///////////////////////////////////////////////////////////////////////// // $Id$ ///////////////////////////////////////////////////////////////////////// // // Copyright (c) 2012-2015 Stanislav Shwartsman // Written by Stanislav Shwartsman [sshwarts at sourceforge net] // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2 of the License, or (at your option) any later version. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA // ///////////////////////////////////////////////////////////////////////// #define NEED_CPU_REG_SHORTCUTS 1 #include "bochs.h" #include "cpu.h" #define LOG_THIS BX_CPU_THIS_PTR #include "cpustats.h" void BX_CPP_AttrRegparmN(2) BX_CPU_C::stackPrefetch(bx_address offset, unsigned len) { bx_address laddr; unsigned pageOffset; INC_STACK_PREFETCH_STAT(stackPrefetch); BX_CPU_THIS_PTR espHostPtr = 0; // initialize with NULL pointer BX_CPU_THIS_PTR espPageWindowSize = 0; len--; #if BX_SUPPORT_X86_64 if (long64_mode() || (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid & SegAccessWOK4G)) { laddr = offset; pageOffset = PAGE_OFFSET(offset); // canonical violations will miss the TLB below if (pageOffset + len >= 4096) // don't care for page split accesses return; BX_CPU_THIS_PTR espPageWindowSize = 4096; } else #endif { laddr = get_laddr32(BX_SEG_REG_SS, (Bit32u) offset); pageOffset = PAGE_OFFSET(laddr); if (pageOffset + len >= 4096) // don't care for page split accesses return; Bit32u limit = BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.limit_scaled; Bit32u pageStart = (Bit32u) offset - pageOffset; if (! BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.valid) { BX_ERROR(("stackPrefetch: SS not valid")); exception(BX_SS_EXCEPTION, 0); } BX_ASSERT(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.p); BX_ASSERT(IS_DATA_SEGMENT_WRITEABLE(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type)); // check that the begining of the page is within stack segment limits // problem can happen with EXPAND DOWN segments if (IS_DATA_SEGMENT_EXPAND_DOWN(BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.type)) { Bit32u upper_limit; if (BX_CPU_THIS_PTR sregs[BX_SEG_REG_SS].cache.u.segment.d_b) upper_limit = 0xffffffff; else upper_limit = 0x0000ffff; if (offset <= limit || offset > upper_limit || (upper_limit - offset) < len) { BX_ERROR(("stackPrefetch(%d): access [0x%08x] > SS.limit [0x%08x] ED", len+1, (Bit32u) offset, limit)); exception(BX_SS_EXCEPTION, 0); } // check that the begining of the page is within stack segment limits // handle correctly the wrap corner case for EXPAND DOWN Bit32u pageEnd = pageStart + 0xfff; if (pageStart > limit && pageStart < pageEnd) { BX_CPU_THIS_PTR espPageWindowSize = 4096; if ((upper_limit - offset) < (4096 - pageOffset)) BX_CPU_THIS_PTR espPageWindowSize = (Bit32u)(upper_limit - offset + 1); } } else { if (offset > (limit - len) || len > limit) { BX_ERROR(("stackPrefetch(%d): access [0x%08x] > SS.limit [0x%08x]", len+1, (Bit32u) offset, limit)); exception(BX_SS_EXCEPTION, 0); } if (pageStart <= limit) { BX_CPU_THIS_PTR espPageWindowSize = 4096; if ((limit - offset) < (4096 - pageOffset)) BX_CPU_THIS_PTR espPageWindowSize = (Bit32u)(limit - offset + 1); } } } unsigned tlbIndex = BX_TLB_INDEX_OF(laddr, 0); Bit64u lpf = LPFOf(laddr); bx_TLB_entry *tlbEntry = &BX_CPU_THIS_PTR TLB.entry[tlbIndex]; if (tlbEntry->lpf == lpf) { // See if the TLB entry privilege level allows us write access from this CPL // Assuming that we always can read if write access is OK if (tlbEntry->accessBits & (0x04 << USER_PL)) { BX_CPU_THIS_PTR espPageBias = (bx_address) pageOffset - offset; BX_CPU_THIS_PTR pAddrStackPage = tlbEntry->ppf; BX_CPU_THIS_PTR espHostPtr = (Bit8u*) tlbEntry->hostPageAddr; #if BX_SUPPORT_MEMTYPE BX_CPU_THIS_PTR espPageMemtype = tlbEntry->get_memtype(); #endif #if BX_SUPPORT_SMP == 0 BX_CPU_THIS_PTR espPageFineGranularityMapping = pageWriteStampTable.getFineGranularityMapping(tlbEntry->ppf); #endif } } if (! BX_CPU_THIS_PTR espHostPtr || BX_CPU_THIS_PTR espPageWindowSize < 7) BX_CPU_THIS_PTR espPageWindowSize = 0; else BX_CPU_THIS_PTR espPageWindowSize -= 7; } void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_byte(bx_address offset, Bit8u data) { bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias; if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) { stackPrefetch(offset, 1); espBiased = offset + BX_CPU_THIS_PTR espPageBias; } if (BX_CPU_THIS_PTR espHostPtr) { Bit8u *hostPageAddr = (Bit8u*)(BX_CPU_THIS_PTR espHostPtr + espBiased); bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased; BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 1, MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_WRITE, (Bit8u*) &data); #if BX_SUPPORT_SMP == 0 if (BX_CPU_THIS_PTR espPageFineGranularityMapping) #endif pageWriteStampTable.decWriteStamp(pAddr, 1); *hostPageAddr = data; } else { write_virtual_byte(BX_SEG_REG_SS, offset, data); } } void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_word(bx_address offset, Bit16u data) { bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias; if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) { stackPrefetch(offset, 2); espBiased = offset + BX_CPU_THIS_PTR espPageBias; } if (BX_CPU_THIS_PTR espHostPtr) { Bit16u *hostPageAddr = (Bit16u*)(BX_CPU_THIS_PTR espHostPtr + espBiased); bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased; #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check() && (pAddr & 1) != 0) { BX_ERROR(("stack_write_word(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0); } #endif BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 2, MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_WRITE, (Bit8u*) &data); #if BX_SUPPORT_SMP == 0 if (BX_CPU_THIS_PTR espPageFineGranularityMapping) #endif pageWriteStampTable.decWriteStamp(pAddr, 2); WriteHostWordToLittleEndian(hostPageAddr, data); } else { write_virtual_word(BX_SEG_REG_SS, offset, data); } } void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_dword(bx_address offset, Bit32u data) { bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias; if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) { stackPrefetch(offset, 4); espBiased = offset + BX_CPU_THIS_PTR espPageBias; } if (BX_CPU_THIS_PTR espHostPtr) { Bit32u *hostPageAddr = (Bit32u*)(BX_CPU_THIS_PTR espHostPtr + espBiased); bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased; #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check() && (pAddr & 3) != 0) { BX_ERROR(("stack_write_dword(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0); } #endif BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 4, MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_WRITE, (Bit8u*) &data); #if BX_SUPPORT_SMP == 0 if (BX_CPU_THIS_PTR espPageFineGranularityMapping) #endif pageWriteStampTable.decWriteStamp(pAddr, 4); WriteHostDWordToLittleEndian(hostPageAddr, data); } else { write_virtual_dword(BX_SEG_REG_SS, offset, data); } } void BX_CPP_AttrRegparmN(2) BX_CPU_C::stack_write_qword(bx_address offset, Bit64u data) { bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias; if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) { stackPrefetch(offset, 8); espBiased = offset + BX_CPU_THIS_PTR espPageBias; } if (BX_CPU_THIS_PTR espHostPtr) { Bit64u *hostPageAddr = (Bit64u*)(BX_CPU_THIS_PTR espHostPtr + espBiased); bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased; #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check() && (pAddr & 7) != 0) { BX_ERROR(("stack_write_qword(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0); } #endif BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), pAddr, 8, MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_WRITE, (Bit8u*) &data); #if BX_SUPPORT_SMP == 0 if (BX_CPU_THIS_PTR espPageFineGranularityMapping) #endif pageWriteStampTable.decWriteStamp(pAddr, 8); WriteHostQWordToLittleEndian(hostPageAddr, data); } else { write_virtual_qword(BX_SEG_REG_SS, offset, data); } } Bit8u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_byte(bx_address offset) { bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias; if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) { stackPrefetch(offset, 1); espBiased = offset + BX_CPU_THIS_PTR espPageBias; } if (BX_CPU_THIS_PTR espHostPtr) { Bit8u *hostPageAddr = (Bit8u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data; data = *hostPageAddr; BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), (BX_CPU_THIS_PTR pAddrStackPage + espBiased), 1, MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_READ, (Bit8u*) &data); return data; } else { return read_virtual_byte(BX_SEG_REG_SS, offset); } } Bit16u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_word(bx_address offset) { bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias; if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) { stackPrefetch(offset, 2); espBiased = offset + BX_CPU_THIS_PTR espPageBias; } if (BX_CPU_THIS_PTR espHostPtr) { Bit16u *hostPageAddr = (Bit16u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data; #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased; if (pAddr & 1) { BX_ERROR(("stack_read_word(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0); } } #endif ReadHostWordFromLittleEndian(hostPageAddr, data); BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), (BX_CPU_THIS_PTR pAddrStackPage + espBiased), 2, MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_READ, (Bit8u*) &data); return data; } else { return read_virtual_word(BX_SEG_REG_SS, offset); } } Bit32u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_dword(bx_address offset) { bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias; if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) { stackPrefetch(offset, 4); espBiased = offset + BX_CPU_THIS_PTR espPageBias; } if (BX_CPU_THIS_PTR espHostPtr) { Bit32u *hostPageAddr = (Bit32u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data; #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased; if (pAddr & 3) { BX_ERROR(("stack_read_dword(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0); } } #endif ReadHostDWordFromLittleEndian(hostPageAddr, data); BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), (BX_CPU_THIS_PTR pAddrStackPage + espBiased), 4, MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_READ, (Bit8u*) &data); return data; } else { return read_virtual_dword(BX_SEG_REG_SS, offset); } } Bit64u BX_CPP_AttrRegparmN(1) BX_CPU_C::stack_read_qword(bx_address offset) { bx_address espBiased = offset + BX_CPU_THIS_PTR espPageBias; if (espBiased >= BX_CPU_THIS_PTR espPageWindowSize) { stackPrefetch(offset, 8); espBiased = offset + BX_CPU_THIS_PTR espPageBias; } if (BX_CPU_THIS_PTR espHostPtr) { Bit64u *hostPageAddr = (Bit64u*)(BX_CPU_THIS_PTR espHostPtr + espBiased), data; #if BX_CPU_LEVEL >= 4 && BX_SUPPORT_ALIGNMENT_CHECK if (BX_CPU_THIS_PTR alignment_check()) { bx_phy_address pAddr = BX_CPU_THIS_PTR pAddrStackPage + espBiased; if (pAddr & 7) { BX_ERROR(("stack_read_qword(): #AC misaligned access")); exception(BX_AC_EXCEPTION, 0); } } #endif ReadHostQWordFromLittleEndian(hostPageAddr, data); BX_NOTIFY_LIN_MEMORY_ACCESS(get_laddr(BX_SEG_REG_SS, offset), (BX_CPU_THIS_PTR pAddrStackPage + espBiased), 8, MEMTYPE(BX_CPU_THIS_PTR espPageMemtype), BX_READ, (Bit8u*) &data); return data; } else { return read_virtual_qword(BX_SEG_REG_SS, offset); } }