Bochs/bochs/fpu/fpu_entry.c
Stanislav Shwartsman 66549cc16b Implemented FCMOVcc instructions.
Removed undocumented FPU opcodes, they are not supported by real CPUs
2003-11-01 18:36:19 +00:00

391 lines
15 KiB
C

/*---------------------------------------------------------------------------+
| fpu_entry.c |
| $Id: fpu_entry.c,v 1.18 2003-11-01 18:36:19 sshwarts Exp $
| |
| The entry functions for wm-FPU-emu |
| |
| Copyright (C) 1992,1993,1994,1996,1997 |
| W. Metzenthen, 22 Parker St, Ormond, Vic 3163, Australia |
| E-mail billm@suburbia.net |
| |
| See the files "README" and "COPYING" for further copyright and warranty |
| information. |
| |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| Note: |
| The file contains code which accesses user memory. |
| Emulator static data may change when user memory is accessed, due to |
| other processes using the emulator while swapping is in progress. |
+---------------------------------------------------------------------------*/
/*---------------------------------------------------------------------------+
| math_emulate(), restore_i387_soft() and save_i387_soft() are the only |
| entry points for wm-FPU-emu. |
+---------------------------------------------------------------------------*/
#include "fpu_system.h"
#include "fpu_emu.h"
#include "exception.h"
#include "control_w.h"
#include "status_w.h"
#include <linux/signal.h>
#define __BAD__ FPU_illegal /* Illegal on an 80486, causes SIGILL */
#if BX_CPU_LEVEL < 6
static FUNC const st_instr_table[64] = {
fadd__, fld_i_, __BAD__, __BAD__, fadd_i, ffree_, faddp_, __BAD__,
fmul__, fxch_i, __BAD__, __BAD__, fmul_i, __BAD__, fmulp_, __BAD__,
fcom_st, fp_nop, __BAD__, __BAD__, __BAD__, fst_i_, __BAD__, __BAD__,
fcompst, __BAD__, __BAD__, __BAD__, __BAD__, fstp_i, fcompp, __BAD__,
fsub__, FPU_etc, __BAD__, finit_, fsubri, fucom_, fsubrp, fstsw_,
fsubr_, fconst, fucompp, __BAD__, fsub_i, fucomp, fsubp_, __BAD__,
fdiv__, FPU_triga, __BAD__, __BAD__, fdivri, __BAD__, fdivrp, __BAD__,
fdivr_, FPU_trigb, __BAD__, __BAD__, fdiv_i, __BAD__, fdivp_, __BAD__,
};
#else
static FUNC const st_instr_table[64] = {
fadd__, fld_i_, FPU_fcmovb, FPU_fcmovnb, fadd_i, ffree_, faddp_, __BAD__,
fmul__, fxch_i, FPU_fcmove, FPU_fcmovne, fmul_i, __BAD__, fmulp_, __BAD__,
fcom_st, fp_nop, FPU_fcmovbe, FPU_fcmovnbe, __BAD__, fst_i_, __BAD__, __BAD__,
fcompst, __BAD__, FPU_fcmovu, FPU_fcmovnu, __BAD__, fstp_i, fcompp, __BAD__,
fsub__, FPU_etc, __BAD__, finit_, fsubri, fucom_, fsubrp, fstsw_,
fsubr_, fconst, fucompp, FPU_fucomi, fsub_i, fucomp, fsubp_, FPU_fucomip,
fdiv__, FPU_triga, __BAD__, FPU_fcomi, fdivri, __BAD__, fdivrp, FPU_fcomip,
fdivr_, FPU_trigb, __BAD__, __BAD__, fdiv_i, __BAD__, fdivp_, __BAD__,
};
#endif
#define _NONE_ 0 /* Take no special action */
#define _REG0_ 1 /* Need to check for not empty st(0) */
#define _REGI_ 2 /* Need to check for not empty st(0) and st(rm) */
#define _REGi_ 0 /* Uses st(rm) */
#define _PUSH_ 3 /* Need to check for space to push onto stack */
#define _null_ 4 /* Function illegal or not implemented */
#define _REGIi 5 /* Uses st(0) and st(rm), result to st(rm) */
#define _REGIp 6 /* Uses st(0) and st(rm), result to st(rm) then pop */
#define _REGIc 0 /* Compare st(0) and st(rm) */
#define _REGIn 0 /* Uses st(0) and st(rm), but handle checks later */
#if BX_CPU_LEVEL < 6
static u_char const type_table[64] = {
_REGI_, _NONE_, _null_, _null_, _REGIi, _REGi_, _REGIp, _null_,
_REGI_, _REGIn, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
_REGIc, _NONE_, _null_, _null_, _null_, _REG0_, _null_, _null_,
_REGIc, _null_, _null_, _null_, _null_, _REG0_, _REGIc, _null_,
_REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,
_REGI_, _NONE_, _REGIc, _null_, _REGIi, _REGIc, _REGIp, _null_,
_REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_,
_REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_
};
#else
static u_char const type_table[64] = {
_REGI_, _NONE_, _REGIn, _REGIn, _REGIi, _REGi_, _REGIp, _null_,
_REGI_, _REGIn, _REGIn, _REGIn, _REGIi, _null_, _REGIp, _null_,
_REGIc, _NONE_, _REGIn, _REGIn, _null_, _REG0_, _null_, _null_,
_REGIc, _null_, _REGIn, _REGIn, _null_, _REG0_, _REGIc, _null_,
_REGI_, _NONE_, _null_, _NONE_, _REGIi, _REGIc, _REGIp, _NONE_,
_REGI_, _NONE_, _REGIc, _REGIc, _REGIi, _REGIc, _REGIp, _REGIc,
_REGI_, _NONE_, _null_, _REGIc, _REGIi, _null_, _REGIp, _REGIc,
_REGI_, _NONE_, _null_, _null_, _REGIi, _null_, _REGIp, _null_
};
#endif
/* Note, this is a version of fpu_entry.c, modified to interface
* to a CPU simulator, rather than a kernel.
*
* Ported by Kevin Lawton Sep 20, 1999
*/
asmlinkage void
math_emulate(fpu_addr_modes addr_modes,
u_char FPU_modrm,
u_char byte1,
bx_address data_address,
struct address data_sel_off,
struct address entry_sel_off)
{
u16 code;
int unmasked;
FPU_REG loaded_data;
FPU_REG *st0_ptr;
u_char loaded_tag, st0_tag;
/* assuming byte is 0xd8..0xdf or 0xdb==FWAIT */
/* lock is not a valid prefix for FPU instructions, +++
let the cpu handle it to generate a SIGILL. */
no_ip_update = 0;
if (byte1 == FWAIT_OPCODE) {
if (FPU_partial_status & SW_Summary)
goto do_the_FPU_interrupt;
else
return;
}
if (FPU_partial_status & SW_Summary) {
/* Ignore the error for now if the current instruction is a no-wait
control instruction */
/* The 80486 manual contradicts itself on this topic,
but a real 80486 uses the following instructions:
fninit, fnstenv, fnsave, fnstsw, fnstenv, fnclex.
*/
code = (FPU_modrm << 8) | byte1;
if (! ((((code & 0xf803) == 0xe003) || /* fnclex, fninit, fnstsw */
(((code & 0x3003) == 0x3001) && /* fnsave, fnstcw, fnstenv,
fnstsw */
((code & 0xc000) != 0xc000))))) {
/*
* We need to simulate the action of the kernel to FPU
* interrupts here.
*/
do_the_FPU_interrupt:
math_abort(NULL, SIGFPE);
}
}
entry_sel_off.opcode = (byte1 << 8) | FPU_modrm;
FPU_rm = FPU_modrm & 7;
if (FPU_modrm < 0300) {
/* All of these instructions use the mod/rm byte to get a data address */
if (!(byte1 & 1)) {
u16 status1 = FPU_partial_status;
st0_ptr = &st(0);
st0_tag = FPU_gettag0();
/* Stack underflow has priority */
if (NOT_EMPTY_ST0) {
unmasked = 0; /* Do this here to stop compiler warnings. */
switch ((byte1 >> 1) & 3)
{
case 0:
unmasked = FPU_load_single(data_address, &loaded_data);
loaded_tag = unmasked & 0xff;
unmasked &= ~0xff;
break;
case 1:
loaded_tag = FPU_load_int32(data_address, &loaded_data);
break;
case 2:
unmasked = FPU_load_double(data_address, &loaded_data);
loaded_tag = unmasked & 0xff;
unmasked &= ~0xff;
break;
case 3:
default: /* Used here to suppress gcc warnings. */
loaded_tag = FPU_load_int16(data_address, &loaded_data);
break;
}
/* No more access to user memory, it is safe
to use static data now */
/* NaN operands have the next priority. */
/* We have to delay looking at st(0) until after
loading the data, because that data might contain an SNaN */
if (((st0_tag == TAG_Special) && isNaN(st0_ptr)) ||
((loaded_tag == TAG_Special) && isNaN(&loaded_data)))
{
/* Restore the status word; we might have loaded a
denormal. */
FPU_partial_status = status1;
if ((FPU_modrm & 0x30) == 0x10)
{
/* fcom or fcomp */
EXCEPTION(EX_Invalid);
setcc(SW_C3 | SW_C2 | SW_C0);
if ((FPU_modrm & 0x08) && (FPU_control_word & CW_Invalid))
FPU_pop(); /* fcomp, masked, so we pop. */
}
else
{
if (loaded_tag == TAG_Special)
loaded_tag = FPU_Special(&loaded_data);
#ifdef PECULIAR_486
/* This is not really needed, but gives behaviour
identical to an 80486 */
if ((FPU_modrm & 0x28) == 0x20)
/* fdiv or fsub */
real_2op_NaN(&loaded_data, loaded_tag, 0, &loaded_data);
else
#endif /* PECULIAR_486 */
/* fadd, fdivr, fmul, or fsubr */
real_2op_NaN(&loaded_data, loaded_tag, 0, st0_ptr);
}
goto reg_mem_instr_done;
}
if (unmasked && !((FPU_modrm & 0x30) == 0x10))
{
/* Is not a comparison instruction. */
if ((FPU_modrm & 0x38) == 0x38)
{
/* fdivr */
if ((st0_tag == TAG_Zero) &&
((loaded_tag == TAG_Valid)
|| (loaded_tag == TAG_Special
&& isdenormal(&loaded_data))))
{
if (FPU_divide_by_zero(0, getsign(&loaded_data)) < 0)
{
/* We use the fact here that the unmasked
exception in the loaded data was for a
denormal operand */
/* Restore the state of the denormal op bit */
FPU_partial_status &= ~SW_Denorm_Op;
FPU_partial_status |= status1 & SW_Denorm_Op;
}
else
setsign(st0_ptr, getsign(&loaded_data));
}
}
goto reg_mem_instr_done;
}
switch ((FPU_modrm >> 3) & 7)
{
case 0: /* fadd */
clear_C1();
FPU_add(&loaded_data, loaded_tag, 0, FPU_control_word);
break;
case 1: /* fmul */
clear_C1();
FPU_mul(&loaded_data, loaded_tag, 0, FPU_control_word);
break;
case 2: /* fcom */
FPU_compare_st_data(&loaded_data, loaded_tag);
break;
case 3: /* fcomp */
/* bbd: used to typecase to int first, but this corrupted the
pointer on 64 bit machines. */
if (!FPU_compare_st_data(&loaded_data, loaded_tag) && !unmasked)
FPU_pop();
break;
case 4: /* fsub */
clear_C1();
FPU_sub(LOADED|loaded_tag, &loaded_data, FPU_control_word);
break;
case 5: /* fsubr */
clear_C1();
FPU_sub(REV|LOADED|loaded_tag, &loaded_data, FPU_control_word);
break;
case 6: /* fdiv */
clear_C1();
FPU_div(LOADED|loaded_tag, &loaded_data, FPU_control_word);
break;
case 7: /* fdivr */
clear_C1();
if (st0_tag == TAG_Zero)
FPU_partial_status = status1; /* Undo any denorm tag,
zero-divide has priority. */
FPU_div(REV|LOADED|loaded_tag, &loaded_data, FPU_control_word);
break;
}
}
else
{
if ((FPU_modrm & 0x30) == 0x10)
{
/* The instruction is fcom or fcomp */
EXCEPTION(EX_StackUnder);
setcc(SW_C3 | SW_C2 | SW_C0);
if ((FPU_modrm & 0x08) && (FPU_control_word & CW_Invalid))
FPU_pop(); /* fcomp */
}
else
FPU_stack_underflow();
}
reg_mem_instr_done:
FPU_operand_address = data_sel_off;
}
else {
if (!(no_ip_update =
FPU_load_store(((FPU_modrm & 0x38) | (byte1 & 6)) >> 1,
addr_modes, data_address)))
{
FPU_operand_address = data_sel_off;
}
}
}
else {
/* None of these instructions access user memory */
u_char instr_index = (FPU_modrm & 0x38) | (byte1 & 7);
#ifdef PECULIAR_486
/* This is supposed to be undefined, but a real 80486 seems
to do this: */
FPU_operand_address.offset = 0;
FPU_operand_address.selector = FPU_DS;
#endif /* PECULIAR_486 */
st0_ptr = &st(0);
st0_tag = FPU_gettag0();
switch (type_table[(int) instr_index])
{
case _NONE_: /* also _REGIc: _REGIn */
break;
case _REG0_:
if (!NOT_EMPTY_ST0)
{
FPU_stack_underflow();
goto FPU_instruction_done;
}
break;
case _REGIi:
if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm))
{
FPU_stack_underflow_i(FPU_rm);
goto FPU_instruction_done;
}
break;
case _REGIp:
if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm))
{
FPU_stack_underflow_pop(FPU_rm);
goto FPU_instruction_done;
}
break;
case _REGI_:
if (!NOT_EMPTY_ST0 || !NOT_EMPTY(FPU_rm))
{
FPU_stack_underflow();
goto FPU_instruction_done;
}
break;
case _PUSH_: /* Only used by the fld st(i) instruction */
break;
case _null_:
FPU_illegal();
goto FPU_instruction_done;
default:
INTERNAL(0x111);
goto FPU_instruction_done;
}
(*st_instr_table[(int) instr_index])();
FPU_instruction_done:
;
}
if (! no_ip_update)
FPU_instruction_address = entry_sel_off;
}