general_16bit_regname[BX_16BIT_REG_SI];
}
if (insn->is_seg_override())
seg = segment_name[insn->seg_override];
else
seg = segment_name[BX_SEG_REG_DS];
print_datasize(size);
if (intel_mode)
dis_sprintf("%s:[%s]", seg, rsi);
else
dis_sprintf("%s:(%s)", seg, rsi);
}
void disassembler::Xb(const x86_insn *insn) { OP_X(insn, B_SIZE); }
void disassembler::Xw(const x86_insn *insn) { OP_X(insn, W_SIZE); }
void disassembler::Xd(const x86_insn *insn) { OP_X(insn, D_SIZE); }
void disassembler::Xq(const x86_insn *insn) { OP_X(insn, Q_SIZE); }
void disassembler::OP_Y(const x86_insn *insn, unsigned size)
{
const char *rdi;
if (insn->as_64) {
rdi = general_64bit_regname[BX_64BIT_REG_RDI];
}
else {
if (insn->as_32)
rdi = general_32bit_regname[BX_32BIT_REG_EDI];
else
rdi = general_16bit_regname[BX_16BIT_REG_DI];
}
print_datasize(size);
if (intel_mode)
dis_sprintf("%s:[%s]", segment_name[BX_SEG_REG_ES], rdi);
else
dis_sprintf("%s:(%s)", segment_name[BX_SEG_REG_ES], rdi);
}
void disassembler::Yb(const x86_insn *insn) { OP_Y(insn, B_SIZE); }
void disassembler::Yw(const x86_insn *insn) { OP_Y(insn, W_SIZE); }
void disassembler::Yd(const x86_insn *insn) { OP_Y(insn, D_SIZE); }
void disassembler::Yq(const x86_insn *insn) { OP_Y(insn, Q_SIZE); }
void disassembler::OP_sY(const x86_insn *insn, unsigned size)
{
const char *rdi, *seg;
if (insn->as_64) {
rdi = general_64bit_regname[BX_64BIT_REG_RDI];
}
else {
if (insn->as_32)
rdi = general_32bit_regname[BX_32BIT_REG_EDI];
else
rdi = general_16bit_regname[BX_16BIT_REG_DI];
}
print_datasize(size);
if (insn->is_seg_override())
seg = segment_name[insn->seg_override];
else
seg = segment_name[BX_SEG_REG_DS];
if (intel_mode)
dis_sprintf("%s:[%s]", seg, rdi);
else
dis_sprintf("%s:(%s)", seg, rdi);
}
void disassembler::sYq(const x86_insn *insn) { OP_sY(insn, Q_SIZE); }
void disassembler::sYdq(const x86_insn *insn) { OP_sY(insn, XMM_SIZE + insn->vex_l); }
#define BX_JUMP_TARGET_NOT_REQ ((bx_address)(-1))
// jump offset
void disassembler::Jb(const x86_insn *insn)
{
Bit8s imm8 = (Bit8s) fetch_byte();
const char *sym;
if (insn->is_64) {
Bit64u imm64 = (Bit8s) imm8;
Bit64u target = db_eip + imm64;
sym = GET_SYMBOL(target);
sym = sym ? sym : "";
if (offset_mode_hex) {
dis_sprintf(SYMBOLIC_JUMP(".+0x" FMT_ADDRX64), imm64, sym);
}
else {
dis_sprintf(SYMBOLIC_JUMP(".%+d"), (int) imm8, sym);
}
if (db_cs_base != BX_JUMP_TARGET_NOT_REQ) {
dis_sprintf(" (0x" FMT_ADDRX64 ")", target);
}
return;
}
if (insn->os_32) {
Bit32u imm32 = (Bit8s) imm8;
Bit32u target = (Bit32u)(db_cs_base + db_eip + (Bit32s) imm32);
sym = GET_SYMBOL(target);
sym = sym ? sym : "";
if (offset_mode_hex) {
dis_sprintf(SYMBOLIC_JUMP(".+0x%08x"), (unsigned) imm32, sym);
}
else {
dis_sprintf(SYMBOLIC_JUMP(".%+d"), (int) imm8, sym);
}
if (db_cs_base != BX_JUMP_TARGET_NOT_REQ) {
dis_sprintf(" (0x%08x)", target);
}
}
else {
Bit16u imm16 = (Bit8s) imm8;
Bit16u target = (Bit16u)((db_eip + (Bit16s) imm16) & 0xffff);
sym = GET_SYMBOL(target);
sym = sym ? sym : "";
if (offset_mode_hex) {
dis_sprintf(SYMBOLIC_JUMP(".+0x%04x"), (unsigned) imm16, sym);
}
else {
dis_sprintf(SYMBOLIC_JUMP(".%+d"), (int) imm8, sym);
}
if (db_cs_base != BX_JUMP_TARGET_NOT_REQ) {
dis_sprintf(" (0x%08x)", target + db_cs_base);
}
}
}
void disassembler::Jw(const x86_insn *insn)
{
// Jw supported in 16-bit mode only
assert(! insn->is_64);
Bit16s imm16 = (Bit16s) fetch_word();
const char *sym;
Bit16u target = (db_eip + imm16) & 0xffff;
sym = GET_SYMBOL(target);
sym = sym ? sym : "";
if (offset_mode_hex) {
dis_sprintf(SYMBOLIC_JUMP(".+0x%04x"),
(unsigned) (Bit16u) imm16, sym);
}
else {
dis_sprintf(SYMBOLIC_JUMP(".%+d"), (int) imm16, sym);
}
if (db_cs_base != BX_JUMP_TARGET_NOT_REQ) {
dis_sprintf(" (0x%08x)", target + db_cs_base);
}
}
void disassembler::Jd(const x86_insn *insn)
{
Bit32s imm32 = (Bit32s) fetch_dword();
const char *sym;
if (insn->is_64) {
Bit64u imm64 = (Bit32s) imm32;
Bit64u target = db_eip + (Bit64s) imm64;
sym = GET_SYMBOL(target);
sym = sym ? sym : "";
if (offset_mode_hex) {
dis_sprintf(SYMBOLIC_JUMP(".+0x" FMT_ADDRX64),
imm64, sym);
}
else {
dis_sprintf(SYMBOLIC_JUMP(".%+d"), (int) imm32, sym);
}
if (db_cs_base != BX_JUMP_TARGET_NOT_REQ) {
dis_sprintf(" (0x" FMT_ADDRX64 ")", target);
}
return;
}
Bit32u target = (Bit32u)(db_cs_base + db_eip + (Bit32s) imm32);
sym = GET_SYMBOL(target);
sym = sym ? sym : "";
if (offset_mode_hex) {
dis_sprintf(SYMBOLIC_JUMP(".+0x%08x"), (unsigned) imm32, sym);
}
else {
dis_sprintf(SYMBOLIC_JUMP(".%+d"), (int) imm32, sym);
}
if (db_cs_base != BX_JUMP_TARGET_NOT_REQ) {
dis_sprintf(" (0x%08x)", target);
}
}