Bochs/bochs/cpu/stack.cc

375 lines
13 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////
// $Id$
/////////////////////////////////////////////////////////////////////////
//
// Copyright (c) 2012-2015 Stanislav Shwartsman
// Written by Stanislav Shwartsman [sshwarts at sourceforge net]
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA
//
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
#include "cpustats.h"
void BX_CPP_AttrRegparmN(2) BX_CPU_C::stackPrefetch(bx_address offset, unsigned len)
{
bx_address laddr;
unsigned pageOffset;
INC_STACK_PREFETCH_STAT(stackPrefetch);
BX_CPU_THIS_PTR espHostPtr = 0; // initialize with NULL pointer
BX_CPU_THIS_PTR espPageWindowSize = 0;
len--;
#if BX_SUPPORT_X86_64
if (long64_mode() || (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid & SegAccessWOK4G)) {
laddr = offset;
pageOffset = PAGE_OFFSET(offset);
// canonical violations will miss the TLB below
if (pageOffset + len >= 4096) // don't care for page split accesses
return;
BX_CPU_THIS_PTR espPageWindowSize = 4096;
}
else
#endif
{
laddr = get_laddr32(BX_SEG_REG_SS, (Bit32u) offset);
pageOffset = PAGE_OFFSET(laddr);
if (pageOffset + len >= 4096) // don't care for page split accesses
return;
Bit32u limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled;
2012-11-27 19:40:45 +04:00
Bit32u pageStart = (Bit32u) offset - pageOffset;
2012-03-26 23:24:20 +04:00
if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid) {
BX_ERROR(("stackPrefetch: SS not valid"));
exception(BX_SS_EXCEPTION, 0);
}
BX_ASSERT(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p);
2012-03-26 23:08:28 +04:00
BX_ASSERT(IS_DATA_SEGMENT_WRITEABLE(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type));
// check that the begining of the page is within stack segment limits
// problem can happen with EXPAND DOWN segments
if (IS_DATA_SEGMENT_EXPAND_DOWN(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type)) {
Bit32u upper_limit;
if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b)
upper_limit = 0xffffffff;
else
upper_limit = 0x0000ffff;
if (offset <= limit || offset > upper_limit || (upper_limit - offset) < len) {
BX_ERROR(("stackPrefetch(%d): access [0x%08x] > SS.limit [0x%08x] ED", len+1, (Bit32u) offset, limit));
exception(BX_SS_EXCEPTION, 0);
}
// check that the begining of the page is within stack segment limits
// handle correctly the wrap corner case for EXPAND DOWN
Bit32u pageEnd = pageStart + 0xfff;
if (pageStart > limit && pageStart < pageEnd) {
BX_CPU_THIS_PTR espPageWindowSize = 4096;
if ((upper_limit - offset) < (4096 - pageOffset))
BX_CPU_THIS_PTR espPageWindowSize = (Bit32u)(upper_limit - offset + 1);
}
}
else {
if (offset > (limit - len) || len > limit) {
BX_ERROR(("stackPrefetch(%d): access [0x%08x] > SS.limit [0x%08x]", len+1, (Bit32u) offset, limit));
exception(BX_SS_EXCEPTION, 0);
}
if (pageStart <= limit) {
BX_CPU_THIS_PTR espPageWindowSize = 4096;
if ((limit - offset) < (4096 - pageOffset))
BX_CPU_THIS_PTR espPageWindowSize = (Bit32u)(limit - offset + 1);
}
}
}
unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0);
Bit64u lpf = LPFOf(laddr);
bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex];
if (tlbEntry->lpf == lpf) {
// See if the TLB entry privilege level allows us write access from this CPL
// Assuming that we always can read if write access is OK
if (tlbEntry->accessBits & (0x04 << USER_PL)) {
BX_CPU_THIS_PTR espPageBias = (bx_address) pageOffset - offset;
BX_CPU_THIS_PTR pAddrStackPage = tlbEntry->ppf;
BX_CPU_THIS_PTR espHostPtr = (Bit8u*) tlbEntry->hostPageAddr;
#if BX_SUPPORT_MEMTYPE
BX_CPU_THIS_PTR espPageMemtype = tlbEntry->get_memtype();
#endif
#if BX_SUPPORT_SMP == 0
BX_CPU_THIS_PTR espPageFineGranularityMapping = pageWriteStampTable.getFineGranularityMapping(tlbEntry->ppf);
#endif
}
}
if (! BX_CPU_THIS_PTR espHostPtr || BX_CPU_THIS_PTR espPageWindowSize < 7)
BX_CPU_THIS_PTR espPageWindowSize = 0;
else
BX_CPU_THIS_PTR espPageWindowSize -= 7;
}
void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_byte(bx_address offset, Bit8u data)
{
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
stackPrefetch(offset, 1);
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
}
if (BX_CPU_THIS_PTR espHostPtr) {
Bit8u *hostPageAddr = (Bit8u*)(BX_CPU_THIS_PTR espHostPtr + espBiased);
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 1,
MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_WRITE, (Bit8u*) &data);
#if BX_SUPPORT_SMP == 0
if (BX_CPU_THIS_PTR espPageFineGranularityMapping)
#endif
pageWriteStampTable.decWriteStamp(pAddr, 1);
*hostPageAddr = data;
}
else {
write_virtual_byte(BX_SEG_REG_SS, offset, data);
}
}
void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_word(bx_address offset, Bit16u data)
{
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
stackPrefetch(offset, 2);
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
}
if (BX_CPU_THIS_PTR espHostPtr) {
Bit16u *hostPageAddr = (Bit16u*)(BX_CPU_THIS_PTR espHostPtr + espBiased);
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check() && (pAddr & 1) != 0) {
BX_ERROR(("stack_write_word(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
#endif
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 2,
MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_WRITE, (Bit8u*) &data);
#if BX_SUPPORT_SMP == 0
if (BX_CPU_THIS_PTR espPageFineGranularityMapping)
#endif
pageWriteStampTable.decWriteStamp(pAddr, 2);
WriteHostWordToLittleEndian(hostPageAddr, data);
}
else {
write_virtual_word(BX_SEG_REG_SS, offset, data);
}
}
void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_dword(bx_address offset, Bit32u data)
{
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
stackPrefetch(offset, 4);
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
}
if (BX_CPU_THIS_PTR espHostPtr) {
Bit32u *hostPageAddr = (Bit32u*)(BX_CPU_THIS_PTR espHostPtr + espBiased);
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check() && (pAddr & 3) != 0) {
BX_ERROR(("stack_write_dword(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
#endif
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 4,
MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_WRITE, (Bit8u*) &data);
#if BX_SUPPORT_SMP == 0
if (BX_CPU_THIS_PTR espPageFineGranularityMapping)
#endif
pageWriteStampTable.decWriteStamp(pAddr, 4);
WriteHostDWordToLittleEndian(hostPageAddr, data);
}
else {
write_virtual_dword(BX_SEG_REG_SS, offset, data);
}
}
void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_qword(bx_address offset, Bit64u data)
{
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
stackPrefetch(offset, 8);
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
}
if (BX_CPU_THIS_PTR espHostPtr) {
Bit64u *hostPageAddr = (Bit64u*)(BX_CPU_THIS_PTR espHostPtr + espBiased);
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check() && (pAddr & 7) != 0) {
BX_ERROR(("stack_write_qword(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
#endif
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 8,
MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_WRITE, (Bit8u*) &data);
#if BX_SUPPORT_SMP == 0
if (BX_CPU_THIS_PTR espPageFineGranularityMapping)
#endif
pageWriteStampTable.decWriteStamp(pAddr, 8);
WriteHostQWordToLittleEndian(hostPageAddr, data);
}
else {
write_virtual_qword(BX_SEG_REG_SS, offset, data);
}
}
Bit8u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_byte(bx_address offset)
{
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
stackPrefetch(offset, 1);
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
}
if (BX_CPU_THIS_PTR espHostPtr) {
Bit8u *hostPageAddr = (Bit8u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data;
data = *hostPageAddr;
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset),
(BX_CPU_THIS_PTR pAddrStackPage + espBiased), 1,
MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_READ, (Bit8u*) &data);
return data;
}
else {
return read_virtual_byte(BX_SEG_REG_SS, offset);
}
}
Bit16u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_word(bx_address offset)
{
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
stackPrefetch(offset, 2);
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
}
if (BX_CPU_THIS_PTR espHostPtr) {
Bit16u *hostPageAddr = (Bit16u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data;
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
if (pAddr & 1) {
BX_ERROR(("stack_read_word(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
ReadHostWordFromLittleEndian(hostPageAddr, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset),
(BX_CPU_THIS_PTR pAddrStackPage + espBiased), 2,
MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_READ, (Bit8u*) &data);
return data;
}
else {
return read_virtual_word(BX_SEG_REG_SS, offset);
}
}
Bit32u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_dword(bx_address offset)
{
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
stackPrefetch(offset, 4);
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
}
if (BX_CPU_THIS_PTR espHostPtr) {
Bit32u *hostPageAddr = (Bit32u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data;
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
if (pAddr & 3) {
BX_ERROR(("stack_read_dword(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
ReadHostDWordFromLittleEndian(hostPageAddr, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset),
(BX_CPU_THIS_PTR pAddrStackPage + espBiased), 4,
MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_READ, (Bit8u*) &data);
return data;
}
else {
return read_virtual_dword(BX_SEG_REG_SS, offset);
}
}
Bit64u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_qword(bx_address offset)
{
bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias;
if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) {
stackPrefetch(offset, 8);
espBiased = offset + BX_CPU_THIS_PTR espPageBias;
}
if (BX_CPU_THIS_PTR espHostPtr) {
Bit64u *hostPageAddr = (Bit64u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data;
#if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK
if (BX_CPU_THIS_PTR alignment_check()) {
bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased;
if (pAddr & 7) {
BX_ERROR(("stack_read_qword(): #AC misaligned access"));
exception(BX_AC_EXCEPTION, 0);
}
}
#endif
ReadHostQWordFromLittleEndian(hostPageAddr, data);
BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset),
(BX_CPU_THIS_PTR pAddrStackPage + espBiased), 8,
MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_READ, (Bit8u*) &data);
return data;
}
else {
return read_virtual_qword(BX_SEG_REG_SS, offset);
}
}