Bochs/bochs/cpu/mult16.cc

234 lines
6.0 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////////
// $Id: mult16.cc,v 1.27 2008-01-10 19:37:54 sshwarts Exp $
/////////////////////////////////////////////////////////////////////////
//
// Copyright (C) 2001 MandrakeSoft S.A.
//
// MandrakeSoft S.A.
// 43, rue d'Aboukir
// 75002 Paris - France
// http://www.linux-mandrake.com/
// http://www.mandrakesoft.com/
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////////////////////////////////////////////////
#define NEED_CPU_REG_SHORTCUTS 1
#include "bochs.h"
#include "cpu.h"
#define LOG_THIS BX_CPU_THIS_PTR
void BX_CPU_C::MUL_AXEw(bxInstruction_c *i)
{
Bit16u op1_16, op2_16;
op1_16 = AX;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2_16 = read_virtual_word(i->seg(), RMAddr(i));
}
Bit32u product_32 = ((Bit32u) op1_16) * ((Bit32u) op2_16);
Bit16u product_16l = (product_32 & 0xFFFF);
Bit16u product_16h = product_32 >> 16;
/* now write product back to destination */
AX = product_16l;
DX = product_16h;
/* set EFLAGS */
SET_FLAGS_OSZAPC_LOGIC_16(product_16l);
if(product_16h != 0)
{
ASSERT_FLAGS_OxxxxC();
}
}
void BX_CPU_C::IMUL_AXEw(bxInstruction_c *i)
{
Bit16s op1_16, op2_16;
op1_16 = AX;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2_16 = (Bit16s) read_virtual_word(i->seg(), RMAddr(i));
}
Bit32s product_32 = ((Bit32s) op1_16) * ((Bit32s) op2_16);
Bit16u product_16l = (product_32 & 0xFFFF);
Bit16u product_16h = product_32 >> 16;
/* now write product back to destination */
AX = product_16l;
DX = product_16h;
/* set eflags:
* IMUL r/m16: condition for clearing CF & OF:
* DX:AX = sign-extend of AX
*/
SET_FLAGS_OSZAPC_LOGIC_16(product_16l);
if(product_32 != (Bit16s)product_32)
{
ASSERT_FLAGS_OxxxxC();
}
}
void BX_CPU_C::DIV_AXEw(bxInstruction_c *i)
{
Bit16u op2_16, remainder_16, quotient_16l;
Bit32u op1_32, quotient_32;
op1_32 = (((Bit32u) DX) << 16) | ((Bit32u) AX);
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2_16 = read_virtual_word(i->seg(), RMAddr(i));
}
if (op2_16 == 0)
exception(BX_DE_EXCEPTION, 0, 0);
quotient_32 = op1_32 / op2_16;
remainder_16 = op1_32 % op2_16;
quotient_16l = quotient_32 & 0xFFFF;
if (quotient_32 != quotient_16l)
exception(BX_DE_EXCEPTION, 0, 0);
/* now write quotient back to destination */
AX = quotient_16l;
DX = remainder_16;
}
void BX_CPU_C::IDIV_AXEw(bxInstruction_c *i)
{
Bit16s op2_16, remainder_16, quotient_16l;
Bit32s op1_32, quotient_32;
op1_32 = ((((Bit32u) DX) << 16) | ((Bit32u) AX));
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2_16 = (Bit16s) read_virtual_word(i->seg(), RMAddr(i));
}
if (op2_16 == 0)
exception(BX_DE_EXCEPTION, 0, 0);
/* check MIN_INT divided by -1 case */
if ((op1_32 == ((Bit32s)0x80000000)) && (op2_16 == -1))
exception(BX_DE_EXCEPTION, 0, 0);
quotient_32 = op1_32 / op2_16;
remainder_16 = op1_32 % op2_16;
quotient_16l = quotient_32 & 0xFFFF;
if (quotient_32 != quotient_16l)
exception(BX_DE_EXCEPTION, 0, 0);
/* now write quotient back to destination */
AX = quotient_16l;
DX = remainder_16;
}
void BX_CPU_C::IMUL_GwEwIw(bxInstruction_c *i)
{
Bit16s op2_16, op3_16;
op3_16 = i->Iw();
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2_16 = (Bit16s) read_virtual_word(i->seg(), RMAddr(i));
}
Bit32s product_32 = op2_16 * op3_16;
Bit16u product_16 = (product_32 & 0xFFFF);
/* now write product back to destination */
BX_WRITE_16BIT_REG(i->nnn(), product_16);
/* set eflags:
* IMUL r16,r/m16,imm16: condition for clearing CF & OF:
* result exactly fits within r16
*/
SET_FLAGS_OSZAPC_LOGIC_16(product_16);
if(product_32 != (Bit16s) product_32)
{
ASSERT_FLAGS_OxxxxC();
}
}
void BX_CPU_C::IMUL_GwEw(bxInstruction_c *i)
{
Bit16s op1_16, op2_16;
/* op2 is a register or memory reference */
if (i->modC0()) {
op2_16 = BX_READ_16BIT_REG(i->rm());
}
else {
BX_CPU_CALL_METHODR(i->ResolveModrm, (i));
/* pointer, segment address pair */
op2_16 = (Bit16s) read_virtual_word(i->seg(), RMAddr(i));
}
op1_16 = BX_READ_16BIT_REG(i->nnn());
Bit32s product_32 = op1_16 * op2_16;
Bit16u product_16 = (product_32 & 0xFFFF);
/* now write product back to destination */
BX_WRITE_16BIT_REG(i->nnn(), product_16);
/* set eflags:
* IMUL r16,r/m16: condition for clearing CF & OF:
* result exactly fits within r16
*/
SET_FLAGS_OSZAPC_LOGIC_16(product_16);
if(product_32 != (Bit16s) product_32)
{
ASSERT_FLAGS_OxxxxC();
}
}