Bochs/bochs/cpu/shift16.cc

534 lines
12 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////
// $Id: shift16.cc,v 1.14 2002-10-07 22:51:58 kevinlawton Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#define LOG_THIS BX_CPU_THIS_PTR
void
BX_CPU_C::SHLD_EwGw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16, result_16;
Bit32u temp_32, result_32;
unsigned count;
/* op1:op2 << count. result stored in op1 */
if (i->b1() == 0x1a4)
count = i->Ib();
else // 0x1a5
count = CL;
count &= 0x1f; // use only 5 LSB's
if (!count) return; /* NOP */
// count is 1..31
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
op2_16 = BX_READ_16BIT_REG(i->nnn());
temp_32 = (op1_16 << 16) | (op2_16); // double formed by op1:op2
result_32 = temp_32 << count;
if (count > 16) {
// hack to act like x86 SHLD when count > 16
// actually shifting op1:op2:op2 << count
result_32 |= (op2_16 << (count - 16));
}
result_16 = result_32 >> 16;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
Write_RMW_virtual_word(result_16);
}
/* set eflags:
* SHLD count affects the following flags: S,Z,P,C,O
*/
set_CF( (temp_32 >> (32 - count)) & 0x01 );
if (count == 1)
set_OF(((op1_16 ^ result_16) & 0x8000) > 0);
set_ZF(result_16 == 0);
set_SF(result_16 >> 15);
set_PF_base((Bit8u) result_16);
}
void
BX_CPU_C::SHRD_EwGw(bxInstruction_c *i)
{
#if BX_CPU_LEVEL < 3
BX_PANIC(("shrd_evgvib: not supported on < 386"));
#else
Bit16u op1_16, op2_16, result_16;
Bit32u temp_32, result_32;
unsigned count;
if (i->b1() == 0x1ac)
count = i->Ib();
else // 0x1ad
count = CL;
count &= 0x1F; /* use only 5 LSB's */
if (!count) return; /* NOP */
// count is 1..31
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
op2_16 = BX_READ_16BIT_REG(i->nnn());
temp_32 = (op2_16 << 16) | op1_16; // double formed by op2:op1
result_32 = temp_32 >> count;
if (count > 16) {
// hack to act like x86 SHLD when count > 16
// actually shifting op2:op2:op1 >> count
result_32 |= (op2_16 << (32 - count));
}
result_16 = result_32;
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
Write_RMW_virtual_word(result_16);
}
/* set eflags:
* SHRD count affects the following flags: S,Z,P,C,O
*/
set_CF((temp_32 >> (count - 1)) & 0x01);
set_ZF(result_16 == 0);
set_SF(result_16 >> 15);
/* for shift of 1, OF set if sign change occurred. */
if (count == 1)
set_OF(((op1_16 ^ result_16) & 0x8000) > 0);
set_PF_base((Bit8u) result_16);
#endif /* BX_CPU_LEVEL >= 3 */
}
void
BX_CPU_C::ROL_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
if ( i->b1() == 0xc1 )
count = i->Ib();
else if ( i->b1() == 0xd1 )
count = 1;
else // 0xd3
count = CL;
count &= 0x0f; // only use bottom 4 bits
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
if (count) {
result_16 = (op1_16 << count) | (op1_16 >> (16 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
Write_RMW_virtual_word(result_16);
}
/* set eflags:
* ROL count affects the following flags: C
*/
set_CF(result_16 & 0x01);
if (count == 1)
set_OF(((op1_16 ^ result_16) & 0x8000) > 0);
}
}
void
BX_CPU_C::ROR_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16, result_b15;
unsigned count;
if ( i->b1() == 0xc1 )
count = i->Ib();
else if ( i->b1() == 0xd1 )
count = 1;
else // 0xd3
count = CL;
count &= 0x0f; // use only 4 LSB's
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
if (count) {
result_16 = (op1_16 >> count) | (op1_16 << (16 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
Write_RMW_virtual_word(result_16);
}
/* set eflags:
* ROR count affects the following flags: C
*/
result_b15 = result_16 & 0x8000;
set_CF(result_b15 != 0);
if (count == 1)
set_OF(((op1_16 ^ result_16) & 0x8000) > 0);
}
}
void
BX_CPU_C::RCL_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
if ( i->b1() == 0xc1 )
count = i->Ib();
else if ( i->b1() == 0xd1 )
count = 1;
else // 0xd3
count = CL;
count &= 0x1F;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
count %= 17;
if (!count) return;
if (count==1) {
result_16 = (op1_16 << 1) | getB_CF();
}
else if (count==16) {
result_16 = (getB_CF() << 15) |
(op1_16 >> 1);
}
else { // 2..15
result_16 = (op1_16 << count) |
(getB_CF() << (count - 1)) |
(op1_16 >> (17 - count));
}
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
Write_RMW_virtual_word(result_16);
}
/* set eflags:
* RCL count affects the following flags: C
*/
if (count == 1)
set_OF(((op1_16 ^ result_16) & 0x8000) > 0);
set_CF((op1_16 >> (16 - count)) & 0x01);
}
void
BX_CPU_C::RCR_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
if ( i->b1() == 0xc1 )
count = i->Ib();
else if ( i->b1() == 0xd1 )
count = 1;
else // 0xd3
count = CL;
count = count & 0x1F;
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
count %= 17;
if (count) {
result_16 = (op1_16 >> count) |
(getB_CF() << (16 - count)) |
(op1_16 << (17 - count));
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
Write_RMW_virtual_word(result_16);
}
/* set eflags:
* RCR count affects the following flags: C
*/
set_CF((op1_16 >> (count - 1)) & 0x01);
if (count == 1)
set_OF(((op1_16 ^ result_16) & 0x8000) > 0);
}
}
void
BX_CPU_C::SHL_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
if ( i->b1() == 0xc1 )
count = i->Ib();
else if ( i->b1() == 0xd1 )
count = 1;
else // 0xd3
count = CL;
count &= 0x1F; /* use only 5 LSB's */
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
if (!count) return;
result_16 = (op1_16 << count);
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
Write_RMW_virtual_word(result_16);
}
SET_FLAGS_OSZAPC_16(op1_16, count, result_16, BX_INSTR_SHL16);
}
void
BX_CPU_C::SHR_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
if ( i->b1() == 0xc1 )
count = i->Ib();
else if ( i->b1() == 0xd1 )
count = 1;
else // 0xd3
count = CL;
count &= 0x1F; /* use only 5 LSB's */
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
if (!count) return;
#if (defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
Bit32u flags32;
asmShr16(result_16, op1_16, count, flags32);
setEFlagsOSZAPC(flags32);
#else
result_16 = (op1_16 >> count);
#endif
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
Write_RMW_virtual_word(result_16);
}
#if !(defined(__i386__) && defined(__GNUC__) && BX_SupportHostAsms)
SET_FLAGS_OSZAPC_16(op1_16, count, result_16, BX_INSTR_SHR16);
#endif
}
void
BX_CPU_C::SAR_Ew(bxInstruction_c *i)
{
Bit16u op1_16, result_16;
unsigned count;
if ( i->b1() == 0xc1 )
count = i->Ib();
else if ( i->b1() == 0xd1 )
count = 1;
else // 0xd3
count = CL;
count &= 0x1F; /* use only 5 LSB's */
/* op1 is a register or memory reference */
if (i->modC0()) {
op1_16 = BX_READ_16BIT_REG(i->rm());
}
else {
/* pointer, segment address pair */
read_RMW_virtual_word(i->seg(), RMAddr(i), &op1_16);
}
if (!count) return;
if (count < 16) {
if (op1_16 & 0x8000) {
result_16 = (op1_16 >> count) | (0xffff << (16 - count));
}
else {
result_16 = (op1_16 >> count);
}
}
else {
if (op1_16 & 0x8000) {
result_16 = 0xffff;
}
else {
result_16 = 0;
}
}
/* now write result back to destination */
if (i->modC0()) {
BX_WRITE_16BIT_REG(i->rm(), result_16);
}
else {
Write_RMW_virtual_word(result_16);
}
/* set eflags:
* SAR count affects the following flags: S,Z,P,C
*/
if (count < 16) {
set_CF((op1_16 >> (count - 1)) & 0x01);
}
else {
if (op1_16 & 0x8000) {
set_CF(1);
}
else {
set_CF(0);
}
}
set_ZF(result_16 == 0);
set_SF(result_16 >> 15);
if (count == 1)
set_OF(0);
set_PF_base((Bit8u) result_16);
}