PNI could be enabled by setting BX_SUPPORT_PNI in config.h
After the feature will be fully validation I'll also add configure option.
The implemntation is ~complete. I've missed only three FPU new opcodes of FUSTTP instruction and MONITOR/WAIT instructions.
Enjoy ! ;)
check.
Commented out a number of instances of invalidate_prefetch_q(),
for branches which do not change CS since the EIP window mechanism
takes care of validating that EIP lands in the current page or not
in the main cpu loop anyways.
Fixed a couple cases (v8086 mode and real mode) of loading CS where
the EIP page window was not invalidated in segment_ctrl_pro.cc.
That may fix some aliasing problems reported before (OS2).
* renamed CPU_ID to BX_CPU_ID.
with this new name there is no possibility for name contentions and BX_CPU_ID
definition could be moved out to NEED_CPU_REG_SHORTCUTS block
* returned back `unsigned BX_CPU::which_cpu(void)` function
* added BX_CPU_ID parameter for
BX_INSTR_PHY_READ(a20addr, len);
BX_INSTR_PHY_WRITE(a20addr, len);
now it will be
BX_INSTR_PHY_READ(cpu_id, a20addr, len);
BX_INSTR_PHY_WRITE(cpu_id, a20addr, len);
"bx_bool" which is always defined as Bit32u on all platforms. In Carbon
specific code, Boolean is still used because the Carbon header files
define it to unsigned char.
- this fixes bug [ 623152 ] MacOSX: Triple Exception Booting win95.
The bug was that some code in Bochs depends on Boolean to be a
32 bit value. (This should be fixed, but I don't know all the places
where it needs to be fixed yet.) Because Carbon defined Boolean as
an unsigned char, Bochs just followed along and used the unsigned char
definition to avoid compile problems. This exposed the dependency
on 32 bit Boolean on MacOS X only and led to major simulation problems,
that could only be reproduced and debugged on that platform.
- On the mailing list we debated whether to make all Booleans into "bool" or
our own type. I chose bx_bool for several reasons.
1. Unlike C++'s bool, we can guarantee that bx_bool is the same size on all
platforms, which makes it much less likely to have more platform-specific
simulation differences in the future. (I spent hours on a borrowed
MacOSX machine chasing bug 618388 before discovering that different sized
Booleans were the problem, and I don't want to repeat that.)
2. We still have at least one dependency on 32 bit Booleans which must be
fixed some time, but I don't want to risk introducing new bugs into the
simulation just before the 2.0 release.
Modified Files:
bochs.h config.h.in gdbstub.cc logio.cc main.cc pc_system.cc
pc_system.h plugin.cc plugin.h bios/rombios.c cpu/apic.cc
cpu/arith16.cc cpu/arith32.cc cpu/arith64.cc cpu/arith8.cc
cpu/cpu.cc cpu/cpu.h cpu/ctrl_xfer16.cc cpu/ctrl_xfer32.cc
cpu/ctrl_xfer64.cc cpu/data_xfer16.cc cpu/data_xfer32.cc
cpu/data_xfer64.cc cpu/debugstuff.cc cpu/exception.cc
cpu/fetchdecode.cc cpu/flag_ctrl_pro.cc cpu/init.cc
cpu/io_pro.cc cpu/lazy_flags.cc cpu/lazy_flags.h cpu/mult16.cc
cpu/mult32.cc cpu/mult64.cc cpu/mult8.cc cpu/paging.cc
cpu/proc_ctrl.cc cpu/segment_ctrl_pro.cc cpu/stack_pro.cc
cpu/tasking.cc debug/dbg_main.cc debug/debug.h debug/sim2.cc
disasm/dis_decode.cc disasm/disasm.h doc/docbook/Makefile
docs-html/cosimulation.html fpu/wmFPUemu_glue.cc
gui/amigaos.cc gui/beos.cc gui/carbon.cc gui/gui.cc gui/gui.h
gui/keymap.cc gui/keymap.h gui/macintosh.cc gui/nogui.cc
gui/rfb.cc gui/sdl.cc gui/siminterface.cc gui/siminterface.h
gui/term.cc gui/win32.cc gui/wx.cc gui/wxmain.cc gui/wxmain.h
gui/x.cc instrument/example0/instrument.cc
instrument/example0/instrument.h
instrument/example1/instrument.cc
instrument/example1/instrument.h
instrument/stubs/instrument.cc instrument/stubs/instrument.h
iodev/cdrom.cc iodev/cdrom.h iodev/cdrom_osx.cc iodev/cmos.cc
iodev/devices.cc iodev/dma.cc iodev/dma.h iodev/eth_arpback.cc
iodev/eth_packetmaker.cc iodev/eth_packetmaker.h
iodev/floppy.cc iodev/floppy.h iodev/guest2host.h
iodev/harddrv.cc iodev/harddrv.h iodev/ioapic.cc
iodev/ioapic.h iodev/iodebug.cc iodev/iodev.h
iodev/keyboard.cc iodev/keyboard.h iodev/ne2k.h
iodev/parallel.h iodev/pci.cc iodev/pci.h iodev/pic.h
iodev/pit.cc iodev/pit.h iodev/pit_wrap.cc iodev/pit_wrap.h
iodev/sb16.cc iodev/sb16.h iodev/serial.cc iodev/serial.h
iodev/vga.cc iodev/vga.h memory/memory.h memory/misc_mem.cc
to give the compiler some hints:
BX_CPP_AttrPrintf(formatArg, firstArg)
BX_CPP_AttrNoReturn()
The first is to tell the compiler that a function receives printf-like
arguments so it can do some smart argument checking w.r.t. the
format string. The 2nd tells the compiler that the function does
not ever return; it's not used yet, but I'd like to use it on
exception() after we fix the situation of it returning for debugging.
I fixed one parameter mismatch in cpu/ by deleting a deprecated
debug print statement. There are several other mismatches in
other code modules.
Some things changed in the ctrl_xfer*.cc, fetchdecode*.cc,
and cpu.cc since the original patches, so I did some patch
integration by hand. Check the placement of the
macros BX_INSTR_FETCH_DECODE_COMPLETED() and BX_INSTR_OPCODE()
in cpu.cc to make sure I go them right. Also, I changed the
parameters to BX_INSTR_OPCODE() to update them to the new code.
I put some comments before each of these to help determine if
the placement is right.
These macros are only compiled in if you are gathering instrumentation
data from bochs, so they shouldn't effect others.
Created 64-bit versions of some branch instructions and
changed fetchdecode64.cc to use them instead. This keeps the
#ifdef pollution down for 32-bit code and made fixing them
easier. They needed to clear the upper bits of RIP for
16-bit operand sizes. They also should not have had a protection
limit check in them, especially since that field is still
32-bit in cpu.h, so there's no way to set nominal 64-bit values.
The 32-bit versions were also not honoring the upper 32-bits
of RIP.
LOOPNE64_Jb
LOOPE64_Jb
LOOP64_Jb
JCXZ64_Jb
Changed all occurances of JCC_Jw/JCC_Jd in fetchdecode64.cc to
use JCC_Jq, which was coded already. Both JMP_Jq and JCC_Jq are
now fixed w.r.t. 16-bit opsizes and upper RIP bit clearing.
these from interfering from a normal compile here's what I did.
In config.h.in (which will generate config.h after a configure),
I added a #define called KPL64Hacks:
#define KPL64Hacks
*After* running configure, you must set this by hand. It will
default to off, so you won't get my hacks in a normal compile.
This will go away soon. There is also a macro just after that
called BailBigRSP(). You don't need to enabled that, but you
can. In many of the instructions which seemed like they could
be hit by the fetchdecode64() process, but which also touched
EIP/ESP, I inserted a macro. Usually this macro expands to nothing.
If you like, you can enabled it, and it will panic if it finds
the upper bits of RIP/RSP set. This helped me find bugs.
Also, I cleaned up the emulation in ctrl_xfer{8,16,32}.cc.
There were some really old legacy code snippets which directly
accessed operands on the stack with access_linear. Lots of
ugly code instead of just pop_32() etc. Cleaning those up,
minimized the number of instructions which directly manipulate
the stack pointer, which should help in refining 64-bit support.
of (1 & (val32>>N)), and added a getB_?F() accessor for special
cases which need a strict binary value (exactly 0 or 1). Most
code only needed a value for logical comparison. I modified the
special cases which do need a binary number for shifting and
comparison between flags, to use the special getB_?F() accessor.
Cleaned up memory.cc functions a little, now that all accesses
are within a single page.
Fixed a (not very likely encountered) bug in fetchdecode.cc (and
fetchdecode64.cc) where a 2-byte opcode starting with a prefix
starts at the last offset on a page. There were no checks
on the segment overrides for a boundary condition. I added them.
The eflags enhancements added just a tiny bit of performance.
so frequently.
Coded asm() statements for INC/DEC_ERX() instructions.
Cleaned up the iCache a litle including a bug fix. The
generation ID was decrementing the whole field including
some high meta bits. That could roll over after 1 Billion
cycles. I know only decrement if the field is valid, to
save the write.
I implemented inline functions which can serve the value of
the arithmetic flags if they are cached, and redirect to
the lazy_flags.cc routines if not.
Most of this was just prep work for adding more asm() statements
for native eflags processing when on x86.
in cpu.cc out of the main loop, and into the asynchronous
events handling. I went through all the code paths, and
there doesn't seem to be any reason for that code to be
in the hot loop.
Added another accessor for getting instruction data, called
modC0(). A lot of instructions test whether the mod field
of mod-nnn-rm is 0xc0 or not, ie., it's a register operation
and not memory. So I flag this in fetchdecode{,64}.cc.
This added on the order of 1% performance improvement for
a Win95 boot.
Macroized a few leftover calls to Write_RMV_virtual_xyz()
that didn't get modified in the x86-64 merge. Really, they
just call the real function for now, but I want to have them
available to do direct writes with the guest2host TLB pointers.
to bitfields. bxInstruction_c is now 24 bytes, including 4 for
the memory addr resolution function pointer, and 4 for the
execution function pointer (16 + 4 + 4).
Coded more accessors, to abstract access from most code.
with accessors. Had to touch a number of files to update the
access using the new accessors.
Moved rm_addr to the CPU structure, to slim down bxInstruction_c
and to prevent future instruction caching from getting sprayed
with writes to individual rm_addr fields. There only needs to
be one. Though need to deal with instructions which have
static non-modrm addresses, but which are using rm_addr since
that will change.
bxInstruction_c is down to about 40 bytes now. Trying to
get down to 24 bytes.
use accessors. This lets me work on compressing the
size of fetch-decode structure (now called bxInstruction_c).
I've reduced it down to about 76 bytes. We should be able
to do much better soon. I needed the abstraction of the
accessors, so I have a lot of freedom to re-arrange things
without making massive future changes.
Lost a few percent of performance in these mods, but my
main focus was to get the abstraction.
tries to fix it. The shortcuts to register names such as AX and DL are
#defines in cpu/cpu.h, and they are defined in terms of BX_CPU_THIS_PTR.
When BX_USE_CPU_SMF=1, this works fine. (This is what bochs used for
a long time, and nobody used the SMF=0 mode at all.) To make SMP bochs
work, I had to get SMF=0 mode working for the CPU so that there could
be an array of cpus.
When SMF=0 for the CPU, BX_CPU_THIS_PTR is defined to be "this->" which
only works within methods of BX_CPU_C. Code outside of BX_CPU_C must
reference BX_CPU(num) instead.
- to try to enforce the correct use of AL/AX/DL/etc. shortcuts, they are
now only #defined when "NEED_CPU_REG_SHORTCUTS" is #defined. This is
only done in the cpu/*.cc code.
To see the commit logs for this use either cvsweb or
cvs update -r BRANCH-io-cleanup and then 'cvs log' the various files.
In general this provides a generic interface for logging.
logfunctions:: is a class that is inherited by some classes, and also
. allocated as a standalone global called 'genlog'. All logging uses
. one of the ::info(), ::error(), ::ldebug(), ::panic() methods of this
. class through 'BX_INFO(), BX_ERROR(), BX_DEBUG(), BX_PANIC()' macros
. respectively.
.
. An example usage:
. BX_INFO(("Hello, World!\n"));
iofunctions:: is a class that is allocated once by default, and assigned
as the iofunction of each logfunctions instance. It is this class that
maintains the file descriptor and other output related code, at this
point using vfprintf(). At some future point, someone may choose to
write a gui 'console' for bochs to which messages would be redirected
simply by assigning a different iofunction class to the various logfunctions
objects.
More cleanup is coming, but this works for now. If you want to see alot
of debugging output, in main.cc, change onoff[LOGLEV_DEBUG]=0 to =1.
Comments, bugs, flames, to me: todd@fries.net