Bochs/bochs/cpu/arith16.cc
Kevin Lawton b8d7f5c88e Moved the asm() statements from the arithmetic instruction emulation
into inline functions with asm() statements in cpu.h.  This cleans
  up the *.cc code (which now doesn't have any asm()s in it), and
  centralizes the asm() code so constraints can be modified in one
  place.  This also makes it easier to cover more instructions
  with asm()s for more efficient eflags handling.
2002-10-07 22:51:58 +00:00

829 lines
17 KiB
C++

/////////////////////////////////////////////////////////////////////////
// $Id: arith16.cc,v 1.24 2002-10-07 22:51:55 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::INC_RX(bxInstruction_c *i)
{
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmInc16(BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].word.rx, flags32);
setEFlagsOSZAP(flags32);
#else
Bit16u rx;
rx = ++ BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].word.rx;
SET_FLAGS_OSZAP_16(0, 0, rx, BX_INSTR_INC16);
#endif
}
void
BX_CPU_C::DEC_RX(bxInstruction_c *i)
{
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmDec16(BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].word.rx, flags32);
setEFlagsOSZAP(flags32);
#else
Bit16u rx;
rx = -- BX_CPU_THIS_PTR gen_reg[i->opcodeReg()].word.rx;
SET_FLAGS_OSZAP_16(0, 0, rx, BX_INSTR_DEC16);
#endif
}
void
BX_CPU_C::ADD_EwGw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, sum_16;
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
sum_16 = op1_16 + op2_16;
BX_WRITE_16BIT_REG(i->rm(), sum_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
sum_16 = op1_16 + op2_16;
Write_RMW_virtual_word(sum_16);
}
SET_FLAGS_OSZAPC_16(op1_16, op2_16, sum_16, BX_INSTR_ADD16);
}
void
BX_CPU_C::ADD_GwEEw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, sum_16;
unsigned nnn = i->nnn();
op1_16 = BX_READ_16BIT_REG(nnn);
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmAdd16(sum_16, op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
sum_16 = op1_16 + op2_16;
#endif
BX_WRITE_16BIT_REG(nnn, sum_16);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, sum_16, BX_INSTR_ADD16);
#endif
}
void
BX_CPU_C::ADD_GwEGw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, sum_16;
unsigned nnn = i->nnn();
op1_16 = BX_READ_16BIT_REG(nnn);
op2_16 = BX_READ_16BIT_REG(i->rm());
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmAdd16(sum_16, op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
sum_16 = op1_16 + op2_16;
#endif
BX_WRITE_16BIT_REG(nnn, sum_16);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, sum_16, BX_INSTR_ADD16);
#endif
}
void
BX_CPU_C::ADD_AXIw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, sum_16;
op1_16 = AX;
op2_16 = i->Iw();
sum_16 = op1_16 + op2_16;
AX = sum_16;
SET_FLAGS_OSZAPC_16(op1_16, op2_16, sum_16, BX_INSTR_ADD16);
}
void
BX_CPU_C::ADC_EwGw(bxInstruction_c *i)
{
Boolean temp_CF;
Bit16u op2_16, op1_16, sum_16;
temp_CF = getB_CF();
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
sum_16 = op1_16 + op2_16 + temp_CF;
BX_WRITE_16BIT_REG(i->rm(), sum_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
sum_16 = op1_16 + op2_16 + temp_CF;
Write_RMW_virtual_word(sum_16);
}
SET_FLAGS_OSZAPC_16_CF(op1_16, op2_16, sum_16, BX_INSTR_ADC16,
temp_CF);
}
void
BX_CPU_C::ADC_GwEw(bxInstruction_c *i)
{
Boolean temp_CF;
Bit16u op1_16, op2_16, sum_16;
temp_CF = getB_CF();
op1_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
sum_16 = op1_16 + op2_16 + temp_CF;
BX_WRITE_16BIT_REG(i->nnn(), sum_16);
SET_FLAGS_OSZAPC_16_CF(op1_16, op2_16, sum_16, BX_INSTR_ADC16,
temp_CF);
}
void
BX_CPU_C::ADC_AXIw(bxInstruction_c *i)
{
Boolean temp_CF;
Bit16u op1_16, op2_16, sum_16;
temp_CF = getB_CF();
op1_16 = AX;
op2_16 = i->Iw();
sum_16 = op1_16 + op2_16 + temp_CF;
AX = sum_16;
SET_FLAGS_OSZAPC_16_CF(op1_16, op2_16, sum_16, BX_INSTR_ADC16,
temp_CF);
}
void
BX_CPU_C::SBB_EwGw(bxInstruction_c *i)
{
Boolean temp_CF;
Bit16u op2_16, op1_16, diff_16;
temp_CF = getB_CF();
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
diff_16 = op1_16 - (op2_16 + temp_CF);
BX_WRITE_16BIT_REG(i->rm(), diff_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
diff_16 = op1_16 - (op2_16 + temp_CF);
Write_RMW_virtual_word(diff_16);
}
SET_FLAGS_OSZAPC_16_CF(op1_16, op2_16, diff_16, BX_INSTR_SBB16,
temp_CF);
}
void
BX_CPU_C::SBB_GwEw(bxInstruction_c *i)
{
Boolean temp_CF;
temp_CF = getB_CF();
Bit16u op1_16, op2_16, diff_16;
op1_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
diff_16 = op1_16 - (op2_16 + temp_CF);
BX_WRITE_16BIT_REG(i->nnn(), diff_16);
SET_FLAGS_OSZAPC_16_CF(op1_16, op2_16, diff_16, BX_INSTR_SBB16,
temp_CF);
}
void
BX_CPU_C::SBB_AXIw(bxInstruction_c *i)
{
Boolean temp_CF;
Bit16u op1_16, op2_16, diff_16;
temp_CF = getB_CF();
op1_16 = AX;
op2_16 = i->Iw();
diff_16 = op1_16 - (op2_16 + temp_CF);
AX = diff_16;
SET_FLAGS_OSZAPC_16_CF(op1_16, op2_16, diff_16, BX_INSTR_SBB16,
temp_CF);
}
void
BX_CPU_C::SBB_EwIw(bxInstruction_c *i)
{
Boolean temp_CF;
Bit16u op2_16, op1_16, diff_16;
temp_CF = getB_CF();
op2_16 = i->Iw();
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
diff_16 = op1_16 - (op2_16 + temp_CF);
BX_WRITE_16BIT_REG(i->rm(), diff_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
diff_16 = op1_16 - (op2_16 + temp_CF);
Write_RMW_virtual_word(diff_16);
}
SET_FLAGS_OSZAPC_16_CF(op1_16, op2_16, diff_16, BX_INSTR_SBB16,
temp_CF);
}
void
BX_CPU_C::SUB_EwGw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, diff_16;
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmSub16(diff_16, op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
diff_16 = op1_16 - op2_16;
#endif
BX_WRITE_16BIT_REG(i->rm(), diff_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmSub16(diff_16, op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
diff_16 = op1_16 - op2_16;
#endif
Write_RMW_virtual_word(diff_16);
}
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_SUB16);
#endif
}
void
BX_CPU_C::SUB_GwEw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, diff_16;
unsigned nnn = i->nnn();
op1_16 = BX_READ_16BIT_REG(nnn);
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmSub16(diff_16, op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
diff_16 = op1_16 - op2_16;
#endif
BX_WRITE_16BIT_REG(nnn, diff_16);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_SUB16);
#endif
}
void
BX_CPU_C::SUB_AXIw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, diff_16;
op1_16 = AX;
op2_16 = i->Iw();
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmSub16(diff_16, op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
diff_16 = op1_16 - op2_16;
#endif
AX = diff_16;
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_SUB16);
#endif
}
void
BX_CPU_C::CMP_EwGw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16;
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmCmp16(op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
Bit16u diff_16;
diff_16 = op1_16 - op2_16;
SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_CMP16);
#endif
}
void
BX_CPU_C::CMP_GwEw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16;
op1_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op2_16);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmCmp16(op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
Bit16u diff_16;
diff_16 = op1_16 - op2_16;
SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_CMP16);
#endif
}
void
BX_CPU_C::CMP_AXIw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16;
op1_16 = AX;
op2_16 = i->Iw();
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmCmp16(op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
Bit16u diff_16;
diff_16 = op1_16 - op2_16;
SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_CMP16);
#endif
}
void
BX_CPU_C::CBW(bxInstruction_c *i)
{
/* CBW: no flags are effected */
AX = (Bit8s) AL;
}
void
BX_CPU_C::CWD(bxInstruction_c *i)
{
/* CWD: no flags are affected */
if (AX & 0x8000) {
DX = 0xFFFF;
}
else {
DX = 0x0000;
}
}
void
BX_CPU_C::XADD_EwGw(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit16u op2_16, op1_16, sum_16;
/* XADD dst(r/m), src(r)
* temp <-- src + dst | sum = op2 + op1
* src <-- dst | op2 = op1
* dst <-- tmp | op1 = sum
*/
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
sum_16 = op1_16 + op2_16;
// and write destination into source
// Note: if both op1 & op2 are registers, the last one written
// should be the sum, as op1 & op2 may be the same register.
// For example: XADD AL, AL
BX_WRITE_16BIT_REG(i->nnn(), op1_16);
BX_WRITE_16BIT_REG(i->rm(), sum_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
sum_16 = op1_16 + op2_16;
Write_RMW_virtual_word(sum_16);
/* and write destination into source */
BX_WRITE_16BIT_REG(i->nnn(), op1_16);
}
SET_FLAGS_OSZAPC_16(op1_16, op2_16, sum_16, BX_INSTR_XADD16);
#else
BX_PANIC(("XADD_EvGv: not supported on < 80486"));
#endif
}
void
BX_CPU_C::ADD_EEwIw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, sum_16;
op2_16 = i->Iw();
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmAdd16(sum_16, op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
sum_16 = op1_16 + op2_16;
#endif
Write_RMW_virtual_word(sum_16);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, sum_16, BX_INSTR_ADD16);
#endif
}
void
BX_CPU_C::ADD_EGwIw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, sum_16;
op2_16 = i->Iw();
op1_16 = BX_READ_16BIT_REG(i->rm());
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmAdd16(sum_16, op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
sum_16 = op1_16 + op2_16;
#endif
BX_WRITE_16BIT_REG(i->rm(), sum_16);
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, sum_16, BX_INSTR_ADD16);
#endif
}
void
BX_CPU_C::ADC_EwIw(bxInstruction_c *i)
{
Boolean temp_CF;
Bit16u op2_16, op1_16, sum_16;
temp_CF = getB_CF();
op2_16 = i->Iw();
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
sum_16 = op1_16 + op2_16 + temp_CF;
BX_WRITE_16BIT_REG(i->rm(), sum_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
sum_16 = op1_16 + op2_16 + temp_CF;
Write_RMW_virtual_word(sum_16);
}
SET_FLAGS_OSZAPC_16_CF(op1_16, op2_16, sum_16, BX_INSTR_ADC16,
temp_CF);
}
void
BX_CPU_C::SUB_EwIw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16, diff_16;
op2_16 = i->Iw();
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmSub16(diff_16, op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
diff_16 = op1_16 - op2_16;
#endif
BX_WRITE_16BIT_REG(i->rm(), diff_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmSub16(diff_16, op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
diff_16 = op1_16 - op2_16;
#endif
Write_RMW_virtual_word(diff_16);
}
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_SUB16);
#endif
}
void
BX_CPU_C::CMP_EwIw(bxInstruction_c *i)
{
Bit16u op2_16, op1_16;
op2_16 = i->Iw();
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmCmp16(op1_16, op2_16, flags32);
setEFlagsOSZAPC(flags32);
#else
Bit16u diff_16;
diff_16 = op1_16 - op2_16;
SET_FLAGS_OSZAPC_16(op1_16, op2_16, diff_16, BX_INSTR_CMP16);
#endif
}
void
BX_CPU_C::NEG_Ew(bxInstruction_c *i)
{
Bit16u op1_16, diff_16;
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
diff_16 = 0 - op1_16;
BX_WRITE_16BIT_REG(i->rm(), diff_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
diff_16 = 0 - op1_16;
Write_RMW_virtual_word(diff_16);
}
SET_FLAGS_OSZAPC_16(op1_16, 0, diff_16, BX_INSTR_NEG16);
}
void
BX_CPU_C::INC_Ew(bxInstruction_c *i)
{
Bit16u op1_16;
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
op1_16++;
BX_WRITE_16BIT_REG(i->rm(), op1_16);
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
op1_16++;
Write_RMW_virtual_word(op1_16);
}
SET_FLAGS_OSZAP_16(0, 0, op1_16, BX_INSTR_INC16);
}
void
BX_CPU_C::DEC_Ew(bxInstruction_c *i)
{
Bit16u op1_16;
if (i->modC0()) {
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmDec16(BX_CPU_THIS_PTR gen_reg[i->rm()].word.rx, flags32);
setEFlagsOSZAP(flags32);
#else
op1_16 = BX_READ_16BIT_REG(i->rm());
op1_16--;
BX_WRITE_16BIT_REG(i->rm(), op1_16);
#endif
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmDec16(op1_16, flags32);
setEFlagsOSZAP(flags32);
#else
op1_16--;
#endif
Write_RMW_virtual_word(op1_16);
}
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAP_16(0, 0, op1_16, BX_INSTR_DEC16);
#endif
}
void
BX_CPU_C::CMPXCHG_EwGw(bxInstruction_c *i)
{
#if (BX_CPU_LEVEL >= 4) || (BX_CPU_LEVEL_HACKED >= 4)
Bit16u op2_16, op1_16, diff_16;
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
diff_16 = AX - op1_16;
SET_FLAGS_OSZAPC_16(AX, op1_16, diff_16, BX_INSTR_CMP16);
if (diff_16 == 0) { // if accumulator == dest
// ZF = 1
set_ZF(1);
// dest <-- src
op2_16 = BX_READ_16BIT_REG(i->nnn());
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), op2_16);
}
else {
Write_RMW_virtual_word(op2_16);
}
}
else {
// ZF = 0
set_ZF(0);
// accumulator <-- dest
AX = op1_16;
}
#else
BX_PANIC(("CMPXCHG_EwGw:"));
#endif
}