Bochs/bochs/cpu/cpuid.cc

1231 lines
36 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2007-2011 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#include "param_names.h"
#if BX_SUPPORT_X86_64==0
// Make life easier for merging code.
#define RAX EAX
#define RBX EBX
#define RCX ECX
#define RDX EDX
#endif
/*
* Get CPU version information:
*
* [3:0] Stepping ID
* [7:4] Model: starts at 1
* [11:8] Family: 4=486, 5=Pentium, 6=PPro, ...
* [13:12] Type: 0=OEM, 1=overdrive, 2=dual cpu, 3=reserved
* [19:16] Extended Model
* [27:29] Extended Family
*/
Bit32u BX_CPU_C::get_cpu_version_information(void)
{
#if BX_CPU_LEVEL >= 4
Bit32u stepping = SIM->get_param_num(BXPN_CPUID_STEPPING)->get();
Bit32u model = SIM->get_param_num(BXPN_CPUID_MODEL)->get();
Bit32u family = SIM->get_param_num(BXPN_CPUID_FAMILY)->get();
if (family < 6 && family != BX_CPU_LEVEL)
BX_PANIC(("PANIC: CPUID family %x not matching configured cpu level %d", family, BX_CPU_LEVEL));
return ((family & 0xfff0) << 16) |
((model & 0xf0) << 12) |
((family & 0x0f) << 8) |
((model & 0x0f) << 4) | stepping;
#else
return 0; /* CPUID not supported */
#endif
}
/* Get CPU extended feature flags. */
Bit32u BX_CPU_C::get_extended_cpuid_features(void)
{
// [0:0] SSE3: SSE3 Instructions
// [1:1] PCLMULQDQ Instruction support
// [2:2] DTES64: 64-bit DS area
// [3:3] MONITOR/MWAIT support
// [4:4] DS-CPL: CPL qualified debug store
// [5:5] VMX: Virtual Machine Technology
// [6:6] SMX: Secure Virtual Machine Technology
// [7:7] EST: Enhanced Intel SpeedStep Technology
// [8:8] TM2: Thermal Monitor 2
// [9:9] SSSE3: SSSE3 Instructions
// [10:10] CNXT-ID: L1 context ID
// [11:11] reserved
// [12:12] FMA Instructions support
// [13:13] CMPXCHG16B: CMPXCHG16B instruction support
// [14:14] xTPR update control
// [15:15] PDCM - Perfon and Debug Capability MSR
// [16:16] reserved
// [17:17] PCID: Process Context Identifiers
// [18:18] DCA - Direct Cache Access
// [19:19] SSE4.1 Instructions
// [20:20] SSE4.2 Instructions
// [21:21] X2APIC
// [22:22] MOVBE instruction
// [23:23] POPCNT instruction
// [24:24] TSC Deadline
// [25:25] AES Instructions
// [26:26] XSAVE extensions support
// [27:27] OSXSAVE support
// [28:28] AVX extensions support
// [29:29] F16C - Float16 conversion support
// [30:30] RDRAND instruction
// [31:31] reserved
Bit32u features = 0;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_SSE3))
features |= BX_CPUID_EXT_SSE3;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_AES_PCLMULQDQ))
features |= BX_CPUID_EXT_PCLMULQDQ;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_MONITOR_MWAIT))
features |= BX_CPUID_EXT_MONITOR_MWAIT;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_VMX))
features |= BX_CPUID_EXT_VMX;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_SSSE3))
features |= BX_CPUID_EXT_SSSE3;
#if BX_SUPPORT_X86_64
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_X86_64))
features |= BX_CPUID_EXT_CMPXCHG16B;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PCID))
features |= BX_CPUID_EXT_PCID;
#endif
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_SSE4_1))
features |= BX_CPUID_EXT_SSE4_1;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_SSE4_2))
features |= BX_CPUID_EXT_SSE4_2;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_X2APIC))
features |= BX_CPUID_EXT_X2APIC;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_MOVBE))
features |= BX_CPUID_EXT_MOVBE;
// enable POPCNT if SSE4_2 is enabled
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_SSE4_2))
features |= BX_CPUID_EXT_POPCNT;
// support for AES
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_AES_PCLMULQDQ))
features |= BX_CPUID_EXT_AES;
// support XSAVE extensions
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_XSAVE))
features |= BX_CPUID_EXT_XSAVE | BX_CPUID_EXT_OSXSAVE;
#if BX_SUPPORT_AVX
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_AVX))
features |= BX_CPUID_EXT_AVX;
#endif
return features;
}
#if BX_CPU_LEVEL >= 6
Bit32u BX_CPU_C::get_ext3_cpuid_features(void)
{
Bit32u features = 0;
// [0:0] FS/GS BASE access instructions
// [6:1] Reserved
// [7:7] SMEP: Supervisor Mode Execution Protection
// [8:8] Reserved
// [9:9] Support for Enhanced REP MOVSB/STOSB
// [31:10] Reserved
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_FSGSBASE))
features |= BX_CPUID_EXT3_FSGSBASE;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_SMEP))
features |= BX_CPUID_EXT3_SMEP;
return features;
}
#endif
/* Get CPU feature flags. Returned by CPUID functions 1 and 80000001. */
Bit32u BX_CPU_C::get_std_cpuid_features(void)
{
// [0:0] FPU on chip
// [1:1] VME: Virtual-8086 Mode enhancements
// [2:2] DE: Debug Extensions (I/O breakpoints)
// [3:3] PSE: Page Size Extensions
// [4:4] TSC: Time Stamp Counter
// [5:5] MSR: RDMSR and WRMSR support
// [6:6] PAE: Physical Address Extensions
// [7:7] MCE: Machine Check Exception
// [8:8] CXS: CMPXCHG8B instruction
// [9:9] APIC: APIC on Chip
// [10:10] Reserved
// [11:11] SYSENTER/SYSEXIT support
// [12:12] MTRR: Memory Type Range Reg
// [13:13] PGE/PTE Global Bit
// [14:14] MCA: Machine Check Architecture
// [15:15] CMOV: Cond Mov/Cmp Instructions
// [16:16] PAT: Page Attribute Table
// [17:17] PSE-36: Physical Address Extensions
// [18:18] PSN: Processor Serial Number
// [19:19] CLFLUSH: CLFLUSH Instruction support
// [20:20] Reserved
// [21:21] DS: Debug Store
// [22:22] ACPI: Thermal Monitor and Software Controlled Clock Facilities
// [23:23] MMX Technology
// [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available)
// [25:25] SSE: SSE Extensions
// [26:26] SSE2: SSE2 Extensions
// [27:27] Self Snoop
// [28:28] Hyper Threading Technology
// [29:29] TM: Thermal Monitor
// [30:30] Reserved
// [31:31] PBE: Pending Break Enable
Bit32u features = 0;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_X87))
features |= BX_CPUID_STD_X87;
#if BX_CPU_LEVEL >= 5
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_PENTIUM)) {
// Pentium only features
features |= BX_CPUID_STD_TSC;
features |= BX_CPUID_STD_MSR;
// support Machine Check
features |= BX_CPUID_STD_MCE | BX_CPUID_STD_MCA;
features |= BX_CPUID_STD_CMPXCHG8B;
}
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_VME))
features |= BX_CPUID_STD_VME;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_DEBUG_EXTENSIONS))
features |= BX_CPUID_STD_DEBUG_EXTENSIONS;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PSE))
features |= BX_CPUID_STD_PSE;
#endif
#if BX_SUPPORT_APIC
// if MSR_APICBASE APIC Global Enable bit has been cleared,
// the CPUID feature flag for the APIC is set to 0.
if (BX_CPU_THIS_PTR msr.apicbase & 0x800)
features |= BX_CPUID_STD_APIC; // APIC on chip
#endif
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_SYSENTER_SYSEXIT))
features |= BX_CPUID_STD_SYSENTER_SYSEXIT;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_CLFLUSH))
features |= BX_CPUID_STD_CLFLUSH;
#if BX_CPU_LEVEL >= 5
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_MMX))
features |= BX_CPUID_STD_MMX;
#endif
#if BX_CPU_LEVEL >= 6
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_P6)) {
features |= BX_CPUID_STD_CMOV;
features |= BX_CPUID_STD_ACPI;
}
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PAT_MTRR))
features |= BX_CPUID_STD_PAT | BX_CPUID_STD_MTRR;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PAE))
features |= BX_CPUID_STD_PAE;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PGE))
features |= BX_CPUID_STD_GLOBAL_PAGES;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_PSE36))
features |= BX_CPUID_STD_PSE36;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_FXSAVE_FXRSTOR))
features |= BX_CPUID_STD_FXSAVE_FXRSTOR;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_SSE))
features |= BX_CPUID_STD_SSE;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_SSE2))
features |= BX_CPUID_STD_SSE2;
if (BX_CPU_VENDOR_INTEL)
features |= BX_CPUID_STD_SELF_SNOOP;
#endif
#if BX_SUPPORT_SMP
// Intel(R) HyperThreading Technology
if (SIM->get_param_num(BXPN_CPU_NTHREADS)->get() > 1)
features |= BX_CPUID_STD_HT;
#endif
return features;
}
/* Get CPU feature flags. Returned by CPUID function 80000001 in EDX register */
Bit32u BX_CPU_C::get_std2_cpuid_features(void)
{
// Many of the bits in EDX are the same as EAX [*] for AMD
// [*] [0:0] FPU on chip
// [*] [1:1] VME: Virtual-8086 Mode enhancements
// [*] [2:2] DE: Debug Extensions (I/O breakpoints)
// [*] [3:3] PSE: Page Size Extensions
// [*] [4:4] TSC: Time Stamp Counter
// [*] [5:5] MSR: RDMSR and WRMSR support
// [*] [6:6] PAE: Physical Address Extensions
// [*] [7:7] MCE: Machine Check Exception
// [*] [8:8] CXS: CMPXCHG8B instruction
// [*] [9:9] APIC: APIC on Chip
// [10:10] Reserved
// [11:11] SYSCALL/SYSRET support
// [*] [12:12] MTRR: Memory Type Range Reg
// [*] [13:13] PGE/PTE Global Bit
// [*] [14:14] MCA: Machine Check Architecture
// [*] [15:15] CMOV: Cond Mov/Cmp Instructions
// [*] [16:16] PAT: Page Attribute Table
// [*] [17:17] PSE-36: Physical Address Extensions
// [18:19] Reserved
// [20:20] No-Execute page protection
// [21:21] Reserved
// [22:22] AMD MMX Extensions
// [*] [23:23] MMX Technology
// [*] [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available)
// [25:25] Fast FXSAVE/FXRSTOR mode support
// [26:26] 1G paging support
// [27:27] Support RDTSCP Instruction
// [28:28] Reserved
// [29:29] Long Mode
// [30:30] AMD 3DNow! Extensions
// [31:31] AMD 3DNow! Instructions
Bit32u features = BX_CPU_VENDOR_INTEL ? 0 : get_std_cpuid_features();
features &= 0x0183F3FF;
#if BX_SUPPORT_3DNOW
// only AMD is interesting in AMD MMX extensions
features |= BX_CPUID_STD2_AMD_MMX_EXT | BX_CPUID_STD2_3DNOW_EXT | BX_CPUID_STD2_3DNOW;
#endif
#if BX_SUPPORT_X86_64
features |= BX_CPUID_STD2_SYSCALL_SYSRET |
BX_CPUID_STD2_NX |
BX_CPUID_STD2_FFXSR |
BX_CPUID_STD2_RDTSCP | BX_CPUID_STD2_LONG_MODE;
static bx_bool xlarge_pages = SIM->get_param_bool(BXPN_CPUID_1G_PAGES)->get();
if (xlarge_pages)
features |= BX_CPUID_STD2_1G_PAGES;
#endif
return features;
}
/* Get CPU feature flags. Returned by CPUID function 80000001 in ECX register */
Bit32u BX_CPU_C::get_ext2_cpuid_features(void)
{
// ECX:
// [0:0] LAHF/SAHF instructions support in 64-bit mode
// [1:1] CMP_Legacy: Core multi-processing legacy mode (AMD)
// [2:2] SVM: Secure Virtual Machine (AMD)
// [3:3] Extended APIC Space
// [4:4] AltMovCR8: LOCK MOV CR0 means MOV CR8
// [5:5] LZCNT: LZCNT instruction support
// [6:6] SSE4A: SSE4A Instructions support (deprecated?)
// [7:7] Misaligned SSE support
// [8:8] PREFETCHW: PREFETCHW instruction support
// [9:9] OSVW: OS visible workarounds (AMD)
// [11:10] reserved
// [12:12] SKINIT support
// [13:13] WDT: Watchdog timer support
// [31:14] reserved
Bit32u features = 0;
#if BX_SUPPORT_X86_64
features |= BX_CPUID_EXT2_LAHF_SAHF;
#endif
#if BX_SUPPORT_MISALIGNED_SSE
features |= BX_CPUID_EXT2_MISALIGNED_SSE;
#endif
return features;
}
void BX_CPP_AttrRegparmN(1) BX_CPU_C::CPUID(bxInstruction_c *i)
{
#if BX_CPU_LEVEL >= 4
Bit32u function = EAX;
#if BX_SUPPORT_VMX
if (BX_CPU_THIS_PTR in_vmx_guest) {
BX_ERROR(("VMEXIT: CPUID in VMX non-root operation"));
VMexit(i, VMX_VMEXIT_CPUID, 0);
}
#endif
unsigned max_std_function = BX_CPU_THIS_PTR cpuid_std_function[0].eax;
unsigned max_ext_function = BX_CPU_THIS_PTR cpuid_ext_function[0].eax;
if(function < 0x80000000) {
if(function <= max_std_function) {
#if BX_CPU_LEVEL >= 6
Bit32u subfunction = ECX;
if (function == 0xb && bx_cpuid_support_x2apic()) {
bx_cpuid_extended_topology_leaf(subfunction);
return;
}
if (function == 0x7) {
bx_cpuid_extended_cpuid_leaf(subfunction);
return;
}
if (function == 0xd) {
bx_cpuid_xsave_leaf(subfunction);
return;
}
#endif
RAX = BX_CPU_THIS_PTR cpuid_std_function[function].eax;
RBX = BX_CPU_THIS_PTR cpuid_std_function[function].ebx;
RCX = BX_CPU_THIS_PTR cpuid_std_function[function].ecx;
RDX = BX_CPU_THIS_PTR cpuid_std_function[function].edx;
return;
}
}
else {
if(function <= max_ext_function) {
function -= 0x80000000;
RAX = BX_CPU_THIS_PTR cpuid_ext_function[function].eax;
RBX = BX_CPU_THIS_PTR cpuid_ext_function[function].ebx;
RCX = BX_CPU_THIS_PTR cpuid_ext_function[function].ecx;
RDX = BX_CPU_THIS_PTR cpuid_ext_function[function].edx;
return;
}
}
// unknown CPUID function - return maximum standard leaf
RAX = BX_CPU_THIS_PTR cpuid_std_function[max_std_function].eax;
RBX = BX_CPU_THIS_PTR cpuid_std_function[max_std_function].ebx;
RCX = BX_CPU_THIS_PTR cpuid_std_function[max_std_function].ecx;
RDX = BX_CPU_THIS_PTR cpuid_std_function[max_std_function].edx;
#endif
}
#if BX_CPU_LEVEL >= 4
void BX_CPU_C::set_cpuid_defaults(void)
{
Bit8u *vendor_string = (Bit8u *)SIM->get_param_string(BXPN_VENDOR_STRING)->getptr();
Bit8u *brand_string = (Bit8u *)SIM->get_param_string(BXPN_BRAND_STRING)->getptr();
bx_bool cpuid_limit_winnt = SIM->get_param_bool(BXPN_CPUID_LIMIT_WINNT)->get();
cpuid_function_t *cpuid;
int i;
for (i=0;i<MAX_STD_CPUID_FUNCTION;i++) {
BX_CPU_THIS_PTR cpuid_std_function[i].eax = 0;
BX_CPU_THIS_PTR cpuid_std_function[i].ebx = 0;
BX_CPU_THIS_PTR cpuid_std_function[i].ecx = 0;
BX_CPU_THIS_PTR cpuid_std_function[i].edx = 0;
}
for (i=0;i<MAX_EXT_CPUID_FUNCTION;i++) {
BX_CPU_THIS_PTR cpuid_ext_function[i].eax = 0;
BX_CPU_THIS_PTR cpuid_ext_function[i].ebx = 0;
BX_CPU_THIS_PTR cpuid_ext_function[i].ecx = 0;
BX_CPU_THIS_PTR cpuid_ext_function[i].edx = 0;
}
// ------------------------------------------------------
// CPUID function 0x00000000
cpuid = &(BX_CPU_THIS_PTR cpuid_std_function[0]);
// EAX: highest input value understood by CPUID
// EBX: vendor ID string
// EDX: vendor ID string
// ECX: vendor ID string
#if BX_CPU_LEVEL <= 5
// 486 and Pentium processors
cpuid->eax = 1;
#else
// for Pentium Pro, Pentium II, Pentium 4 processors
cpuid->eax = 3;
// do not report CPUID functions above 0x3 if cpuid_limit_winnt is set
// to workaround WinNT issue.
if (! cpuid_limit_winnt) {
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_MONITOR_MWAIT))
cpuid->eax = 0x5;
if (BX_CPUID_SUPPORT_CPU_EXTENSION(BX_CPU_X2APIC))
cpuid->eax = 0xb;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_XSAVE))
cpuid->eax = 0xd;
}
#endif
// CPUID vendor string (e.g. GenuineIntel, AuthenticAMD, CentaurHauls, ...)
memcpy(&(cpuid->ebx), vendor_string, 4);
memcpy(&(cpuid->edx), vendor_string + 4, 4);
memcpy(&(cpuid->ecx), vendor_string + 8, 4);
#ifdef BX_BIG_ENDIAN
cpuid->ebx = bx_bswap32(cpuid->ebx);
cpuid->ecx = bx_bswap32(cpuid->ecx);
cpuid->edx = bx_bswap32(cpuid->edx);
#endif
BX_INFO(("CPUID[0x00000000]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
// ------------------------------------------------------
// CPUID function 0x00000001
cpuid = &(BX_CPU_THIS_PTR cpuid_std_function[1]);
// EAX: CPU Version Information
// [3:0] Stepping ID
// [7:4] Model: starts at 1
// [11:8] Family: 4=486, 5=Pentium, 6=PPro, ...
// [13:12] Type: 0=OEM, 1=overdrive, 2=dual cpu, 3=reserved
// [19:16] Extended Model
// [27:20] Extended Family
cpuid->eax = get_cpu_version_information();
// EBX:
// [7:0] Brand ID
// [15:8] CLFLUSH cache line size (value*8 = cache line size in bytes)
// [23:16] Number of logical processors in one physical processor
// [31:24] Local Apic ID
cpuid->ebx = 0;
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_CLFLUSH)) {
cpuid->ebx |= (CACHE_LINE_SIZE / 8) << 8;
}
unsigned n_logical_processors = SIM->get_param_num(BXPN_CPU_NCORES)->get()*SIM->get_param_num(BXPN_CPU_NTHREADS)->get();
if (n_logical_processors > 1)
cpuid->ebx |= (n_logical_processors << 16);
#if BX_SUPPORT_APIC
cpuid->ebx |= ((BX_CPU_THIS_PTR lapic.get_id() & 0xff) << 24);
#endif
// ECX: Extended Feature Flags
cpuid->ecx = get_extended_cpuid_features();
// EDX: Standard Feature Flags
cpuid->edx = get_std_cpuid_features();
BX_INFO(("CPUID[0x00000001]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
#if BX_CPU_LEVEL >= 6
// ------------------------------------------------------
// CPUID function 0x00000002 - Cache and TLB Descriptors
cpuid = &(BX_CPU_THIS_PTR cpuid_std_function[2]);
#if BX_CPU_VENDOR_INTEL
cpuid->eax = 0x00410601; // for Pentium Pro compatibility
cpuid->ebx = 0;
cpuid->ecx = 0;
cpuid->edx = 0;
#else
cpuid->eax = 0; // ignore for AMD
cpuid->ebx = 0;
cpuid->ecx = 0;
cpuid->edx = 0;
#endif
BX_INFO(("CPUID[0x00000002]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
// ------------------------------------------------------
// CPUID function 0x00000003 - Processor Serial Number
cpuid = &(BX_CPU_THIS_PTR cpuid_std_function[3]);
cpuid->eax = 0;
cpuid->ebx = 0;
cpuid->ecx = 0;
cpuid->edx = 0;
BX_INFO(("CPUID[0x00000003]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
// do not report CPUID functions above 0x3 if cpuid_limit_winnt is set
// to workaround WinNT issue.
if (cpuid_limit_winnt) return;
// ------------------------------------------------------
// CPUID function 0x00000004 - Deterministic Cache Parameters
cpuid = &(BX_CPU_THIS_PTR cpuid_std_function[4]);
cpuid->eax = 0;
cpuid->ebx = 0;
cpuid->ecx = 0;
cpuid->edx = 0;
BX_INFO(("CPUID[0x00000004]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
#if BX_SUPPORT_MONITOR_MWAIT
// ------------------------------------------------------
// CPUID function 0x00000005
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_MONITOR_MWAIT))
{
cpuid = &(BX_CPU_THIS_PTR cpuid_std_function[5]);
// EAX - Smallest monitor-line size in bytes
// EBX - Largest monitor-line size in bytes
// ECX -
// [31:2] - reserved
// [1:1] - exit MWAIT even with EFLAGS.IF = 0
// [0:0] - MONITOR/MWAIT extensions are supported
// EDX - Reserved
cpuid->eax = CACHE_LINE_SIZE;
cpuid->ebx = CACHE_LINE_SIZE;
cpuid->ecx = 3;
cpuid->edx = 0;
BX_INFO(("CPUID[0x00000005]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
}
#endif
// ------------------------------------------------------
// CPUID function 0x00000007
cpuid = &(BX_CPU_THIS_PTR cpuid_std_function[7]);
cpuid->ebx = get_ext3_cpuid_features();
cpuid->ecx = 0;
cpuid->edx = 0;
if (cpuid->ebx)
cpuid->eax = 1; /* report max sub-leaves that are supported in leaf 7 */
else
cpuid->eax = 0; /* leaf 7 not supported */
BX_INFO(("CPUID[0x00000007]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
// ------------------------------------------------------
// CPUID function 0x0000000d
if (BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_XSAVE))
{
cpuid = &(BX_CPU_THIS_PTR cpuid_std_function[0xd]);
// EAX - valid bits of XCR0 (lower part)
// EBX - Maximum size (in bytes) required by enabled features
// ECX - Maximum size (in bytes) required by CPU supported features
// EDX - valid bits of XCR0 (upper part)
cpuid->eax = BX_CPU_THIS_PTR xcr0_suppmask;
cpuid->ebx = 512+64;
#if BX_SUPPORT_AVX
if (BX_CPU_THIS_PTR xcr0_suppmask & BX_XCR0_AVX_MASK)
cpuid->ebx += 256;
#endif
cpuid->ecx = 512+64;
#if BX_SUPPORT_AVX
if (BX_CPU_THIS_PTR xcr0_suppmask & BX_XCR0_AVX_MASK)
cpuid->ecx += 256;
#endif
cpuid->edx = 0;
BX_INFO(("CPUID[0x0000000d]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
}
// do not report Pentium 4 extended functions if not needed
if (! BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_SSE2))
return;
// ------------------------------------------------------
// CPUID function 0x80000000
cpuid = &(BX_CPU_THIS_PTR cpuid_ext_function[0]);
// EAX: highest input value understood by CPUID
// EBX: vendor ID string
// EDX: vendor ID string
// ECX: vendor ID string
cpuid->eax = BX_SUPPORT_X86_64 ? 0x80000008 : 0x80000004;
#if BX_CPU_VENDOR_INTEL
cpuid->ebx = 0;
cpuid->edx = 0; // Reserved for Intel
cpuid->ecx = 0;
#else
memcpy(&(cpuid->ebx), vendor_string, 4);
memcpy(&(cpuid->edx), vendor_string + 4, 4);
memcpy(&(cpuid->ecx), vendor_string + 8, 4);
#endif
#ifdef BX_BIG_ENDIAN
cpuid->ebx = bx_bswap32(cpuid->ebx);
cpuid->ecx = bx_bswap32(cpuid->ecx);
cpuid->edx = bx_bswap32(cpuid->edx);
#endif
BX_INFO(("CPUID[0x80000000]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
// ------------------------------------------------------
// CPUID function 0x80000001
cpuid = &(BX_CPU_THIS_PTR cpuid_ext_function[1]);
// EAX: CPU Version Information
cpuid->eax = BX_CPU_VENDOR_INTEL ? 0 : get_cpu_version_information();
// EBX: Brand ID
cpuid->ebx = 0;
// ECX:
cpuid->ecx = get_ext2_cpuid_features();
// EDX:
// Many of the bits in EDX are the same as EAX [*] for AMD
// [*] [0:0] FPU on chip
// [*] [1:1] VME: Virtual-8086 Mode enhancements
// [*] [2:2] DE: Debug Extensions (I/O breakpoints)
// [*] [3:3] PSE: Page Size Extensions
// [*] [4:4] TSC: Time Stamp Counter
// [*] [5:5] MSR: RDMSR and WRMSR support
// [*] [6:6] PAE: Physical Address Extensions
// [*] [7:7] MCE: Machine Check Exception
// [*] [8:8] CXS: CMPXCHG8B instruction
// [*] [9:9] APIC: APIC on Chip
// [10:10] Reserved
// [11:11] SYSCALL/SYSRET support
// [*] [12:12] MTRR: Memory Type Range Reg
// [*] [13:13] PGE/PTE Global Bit
// [*] [14:14] MCA: Machine Check Architecture
// [*] [15:15] CMOV: Cond Mov/Cmp Instructions
// [*] [16:16] PAT: Page Attribute Table
// [*] [17:17] PSE-36: Physical Address Extensions
// [18:19] Reserved
// [20:20] No-Execute page protection
// [21:21] Reserved
// [22:22] AMD MMX Extensions
// [*] [23:23] MMX Technology
// [*] [24:24] FXSR: FXSAVE/FXRSTOR (also indicates CR4.OSFXSR is available)
// [25:25] Fast FXSAVE/FXRSTOR mode support
// [26:26] 1G paging support
// [27:27] Support RDTSCP Instruction
// [28:28] Reserved
// [29:29] Long Mode
// [30:30] AMD 3DNow! Extensions
// [31:31] AMD 3DNow! Instructions
cpuid->edx = get_std2_cpuid_features();
BX_INFO(("CPUID[0x80000001]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
// Processor Brand String, use the value that is returned
// by the first processor in the Pentium 4 family
// (according to Intel manual or the AMD manual)
// ------------------------------------------------------
// CPUID function 0x80000002
cpuid = &(BX_CPU_THIS_PTR cpuid_ext_function[2]);
memcpy(&(cpuid->eax), brand_string , 4);
memcpy(&(cpuid->ebx), brand_string + 4, 4);
memcpy(&(cpuid->ecx), brand_string + 8, 4);
memcpy(&(cpuid->edx), brand_string + 12, 4);
#ifdef BX_BIG_ENDIAN
cpuid->eax = bx_bswap32(cpuid->eax);
cpuid->ebx = bx_bswap32(cpuid->ebx);
cpuid->ecx = bx_bswap32(cpuid->ecx);
cpuid->edx = bx_bswap32(cpuid->edx);
#endif
BX_INFO(("CPUID[0x80000002]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
// ------------------------------------------------------
// CPUID function 0x80000003
cpuid = &(BX_CPU_THIS_PTR cpuid_ext_function[3]);
memcpy(&(cpuid->eax), brand_string + 16, 4);
memcpy(&(cpuid->ebx), brand_string + 20, 4);
memcpy(&(cpuid->ecx), brand_string + 24, 4);
memcpy(&(cpuid->edx), brand_string + 28, 4);
#ifdef BX_BIG_ENDIAN
cpuid->eax = bx_bswap32(cpuid->eax);
cpuid->ebx = bx_bswap32(cpuid->ebx);
cpuid->ecx = bx_bswap32(cpuid->ecx);
cpuid->edx = bx_bswap32(cpuid->edx);
#endif
BX_INFO(("CPUID[0x80000003]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
// ------------------------------------------------------
// CPUID function 0x80000004
cpuid = &(BX_CPU_THIS_PTR cpuid_ext_function[4]);
memcpy(&(cpuid->eax), brand_string + 32, 4);
memcpy(&(cpuid->ebx), brand_string + 36, 4);
memcpy(&(cpuid->ecx), brand_string + 40, 4);
memcpy(&(cpuid->edx), brand_string + 44, 4);
#ifdef BX_BIG_ENDIAN
cpuid->eax = bx_bswap32(cpuid->eax);
cpuid->ebx = bx_bswap32(cpuid->ebx);
cpuid->ecx = bx_bswap32(cpuid->ecx);
cpuid->edx = bx_bswap32(cpuid->edx);
#endif
BX_INFO(("CPUID[0x80000004]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
#if BX_SUPPORT_X86_64
// ------------------------------------------------------
// CPUID function 0x80000005
#if BX_CPU_VENDOR_INTEL == 0
cpuid = &(BX_CPU_THIS_PTR cpuid_ext_function[5]);
/* cache info (L1 cache) */
cpuid->eax = 0x01ff01ff;
cpuid->ebx = 0x01ff01ff;
cpuid->ecx = 0x40020140;
cpuid->edx = 0x40020140;
BX_INFO(("CPUID[0x80000005]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
#endif
// ------------------------------------------------------
// CPUID function 0x80000006
cpuid = &(BX_CPU_THIS_PTR cpuid_ext_function[6]);
/* cache info (L2 cache) */
cpuid->eax = 0;
cpuid->ebx = 0x42004200;
cpuid->ecx = 0x02008140;
cpuid->edx = 0;
BX_INFO(("CPUID[0x80000006]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
// ------------------------------------------------------
// CPUID function 0x80000007
cpuid = &(BX_CPU_THIS_PTR cpuid_ext_function[7]);
cpuid->eax = 0;
cpuid->ebx = 0;
cpuid->ecx = 0;
cpuid->edx = 0;
BX_INFO(("CPUID[0x80000007]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
// ------------------------------------------------------
// CPUID function 0x80000008
cpuid = &(BX_CPU_THIS_PTR cpuid_ext_function[8]);
// virtual & phys address size in low 2 bytes.
cpuid->eax = BX_PHY_ADDRESS_WIDTH | (BX_LIN_ADDRESS_WIDTH << 8);
cpuid->ebx = 0;
cpuid->ecx = 0; // Reserved, undefined
cpuid->edx = 0;
BX_INFO(("CPUID[0x80000008]: %08x %08x %08x %08x", cpuid->eax, cpuid->ebx, cpuid->ecx, cpuid->edx));
#endif // BX_SUPPORT_X86_64
#endif // BX_CPU_LEVEL >= 6
}
#if BX_CPU_LEVEL >= 6
BX_CPP_INLINE static Bit32u ilog2(Bit32u x)
{
Bit32u count = 0;
while(x>>=1) count++;
return count;
}
void BX_CPU_C::bx_cpuid_extended_topology_leaf(Bit32u subfunction)
{
static int nthreads = SIM->get_param_num(BXPN_CPU_NTHREADS)->get();
static int ncores = SIM->get_param_num(BXPN_CPU_NCORES)->get();
static int nprocessors = SIM->get_param_num(BXPN_CPU_NPROCESSORS)->get();
switch(subfunction) {
case 0:
if (nthreads > 1) {
RAX = ilog2(nthreads-1)+1;
RBX = nthreads;
RCX = subfunction | (1<<8);
}
else if (ncores > 1) {
RAX = ilog2(ncores-1)+1;
RBX = ncores;
RCX = subfunction | (2<<8);
}
else if (nprocessors > 1) {
RAX = ilog2(nprocessors-1)+1;
RBX = nprocessors;
RCX = subfunction;
}
else {
RAX = 0;
RBX = 0;
RCX = subfunction;
}
break;
case 1:
if (nthreads > 1) {
if (ncores > 1) {
RAX = ilog2(ncores-1)+1;
RBX = ncores;
RCX = subfunction | (2<<8);
}
else if (nprocessors > 1) {
RAX = ilog2(nprocessors-1)+1;
RBX = nprocessors;
RCX = subfunction;
}
else {
RAX = 0;
RBX = 0;
RCX = subfunction;
}
}
else if (ncores > 1) {
if (nprocessors > 1) {
RAX = ilog2(nprocessors-1)+1;
RBX = nprocessors;
RCX = subfunction;
}
else {
RAX = 0;
RBX = 0;
RCX = subfunction;
}
} else {
RAX = 0;
RBX = 0;
RCX = subfunction;
}
break;
case 2:
if (nthreads > 1) {
if (nprocessors > 1) {
RAX = ilog2(nprocessors-1)+1;
RBX = nprocessors;
}
else {
RAX = 0;
RBX = 0;
}
}
else {
RAX = 0;
RBX = 0;
}
RCX = subfunction;
break;
default:
RAX = 0;
RBX = 0;
RCX = subfunction;
break;
}
RDX = BX_CPU_THIS_PTR lapic.get_id(); // x2apic ID
}
void BX_CPU_C::bx_cpuid_extended_cpuid_leaf(Bit32u subfunction)
{
if (subfunction == 0) {
RAX = BX_CPU_THIS_PTR cpuid_std_function[0x7].eax;
RBX = BX_CPU_THIS_PTR cpuid_std_function[0x7].ebx;
RCX = BX_CPU_THIS_PTR cpuid_std_function[0x7].ecx;
RDX = BX_CPU_THIS_PTR cpuid_std_function[0x7].edx;
}
else {
RAX = 0; // reserved
RBX = 0; // reserved
RCX = 0; // reserved
RDX = 0; // reserved
}
}
void BX_CPU_C::bx_cpuid_xsave_leaf(Bit32u subfunction)
{
BX_ASSERT(BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_XSAVE));
switch(subfunction) {
case 0:
RAX = BX_CPU_THIS_PTR cpuid_std_function[0xd].eax;
RBX = BX_CPU_THIS_PTR cpuid_std_function[0xd].ebx;
RCX = BX_CPU_THIS_PTR cpuid_std_function[0xd].ecx;
RDX = BX_CPU_THIS_PTR cpuid_std_function[0xd].edx;
break;
case 1:
RAX = BX_CPUID_SUPPORT_ISA_EXTENSION(BX_CPU_XSAVEOPT);
RBX = 0;
RCX = 0;
RDX = 0;
break;
#if BX_SUPPORT_AVX
case 2: // AVX leaf
if (BX_CPU_THIS_PTR xcr0_suppmask & BX_XCR0_AVX_MASK) {
RAX = 256;
RBX = 576;
RCX = 0;
RDX = 0;
break;
}
// else fall through
#endif
default:
RAX = 0; // reserved
RBX = 0; // reserved
RCX = 0; // reserved
RDX = 0; // reserved
break;
}
}
#endif
#endif
void BX_CPU_C::init_isa_features_bitmask(void)
{
Bit32u features_bitmask = 0;
#if BX_SUPPORT_FPU
features_bitmask |= BX_CPU_X87;
#endif
#if BX_CPU_LEVEL >= 4
features_bitmask |= BX_CPU_486;
#if BX_CPU_LEVEL >= 5
features_bitmask |= BX_CPU_PENTIUM;
static bx_bool mmx_enabled = SIM->get_param_bool(BXPN_CPUID_MMX)->get();
if (mmx_enabled)
features_bitmask |= BX_CPU_MMX;
#if BX_SUPPORT_3DNOW
features_bitmask |= BX_CPU_3DNOW;
if (! mmx_enabled) {
BX_PANIC(("PANIC: 3DNOW emulation requires MMX support !"));
return;
}
#endif
#if BX_CPU_LEVEL >= 6
features_bitmask |= BX_CPU_P6;
#if BX_SUPPORT_MONITOR_MWAIT
static bx_bool mwait_enabled = SIM->get_param_bool(BXPN_CPUID_MWAIT)->get();
if (mwait_enabled)
features_bitmask |= BX_CPU_MONITOR_MWAIT;
#endif
// FXSAVE/FXRSTOR support come with Pentium II
if (mmx_enabled)
features_bitmask |= BX_CPU_FXSAVE_FXRSTOR;
static unsigned sse_enabled = SIM->get_param_enum(BXPN_CPUID_SSE)->get();
// determine SSE in runtime
switch (sse_enabled) {
case BX_CPUID_SUPPORT_SSE4_2:
features_bitmask |= BX_CPU_SSE4_2;
case BX_CPUID_SUPPORT_SSE4_1:
features_bitmask |= BX_CPU_SSE4_1;
case BX_CPUID_SUPPORT_SSSE3:
features_bitmask |= BX_CPU_SSSE3;
case BX_CPUID_SUPPORT_SSE3:
features_bitmask |= BX_CPU_SSE3;
case BX_CPUID_SUPPORT_SSE2:
features_bitmask |= BX_CPU_SSE2;
case BX_CPUID_SUPPORT_SSE:
features_bitmask |= BX_CPU_SSE;
case BX_CPUID_SUPPORT_NOSSE:
default:
break;
};
if (sse_enabled) {
if (mmx_enabled == 0 || BX_CPU_LEVEL < 6) {
BX_PANIC(("PANIC: SSE support requires P6 emulation with MMX enabled !"));
return;
}
}
// enabled CLFLUSH only when SSE2 or higher is enabled
if (sse_enabled >= BX_CPUID_SUPPORT_SSE2)
features_bitmask |= BX_CPU_CLFLUSH;
static bx_bool sep_enabled = SIM->get_param_bool(BXPN_CPUID_SEP)->get();
if (sep_enabled)
features_bitmask |= BX_CPU_SYSENTER_SYSEXIT;
static bx_bool xsave_enabled = SIM->get_param_bool(BXPN_CPUID_XSAVE)->get();
if (xsave_enabled) {
features_bitmask |= BX_CPU_XSAVE;
if (! sse_enabled) {
BX_PANIC(("PANIC: XSAVE emulation requires SSE support !"));
return;
}
}
static bx_bool xsaveopt_enabled = SIM->get_param_bool(BXPN_CPUID_XSAVEOPT)->get();
if (xsaveopt_enabled) {
features_bitmask |= BX_CPU_XSAVEOPT;
if (! xsave_enabled) {
BX_PANIC(("PANIC: XSAVEOPT emulation requires XSAVE !"));
return;
}
}
static bx_bool aes_enabled = SIM->get_param_bool(BXPN_CPUID_AES)->get();
if (aes_enabled) {
features_bitmask |= BX_CPU_AES_PCLMULQDQ;
// AES required 3-byte opcode (SSS3E support or more)
if (sse_enabled < BX_CPUID_SUPPORT_SSSE3) {
BX_PANIC(("PANIC: AES support requires SSSE3 or higher !"));
return;
}
}
static bx_bool movbe_enabled = SIM->get_param_bool(BXPN_CPUID_MOVBE)->get();
if (movbe_enabled) {
features_bitmask |= BX_CPU_MOVBE;
// MOVBE required 3-byte opcode (SSS3E support or more)
if (sse_enabled < BX_CPUID_SUPPORT_SSSE3) {
BX_PANIC(("PANIC: MOVBE support requires SSSE3 or higher !"));
return;
}
}
#if BX_SUPPORT_AVX
static bx_bool avx_enabled = SIM->get_param_bool(BXPN_CPUID_AVX)->get();
if (avx_enabled) {
features_bitmask |= BX_CPU_AVX;
if (! xsave_enabled) {
BX_PANIC(("PANIC: AVX emulation requires XSAVE support !"));
return;
}
}
#endif
#if BX_SUPPORT_VMX
features_bitmask |= BX_CPU_VMX;
if (! sep_enabled) {
BX_PANIC(("PANIC: VMX emulation requires SYSENTER/SYSEXIT support !"));
return;
}
#endif
#if BX_SUPPORT_X86_64
features_bitmask |= BX_CPU_X86_64;
if (sse_enabled < BX_CPUID_SUPPORT_SSE2) {
BX_PANIC(("PANIC: x86-64 emulation requires SSE2 support !"));
return;
}
if (! sep_enabled) {
BX_PANIC(("PANIC: x86-64 emulation requires SYSENTER/SYSEXIT support !"));
return;
}
static bx_bool fsgsbase_enabled = SIM->get_param_bool(BXPN_CPUID_FSGSBASE)->get();
if (fsgsbase_enabled)
features_bitmask |= BX_CPU_FSGSBASE;
static unsigned apic_enabled = SIM->get_param_enum(BXPN_CPUID_APIC)->get();
if (apic_enabled < BX_CPUID_SUPPORT_XAPIC) {
BX_PANIC(("PANIC: x86-64 emulation requires XAPIC support !"));
return;
}
#endif
#endif // CPU_LEVEL >= 6
#endif // CPU_LEVEL >= 5
#endif // CPU_LEVEL >= 4
BX_CPU_THIS_PTR isa_extensions_bitmask = features_bitmask;
}
void BX_CPU_C::init_cpu_features_bitmask(void)
{
Bit32u features_bitmask = 0;
#if BX_SUPPORT_APIC
static unsigned apic_enabled = SIM->get_param_enum(BXPN_CPUID_APIC)->get();
// determine SSE in runtime
switch (apic_enabled) {
case BX_CPUID_SUPPORT_X2APIC:
features_bitmask |= BX_CPU_X2APIC;
case BX_CPUID_SUPPORT_XAPIC:
features_bitmask |= BX_CPU_XAPIC;
case BX_CPUID_SUPPORT_LEGACY_APIC:
default:
break;
};
// I would like to allow XAPIC configuration with i586 together
if (apic_enabled >= BX_CPUID_SUPPORT_X2APIC && BX_CPU_LEVEL < 6) {
BX_PANIC(("PANIC: X2APIC require CPU_LEVEL >= 6 !"));
return;
}
#endif
#if BX_CPU_LEVEL >= 5
features_bitmask |= BX_CPU_VME;
features_bitmask |= BX_CPU_DEBUG_EXTENSIONS;
features_bitmask |= BX_CPU_PSE;
#if BX_CPU_LEVEL >= 6
features_bitmask |= BX_CPU_PAE;
features_bitmask |= BX_CPU_PGE;
features_bitmask |= BX_CPU_PSE36;
features_bitmask |= BX_CPU_PAT_MTRR;
static bx_bool smep_enabled = SIM->get_param_bool(BXPN_CPUID_SMEP)->get();
if (smep_enabled)
features_bitmask |= BX_CPU_SMEP;
#if BX_SUPPORT_X86_64
static bx_bool pcid_enabled = SIM->get_param_bool(BXPN_CPUID_PCID)->get();
if (pcid_enabled)
features_bitmask |= BX_CPU_PCID;
#endif
#endif // CPU_LEVEL >= 6
#endif // CPU_LEVEL >= 5
BX_CPU_THIS_PTR cpu_extensions_bitmask = features_bitmask;
}