aarch64: temporary device drivers until modules are ready

This commit is contained in:
K. Lange 2022-02-14 09:33:56 +09:00
parent 5a6648a869
commit c96bae5e78
5 changed files with 1047 additions and 6 deletions

View File

@ -174,6 +174,11 @@ static int update_stores(int argc, char * argv[]) {
return usage(argc,argv);
}
const char * manifest_prefix = "";
#ifdef __aarch64__
manifest_prefix = "aarch64.";
#endif
needs_lock();
read_config();
@ -207,7 +212,7 @@ static int update_stores(int argc, char * argv[]) {
}
} else {
char cmd[512];
sprintf(cmd, "fetch -vo /tmp/.msk_remote_%s %s/manifest", remote_name, remote_path);
sprintf(cmd, "fetch -vo /tmp/.msk_remote_%s %s/%smanifest", remote_name, remote_path, manifest_prefix);
fprintf(stderr, "Downloading remote manifest '%s'...\n", remote_name);
if (system(cmd)) {
fprintf(stderr, "Skipping unavailable remote manifest '%s' (%s).\n", remote_name, remote_path);

View File

@ -44,7 +44,10 @@ EMU_ARGS += -serial mon:stdio
EMU_ARGS += -device bochs-display
EMU_ARGS += -device virtio-tablet-pci # Mouse with absolute positioning
EMU_ARGS += -device virtio-keyboard-pci # Keyboard
EMU_ARGS += -device AC97
EMU_ARGS += -d guest_errors
EMU_ARGS += -net user
EMU_ARGS += -netdev hubport,id=u1,hubid=0, -device e1000e,netdev=u1
EMU_RAMDISK = -fw_cfg name=opt/org.toaruos.initrd,file=ramdisk.igz
EMU_KERNEL = -fw_cfg name=opt/org.toaruos.kernel,file=misaka-kernel

View File

@ -0,0 +1,406 @@
/**
* @file kernel/audio/ac97.c
* @brief Driver for the Intel AC'97.
* @package x86_64
*
* Simple PCM interface for the AC'97 codec when used with the
* ICH hardware interface. There are other hardware interfaces
* that use this codec and this driver could probably be ported
* to them.
*
* Note that the audio subsystem is intended to be non-blocking
* so that buffer filling can be done directly in interrupt handlers.
*
* @see http://www.intel.com/design/chipsets/manuals/29802801.pdf
*
* @copyright
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2015 Michael Gerow
* Copyright (C) 2015-2021 K. Lange
*/
#include <errno.h>
#include <kernel/types.h>
#include <kernel/string.h>
#include <kernel/printf.h>
#include <kernel/pci.h>
#include <kernel/process.h>
#include <kernel/mmu.h>
#include <kernel/list.h>
#include <kernel/module.h>
#include <kernel/mod/snd.h>
#include <kernel/arch/aarch64/gic.h>
/* Utility macros */
#define N_ELEMENTS(arr) (sizeof(arr) / sizeof((arr)[0]))
/* BARs! */
#define AC97_NAMBAR 0x10 /* Native Audio Mixer Base Address Register */
#define AC97_NABMBAR 0x14 /* Native Audio Bus Mastering Base Address Register */
/* Bus mastering IO port offsets */
#define AC97_PO_BDBAR 0x10 /* PCM out buffer descriptor BAR */
#define AC97_PO_CIV 0x14 /* PCM out current index value */
#define AC97_PO_LVI 0x15 /* PCM out last valid index */
#define AC97_PO_SR 0x16 /* PCM out status register */
#define AC97_PO_PICB 0x18 /* PCM out position in current buffer register */
#define AC97_PO_CR 0x1B /* PCM out control register */
/* Bus mastering misc */
/* Buffer descriptor list constants */
#define AC97_BDL_LEN 32 /* Buffer descriptor list length */
#define AC97_BDL_BUFFER_LEN 0x1000 /* Length of buffer in BDL */
#define AC97_CL_GET_LENGTH(cl) ((cl) & 0xFFFF) /* Decode length from cl */
#define AC97_CL_SET_LENGTH(cl, v) ((cl) = (v) & 0xFFFF) /* Encode length to cl */
#define AC97_CL_BUP ((uint32_t)1 << 30) /* Buffer underrun policy in cl */
#define AC97_CL_IOC ((uint32_t)1 << 31) /* Interrupt on completion flag in cl */
/* PCM out control register flags */
#define AC97_X_CR_RPBM (1 << 0) /* Run/pause bus master */
#define AC97_X_CR_RR (1 << 1) /* Reset registers */
#define AC97_X_CR_LVBIE (1 << 2) /* Last valid buffer interrupt enable */
#define AC97_X_CR_FEIE (1 << 3) /* FIFO error interrupt enable */
#define AC97_X_CR_IOCE (1 << 4) /* Interrupt on completion enable */
/* Status register flags */
#define AC97_X_SR_DCH (1 << 0) /* DMA controller halted */
#define AC97_X_SR_CELV (1 << 1) /* Current equals last valid */
#define AC97_X_SR_LVBCI (1 << 2) /* Last valid buffer completion interrupt */
#define AC97_X_SR_BCIS (1 << 3) /* Buffer completion interrupt status */
#define AC97_X_SR_FIFOE (1 << 4) /* FIFO error */
/* Mixer IO port offsets */
#define AC97_RESET 0x00
#define AC97_MASTER_VOLUME 0x02
#define AC97_AUX_OUT_VOLUME 0x04
#define AC97_MONO_VOLUME 0x06
#define AC97_PCM_OUT_VOLUME 0x18
/* snd values */
#define AC97_SND_NAME "Intel AC'97"
#define AC97_PLAYBACK_SPEED 48000
#define AC97_PLAYBACK_FORMAT SND_FORMAT_L16SLE
/* An entry in a buffer dscriptor list */
typedef struct {
uint32_t pointer; /* Pointer to buffer */
uint32_t cl; /* Control values and buffer length */
} __attribute__((packed)) ac97_bdl_entry_t;
typedef struct {
uint32_t pci_device;
uint16_t nabmbar; /* Native audio bus mastring BAR */
uint16_t nambar; /* Native audio mixing BAR */
size_t irq; /* This ac97's irq */
uint8_t lvi; /* The currently set last valid index */
uint8_t bits; /* How many bits of volume are supported (5 or 6) */
ac97_bdl_entry_t * bdl; /* Buffer descriptor list */
uint16_t * bufs[AC97_BDL_LEN]; /* Virtual addresses for buffers in BDL */
uint32_t bdl_p;
uint32_t mask;
volatile char * _iobase;
spin_lock_t lock;
} ac97_device_t;
static ac97_device_t _device;
#define AC97_KNOB_PCM_OUT (SND_KNOB_VENDOR + 0)
static snd_knob_t _knobs[] = {
{
"Master",
SND_KNOB_MASTER
},
{
"PCM Out",
SND_KNOB_VENDOR + 0
}
};
static int ac97_mixer_read(uint32_t knob_id, uint32_t *val);
static int ac97_mixer_write(uint32_t knob_id, uint32_t val);
static snd_device_t _snd = {
.name = AC97_SND_NAME,
.device = &_device,
.playback_speed = AC97_PLAYBACK_SPEED,
.playback_format = AC97_PLAYBACK_FORMAT,
.knobs = _knobs,
.num_knobs = N_ELEMENTS(_knobs),
.mixer_read = ac97_mixer_read,
.mixer_write = ac97_mixer_write,
};
/*
* This could be unnecessary if we instead allocate just two buffers and make
* the ac97 think there are more.
*/
static void find_ac97(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * extra) {
ac97_device_t * ac97 = extra;
if ((vendorid == 0x8086) && (deviceid == 0x2415)) {
ac97->pci_device = device;
}
}
static uint8_t inportb(size_t port) {
volatile uint8_t * _port = (volatile uint8_t*)(_device._iobase + port);
return *_port;
}
static uint16_t inports(size_t port) {
volatile uint16_t * _port = (volatile uint16_t*)(_device._iobase + port);
return *_port;
}
static uint32_t inportl(size_t port) {
volatile uint32_t * _port = (volatile uint32_t*)(_device._iobase + port);
return *_port;
}
static void outportb(size_t port, uint8_t val) {
volatile uint8_t * _port = (volatile uint8_t*)(_device._iobase + port);
*_port = val;
}
static void outports(size_t port, uint16_t val) {
volatile uint16_t * _port = (volatile uint16_t*)(_device._iobase + port);
*_port = val;
}
static void outportl(size_t port, uint32_t val) {
volatile uint32_t * _port = (volatile uint32_t*)(_device._iobase + port);
*_port = val;
}
#define DIVISION 0x1000
#if 0
static int ac97_irq_handler(struct regs * regs) {
uint16_t sr = inports(_device.nabmbar + AC97_PO_SR);
if (sr & AC97_X_SR_BCIS) {
uint16_t current_buffer = inportb(_device.nabmbar + AC97_PO_CIV);
uint16_t last_valid = ((current_buffer+2) & (AC97_BDL_LEN-1));
snd_request_buf(&_snd, 0x1000, (uint8_t *)_device.bufs[last_valid]);
outportb(_device.nabmbar + AC97_PO_LVI, last_valid);
snd_request_buf(&_snd, 0x1000, (uint8_t *)_device.bufs[last_valid]+0x1000);
outports(_device.nabmbar + AC97_PO_SR, AC97_X_SR_BCIS);
} else if (sr & AC97_X_SR_LVBCI) {
outports(_device.nabmbar + AC97_PO_SR, AC97_X_SR_LVBCI);
} else if (sr & AC97_X_SR_FIFOE) {
outports(_device.nabmbar + AC97_PO_SR, AC97_X_SR_FIFOE);
} else {
return 0;
}
irq_ack(_device.irq);
return 1;
}
#endif
int ac97_irq_handler(process_t * this, int irq, void * data) {
spin_lock(_device.lock);
uint16_t sr = inports(_device.nabmbar + AC97_PO_SR);
if (sr & AC97_X_SR_BCIS) {
outports(_device.nabmbar + AC97_PO_SR, AC97_X_SR_BCIS);
spin_unlock(_device.lock);
uint16_t current_buffer = inportb(_device.nabmbar + AC97_PO_CIV);
uint16_t last_valid = ((current_buffer+2) & (AC97_BDL_LEN-1));
snd_request_buf(&_snd, 0x1000, (uint8_t *)_device.bufs[last_valid]);
outportb(_device.nabmbar + AC97_PO_LVI, last_valid);
snd_request_buf(&_snd, 0x1000, (uint8_t *)_device.bufs[last_valid]+0x1000);
} else if (sr & AC97_X_SR_LVBCI) {
outports(_device.nabmbar + AC97_PO_SR, AC97_X_SR_LVBCI);
spin_unlock(_device.lock);
} else if (sr & AC97_X_SR_FIFOE) {
outports(_device.nabmbar + AC97_PO_SR, AC97_X_SR_FIFOE);
spin_unlock(_device.lock);
} else {
/* Spurious */
spin_unlock(_device.lock);
return 0;
}
return 1;
}
/* Currently we just assume right and left are the same */
static int ac97_mixer_read(uint32_t knob_id, uint32_t *val) {
uint16_t tmp;
switch (knob_id) {
case SND_KNOB_MASTER:
tmp = inports(_device.nambar + AC97_MASTER_VOLUME);
if (tmp == 0x8000) {
*val = 0;
} else {
/* 6 bit value */
*val = (tmp & _device.mask) << (sizeof(*val) * 8 - _device.bits);
*val = ~*val;
*val &= (uint32_t)_device.mask << (sizeof(*val) * 8 - _device.bits);
}
break;
case AC97_KNOB_PCM_OUT:
tmp = inports(_device.nambar + AC97_PCM_OUT_VOLUME);
if (tmp == 0x8000) {
*val = 0;
} else {
/* 5 bit value */
*val = (tmp & 0x1f) << (sizeof(*val) * 8 - 5);
*val = ~*val;
*val &= 0x1f << (sizeof(*val) * 8 - 5);
}
break;
default:
return -1;
}
return 0;
}
static int ac97_mixer_write(uint32_t knob_id, uint32_t val) {
switch (knob_id) {
case SND_KNOB_MASTER: {
uint16_t encoded;
if (val == 0x0) {
encoded = 0x8000;
} else {
/* 0 is the highest volume */
val = ~val;
/* 6 bit value */
val >>= (sizeof(val) * 8 - _device.bits);
encoded = (val & 0xFF) | (val << 8);
}
outports(_device.nambar + AC97_MASTER_VOLUME, encoded);
break;
}
case AC97_KNOB_PCM_OUT: {
uint16_t encoded;
if (val == 0x0) {
encoded = 0x8000;
} else {
/* 0 is the highest volume */
val = ~val;
/* 5 bit value */
val >>= (sizeof(val) * 8 - 5);
encoded = (val & 0xFF) | (val << 8);
}
outports(_device.nambar + AC97_PCM_OUT_VOLUME, encoded);
break;
}
default:
return -1;
}
return 0;
}
int ac97_install(int argc, char * argv[]) {
//debug_print(NOTICE, "Initializing AC97");
pci_scan(&find_ac97, -1, &_device);
if (!_device.pci_device) {
return -ENODEV;
}
dprintf("ac97: device located...\n");
pci_write_field(_device.pci_device, PCI_COMMAND, 2, 0x5);
pci_write_field(_device.pci_device, AC97_NABMBAR, 2, 0x1001);
pci_write_field(_device.pci_device, PCI_BAR0, 4, 0x2001);
_device._iobase = (volatile char *)mmu_map_mmio_region(0x3eff0000, 0x3000);
asm volatile ("isb" ::: "memory");
_device.nabmbar = pci_read_field(_device.pci_device, AC97_NABMBAR, 2) & ((uint32_t) -1) << 1;
_device.nambar = pci_read_field(_device.pci_device, PCI_BAR0, 4) & ((uint32_t) -1) << 1;
dprintf("nabmbar = %#x\n", _device.nabmbar);
dprintf("nambar = %#x\n", _device.nambar);
int irq;
gic_map_pci_interrupt("ac97",_device.pci_device,&irq,ac97_irq_handler,&_device);
_device.irq = irq;
dprintf("global control = %#x\n", inportl(_device.nabmbar + 0x2C));
//pci_get_interrupt(_device.pci_device);
//printf("device wants irq %zd\n", _device.irq);
//irq_install_handler(_device.irq, ac97_irq_handler, "ac97");
/* Enable all matter of interrupts */
outportb(_device.nabmbar + AC97_PO_CR, AC97_X_CR_FEIE | AC97_X_CR_IOCE);
/* Enable bus mastering and disable memory mapped space */
pci_write_field(_device.pci_device, PCI_COMMAND, 2, 0x5);
/* Default the PCM output to full volume. */
outports(_device.nambar + AC97_PCM_OUT_VOLUME, 0x0000);
/* Allocate our BDL and our buffers */
_device.bdl_p = mmu_allocate_a_frame() << 12;
_device.bdl = mmu_map_from_physical(_device.bdl_p);
memset(_device.bdl, 0, AC97_BDL_LEN * sizeof(*_device.bdl));
for (int i = 0; i < AC97_BDL_LEN; i++) {
_device.bdl[i].pointer = mmu_allocate_n_frames(2) << 12;
_device.bufs[i] = mmu_map_from_physical(_device.bdl[i].pointer);
memset(_device.bufs[i], 0, AC97_BDL_BUFFER_LEN * sizeof(*_device.bufs[0]));
AC97_CL_SET_LENGTH(_device.bdl[i].cl, AC97_BDL_BUFFER_LEN);
/* Set all buffers to interrupt */
_device.bdl[i].cl |= AC97_CL_IOC;
}
/* Tell the ac97 where our BDL is */
outportl(_device.nabmbar + AC97_PO_BDBAR, _device.bdl_p);
/* Set the LVI to be the last index */
_device.lvi = 2;
outportb(_device.nabmbar + AC97_PO_LVI, _device.lvi);
/* detect whether device supports MSB */
outports(_device.nambar + AC97_MASTER_VOLUME, 0x2020);
uint16_t t = inports(_device.nambar + AC97_MASTER_VOLUME) & 0x1f;
if (t == 0x1f) {
//debug_print(WARNING, "This device only supports 5 bits of audio volume.");
_device.bits = 5;
_device.mask = 0x1f;
} else {
_device.bits = 6;
_device.mask = 0x3f;
}
outports(_device.nambar + AC97_MASTER_VOLUME, 0x2f2f);
snd_register(&_snd);
/* Start things playing */
outportb(_device.nabmbar + AC97_PO_CR, inportb(_device.nabmbar + AC97_PO_CR) | AC97_X_CR_RPBM);
//debug_print(NOTICE, "AC97 initialized successfully");
return 0;
}
#if 0
static int fini(void) {
snd_unregister(&_snd);
free(_device.bdl);
for (int i = 0; i < AC97_BDL_LEN; i++) {
free(_device.bufs[i]);
}
return 0;
}
struct Module metadata = {
.name = "ac97",
.init = ac97_install,
.fini = fini,
};
#endif

View File

@ -0,0 +1,623 @@
/**
* @file kernel/net/e1000.c
* @brief Intel Gigabit Ethernet device driver
* @package x86_64
*
* @copyright
* This file is part of ToaruOS and is released under the terms
* of the NCSA / University of Illinois License - see LICENSE.md
* Copyright (C) 2017-2021 K. Lange
*
* @ref https://www.intel.com/content/dam/www/public/us/en/documents/manuals/pcie-gbe-controllers-open-source-manual.pdf
*/
#include <kernel/types.h>
#include <kernel/string.h>
#include <kernel/printf.h>
#include <kernel/process.h>
#include <kernel/pci.h>
#include <kernel/mmu.h>
#include <kernel/pipe.h>
#include <kernel/list.h>
#include <kernel/spinlock.h>
#include <kernel/time.h>
#include <kernel/vfs.h>
#include <kernel/mod/net.h>
#include <kernel/net/netif.h>
#include <kernel/net/eth.h>
#include <kernel/module.h>
#include <errno.h>
#include <kernel/arch/aarch64/gic.h>
#include <kernel/net/e1000.h>
#include <sys/socket.h>
#include <net/if.h>
#define INTS (ICR_LSC | ICR_RXO | ICR_RXT0 | ICR_TXQE | ICR_TXDW | ICR_ACK | ICR_RXDMT0 | ICR_SRPD)
struct e1000_nic {
struct EthernetDevice eth;
uint32_t pci_device;
uint16_t deviceid;
uintptr_t mmio_addr;
int irq_number;
int has_eeprom;
int rx_index;
int tx_index;
int link_status;
spin_lock_t tx_lock;
uint8_t * rx_virt[E1000_NUM_RX_DESC];
uint8_t * tx_virt[E1000_NUM_TX_DESC];
volatile struct e1000_rx_desc * rx;
volatile struct e1000_tx_desc * tx;
uintptr_t rx_phys;
uintptr_t tx_phys;
int configured;
process_t * queuer;
netif_counters_t counts;
};
static int device_count = 0;
static struct e1000_nic * devices[32] = {NULL};
static uint32_t mmio_read32(uintptr_t addr) {
asm volatile ("dc ivac, %0\ndsb sy\nisb\n" :: "r"(addr) : "memory");
uint32_t res = *((volatile uint32_t*)(addr));
asm volatile ("dmb ish" ::: "memory");
return res;
}
static void mmio_write32(uintptr_t addr, uint32_t val) {
(*((volatile uint32_t*)(addr))) = val;
asm volatile ("dsb ishst\nisb\ndc cvac, %0\n" :: "r"(addr) : "memory");
}
static void write_command(struct e1000_nic * device, uint16_t addr, uint32_t val) {
mmio_write32(device->mmio_addr + addr, val);
}
static uint32_t read_command(struct e1000_nic * device, uint16_t addr) {
return mmio_read32(device->mmio_addr + addr);
}
static void delay_yield(size_t subticks) {
asm volatile ("isb" ::: "memory");
unsigned long s, ss;
relative_time(0, subticks, &s, &ss);
sleep_until((process_t *)this_core->current_process, s, ss);
switch_task(0);
}
static int eeprom_detect(struct e1000_nic * device) {
/* Definitely not */
if (device->deviceid == 0x10d3) return 0;
write_command(device, E1000_REG_EEPROM, 1);
for (int i = 0; i < 10000 && !device->has_eeprom; ++i) {
uint32_t val = read_command(device, E1000_REG_EEPROM);
if (val & 0x10) device->has_eeprom = 1;
}
return 0;
}
static uint16_t eeprom_read(struct e1000_nic * device, uint8_t addr) {
uint32_t temp = 0;
write_command(device, E1000_REG_EEPROM, 1 | ((uint32_t)(addr) << 8));
while (!((temp = read_command(device, E1000_REG_EEPROM)) & (1 << 4)));
return (uint16_t)((temp >> 16) & 0xFFFF);
}
static void write_mac(struct e1000_nic * device) {
uint32_t low, high;
memcpy(&low, &device->eth.mac[0], 4);
memcpy(&high,&device->eth.mac[4], 2);
memset((uint8_t *)&high + 2, 0, 2);
high |= 0x80000000;
write_command(device, E1000_REG_RXADDR + 0, low);
write_command(device, E1000_REG_RXADDR + 4, high);
}
static void read_mac(struct e1000_nic * device) {
if (device->has_eeprom) {
uint32_t t;
t = eeprom_read(device, 0);
device->eth.mac[0] = t & 0xFF;
device->eth.mac[1] = t >> 8;
t = eeprom_read(device, 1);
device->eth.mac[2] = t & 0xFF;
device->eth.mac[3] = t >> 8;
t = eeprom_read(device, 2);
device->eth.mac[4] = t & 0xFF;
device->eth.mac[5] = t >> 8;
} else {
uint32_t mac_addr_low = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR);
uint32_t mac_addr_high = *(uint32_t *)(device->mmio_addr + E1000_REG_RXADDR + 4);
device->eth.mac[0] = (mac_addr_low >> 0 ) & 0xFF;
device->eth.mac[1] = (mac_addr_low >> 8 ) & 0xFF;
device->eth.mac[2] = (mac_addr_low >> 16) & 0xFF;
device->eth.mac[3] = (mac_addr_low >> 24) & 0xFF;
device->eth.mac[4] = (mac_addr_high>> 0 ) & 0xFF;
device->eth.mac[5] = (mac_addr_high>> 8 ) & 0xFF;
}
}
static void e1000_handle(struct e1000_nic * nic, uint32_t status) {
write_command(nic, E1000_REG_ICR, status);
if (!nic->configured) {
return;
}
if (status & ICR_LSC) {
nic->link_status= (read_command(nic, E1000_REG_STATUS) & (1 << 1));
}
make_process_ready(nic->queuer);
}
static void cache_invalidate(void *addr) {
uintptr_t a = addr;
for (uintptr_t x = 0; x < 4096; x += 64) {
asm volatile ("dc ivac, %0\n" :: "r"(a + x) : "memory");
}
asm volatile ("dsb sy\nisb":::"memory");
}
static void cache_clean(void *addr) {
uintptr_t a = addr;
asm volatile ("dmb ish" ::: "memory");
for (uintptr_t x = 0; x < 4096; x += 64) {
asm volatile ("dc cvac, %0" :: "r"(a + x) : "memory");
}
asm volatile ("dsb sy\nisb":::"memory");
}
void e1000_queuer(void * data) {
struct e1000_nic * nic = data;
int head = read_command(nic, E1000_REG_RXDESCHEAD);
int budget = 8;
while (1) {
int processed = 0;
if (head == nic->rx_index) {
head = read_command(nic, E1000_REG_RXDESCHEAD);
}
if (head != nic->rx_index) {
__sync_synchronize();
while ((nic->rx[nic->rx_index].status & 0x01) && (processed < budget)) {
int i = nic->rx_index;
if (!(nic->rx[i].errors & (0x97))) {
//dprintf("%s: \033[1;33mrx id=%d len=%u\033[0m\n", nic->eth.if_name, i, nic->rx[i].length);
nic->counts.rx_count++;
nic->counts.rx_bytes += nic->rx[i].length;
cache_invalidate(nic->rx_virt[i]);
net_eth_handle((void*)nic->rx_virt[i], nic->eth.device_node, nic->rx[i].length);
} else {
dprintf("%s: error bits set in packet: %x\n", nic->eth.if_name, nic->rx[i].errors);
}
processed++;
__sync_synchronize();
nic->rx[i].status = 0;
if (++nic->rx_index == E1000_NUM_RX_DESC) {
nic->rx_index = 0;
}
if (nic->rx_index == head) {
head = read_command(nic, E1000_REG_RXDESCHEAD);
if (nic->rx_index == head) break;
}
write_command(nic, E1000_REG_RXDESCTAIL, nic->rx_index);
read_command(nic, E1000_REG_STATUS);
__sync_synchronize();
}
}
if (processed == 0) {
delay_yield(100000);
} else {
if (this_core->cpu_id == 0) switch_task(1);
}
}
}
#if 0
static int irq_handler(struct regs *r) {
int irq = r->int_no - 32;
#else
int e1000_irq_handler(process_t * this, int irq, void * data) {
#endif
int handled = 0;
for (int i = 0; i < device_count; ++i) {
if (devices[i]->irq_number == irq) {
uint32_t status = read_command(devices[i], E1000_REG_ICR);
if (status) {
e1000_handle(devices[i], status);
if (!handled) {
handled = 1;
#if 0
irq_ack(irq);
#endif
}
}
}
}
return handled;
}
static int tx_full(struct e1000_nic * device, int tx_tail, int tx_head) {
if (tx_tail == tx_head) return 0;
if (device->tx_index == tx_head) return 1;
if (((device->tx_index + 1) & E1000_NUM_TX_DESC) == tx_head) return 1;
return 0;
}
static void send_packet(struct e1000_nic * device, uint8_t* payload, size_t payload_size) {
spin_lock(device->tx_lock);
int tx_tail = read_command(device, E1000_REG_TXDESCTAIL);
int tx_head = read_command(device, E1000_REG_TXDESCHEAD);
if (tx_full(device, tx_tail, tx_head)) {
int timeout = 1000;
do {
spin_unlock(device->tx_lock);
delay_yield(10000);
timeout--;
if (timeout == 0) {
printf("e1000: wait for tx timed out, giving up\n");
return;
}
spin_lock(device->tx_lock);
tx_tail = read_command(device, E1000_REG_TXDESCTAIL);
tx_head = read_command(device, E1000_REG_TXDESCHEAD);
} while (tx_full(device, tx_tail, tx_head));
}
//dprintf("%s: \033[1;31mtx id=%d len=%zu\033[0m\n", device->eth.if_name, device->tx_index, payload_size);
int sent = device->tx_index;
memcpy(device->tx_virt[device->tx_index], payload, payload_size);
asm volatile ("dmb ish\nisb" ::: "memory");
cache_clean(device->tx_virt[device->tx_index]);
device->tx[device->tx_index].length = payload_size;
device->tx[device->tx_index].cmd = CMD_EOP | CMD_IFCS | CMD_RS | CMD_RPS;
device->tx[device->tx_index].status = 0;
asm volatile ("dmb ish\nisb" ::: "memory");
device->counts.tx_count++;
device->counts.tx_bytes += payload_size;
if (++device->tx_index == E1000_NUM_TX_DESC) {
device->tx_index = 0;
}
//dprintf("%s: write tx index %d\n", device->eth.if_name, device->tx_index);
//dprintf("tail goes from %d to %d while head was %d\n", tx_tail, device->tx_index, tx_head);
write_command(device, E1000_REG_TXDESCTAIL, device->tx_index);
int st = read_command(device, E1000_REG_STATUS);
//dprintf("%s: read status %#x\n", device->eth.if_name, st);
#if 0
while (read_command(device, E1000_REG_TXDESCHEAD) != device->tx_index) {
dprintf("%s: wait...\n", device->eth.if_name);
delay_yield(10000);
}
#endif
asm volatile ("dc ivac, %0\ndsb sy\n" :: "r"(&device->tx[sent]) : "memory");
//dprintf("%s: set %d status=%d\n",
// device->eth.if_name,
// sent, device->tx[sent].status);
spin_unlock(device->tx_lock);
}
static void init_rx(struct e1000_nic * device) {
write_command(device, E1000_REG_RXDESCLO, device->rx_phys);
write_command(device, E1000_REG_RXDESCHI, 0);
write_command(device, E1000_REG_RXDESCLEN, E1000_NUM_RX_DESC * sizeof(struct e1000_rx_desc));
write_command(device, E1000_REG_RXDESCHEAD, 0);
write_command(device, E1000_REG_RXDESCTAIL, E1000_NUM_RX_DESC - 1);
device->rx_index = 0;
write_command(device, E1000_REG_RCTRL,
RCTL_EN |
(1 << 2) | /* store bad packets */
(1 << 4) | /* multicast promiscuous */
(1 << 15) | /* broadcast accept */
(1 << 25) | /* Extended size... */
(3 << 16) | /* 4096 */
(1 << 26) /* strip CRC */
);
}
static void init_tx(struct e1000_nic * device) {
write_command(device, E1000_REG_TXDESCLO, device->tx_phys);
write_command(device, E1000_REG_TXDESCHI, 0);
write_command(device, E1000_REG_TXDESCLEN, E1000_NUM_TX_DESC * sizeof(struct e1000_tx_desc));
write_command(device, E1000_REG_TXDESCHEAD, 0);
write_command(device, E1000_REG_TXDESCTAIL, 0);
device->tx_index = 0;
uint32_t tctl = read_command(device, E1000_REG_TCTRL);
/* Collision threshold */
tctl &= ~(0xFF << 4);
tctl |= (15 << 4);
/* Turn it on */
tctl |= TCTL_EN;
tctl |= TCTL_PSP;
tctl |= (1 << 24); /* retransmit on late collision */
write_command(device, E1000_REG_TCTRL, tctl);
}
static int ioctl_e1000(fs_node_t * node, unsigned long request, void * argp) {
struct e1000_nic * nic = node->device;
switch (request) {
case SIOCGIFHWADDR:
/* fill argp with mac */
memcpy(argp, nic->eth.mac, 6);
return 0;
case SIOCGIFADDR:
if (nic->eth.ipv4_addr == 0) return -ENOENT;
memcpy(argp, &nic->eth.ipv4_addr, sizeof(nic->eth.ipv4_addr));
return 0;
case SIOCSIFADDR:
memcpy(&nic->eth.ipv4_addr, argp, sizeof(nic->eth.ipv4_addr));
return 0;
case SIOCGIFNETMASK:
if (nic->eth.ipv4_subnet == 0) return -ENOENT;
memcpy(argp, &nic->eth.ipv4_subnet, sizeof(nic->eth.ipv4_subnet));
return 0;
case SIOCSIFNETMASK:
memcpy(&nic->eth.ipv4_subnet, argp, sizeof(nic->eth.ipv4_subnet));
return 0;
case SIOCGIFGATEWAY:
if (nic->eth.ipv4_subnet == 0) return -ENOENT;
memcpy(argp, &nic->eth.ipv4_gateway, sizeof(nic->eth.ipv4_gateway));
return 0;
case SIOCSIFGATEWAY:
memcpy(&nic->eth.ipv4_gateway, argp, sizeof(nic->eth.ipv4_gateway));
net_arp_ask(nic->eth.ipv4_gateway, node);
return 0;
case SIOCGIFADDR6:
return -ENOENT;
case SIOCSIFADDR6:
memcpy(&nic->eth.ipv6_addr, argp, sizeof(nic->eth.ipv6_addr));
return 0;
case SIOCGIFFLAGS: {
uint32_t * flags = argp;
*flags = IFF_RUNNING;
if (nic->link_status) *flags |= IFF_UP;
/* We turn these on in our init_tx */
*flags |= IFF_BROADCAST;
*flags |= IFF_MULTICAST;
return 0;
}
case SIOCGIFMTU: {
uint32_t * mtu = argp;
*mtu = nic->eth.mtu;
return 0;
}
case SIOCGIFCOUNTS: {
memcpy(argp, &nic->counts, sizeof(netif_counters_t));
return 0;
}
default:
return -EINVAL;
}
}
static ssize_t write_e1000(fs_node_t *node, off_t offset, size_t size, uint8_t *buffer) {
struct e1000_nic * nic = node->device;
/* write packet */
send_packet(nic, buffer, size);
return size;
}
static void ints_off(struct e1000_nic * nic) {
write_command(nic, E1000_REG_IMC, 0xFFFFFFFF);
write_command(nic, E1000_REG_ICR, 0xFFFFFFFF);
read_command(nic, E1000_REG_STATUS);
}
void e1000_init(struct e1000_nic * nic) {
while (this_core->cpu_id != 0) switch_task(1);
uint32_t e1000_device_pci = nic->pci_device;
nic->rx_phys = mmu_allocate_n_frames(2) << 12;
nic->rx = mmu_map_mmio_region(nic->rx_phys, 8192);
nic->tx_phys = mmu_allocate_n_frames(2) << 12;
nic->tx = mmu_map_mmio_region(nic->tx_phys, 8192);
memset(nic->rx, 0, sizeof(struct e1000_rx_desc) * E1000_NUM_RX_DESC);
memset(nic->tx, 0, sizeof(struct e1000_tx_desc) * E1000_NUM_TX_DESC);
/* Allocate buffers */
for (int i = 0; i < E1000_NUM_RX_DESC; ++i) {
nic->rx[i].addr = mmu_allocate_a_frame() << 12;
nic->rx_virt[i] = mmu_map_mmio_region(nic->rx[i].addr, 4096);
mmu_frame_map_address(mmu_get_page((uintptr_t)nic->rx_virt[i],0),MMU_FLAG_KERNEL|MMU_FLAG_WRITABLE,nic->rx[i].addr);
nic->rx[i].status = 0;
}
for (int i = 0; i < E1000_NUM_TX_DESC; ++i) {
nic->tx[i].addr = mmu_allocate_a_frame() << 12;
nic->tx_virt[i] = mmu_map_mmio_region(nic->tx[i].addr, 4096);
mmu_frame_allocate(mmu_get_page((uintptr_t)nic->tx_virt[i],0),MMU_FLAG_KERNEL|MMU_FLAG_WRITABLE);
memset(nic->tx_virt[i], 0, 4096);
nic->tx[i].status = 0;
nic->tx[i].cmd = (1 << 0);
}
uint16_t command_reg = pci_read_field(e1000_device_pci, PCI_COMMAND, 2);
command_reg = (1 << 1) | (1 << 2);
pci_write_field(e1000_device_pci, PCI_COMMAND, 2, command_reg);
dprintf("command_reg = %#x\n", command_reg);
pci_write_field(e1000_device_pci, PCI_BAR0, 4, 0x12200000);
asm volatile ("isb" ::: "memory");
delay_yield(10000);
while (this_core->cpu_id != 0) switch_task(1);
/* Is this size enough? */
uint32_t initial_bar = pci_read_field(e1000_device_pci, PCI_BAR0, 4);
dprintf("initial_bar = %#x\n", initial_bar);
nic->mmio_addr = (uintptr_t)mmu_map_mmio_region(initial_bar, 0x20000);
asm volatile ("isb" ::: "memory");
eeprom_detect(nic);
read_mac(nic);
write_mac(nic);
nic->queuer = (process_t*)this_core->current_process;
#define CTRL_PHY_RST (1UL << 31UL)
#define CTRL_RST (1UL << 26UL)
#define CTRL_SLU (1UL << 6UL)
#define CTRL_LRST (1UL << 3UL)
#if 0
nic->irq_number = pci_get_interrupt(e1000_device_pci);
irq_install_handler(nic->irq_number, irq_handler, nic->eth.if_name);
#else
int irq;
gic_map_pci_interrupt(nic->eth.if_name,e1000_device_pci,&irq,e1000_irq_handler,nic);
nic->irq_number = irq;
#endif
/* Disable interrupts */
ints_off(nic);
/* Turn off receive + transmit */
write_command(nic, E1000_REG_RCTRL, 0);
write_command(nic, E1000_REG_TCTRL, TCTL_PSP);
read_command(nic, E1000_REG_STATUS);
delay_yield(10000);
/* Reset everything */
uint32_t ctrl = read_command(nic, E1000_REG_CTRL);
ctrl |= CTRL_RST;
write_command(nic, E1000_REG_CTRL, ctrl);
delay_yield(20000);
/* Turn off interrupts _again_ */
ints_off(nic);
/* Recommended flow control settings? */
write_command(nic, 0x0028, 0x002C8001);
write_command(nic, 0x002c, 0x0100);
write_command(nic, 0x0030, 0x8808);
write_command(nic, 0x0170, 0xFFFF);
/* Link up */
uint32_t status = read_command(nic, E1000_REG_CTRL);
status |= CTRL_SLU;
status |= (2 << 8); /* Speed to gigabit... */
status &= ~CTRL_LRST;
status &= ~CTRL_PHY_RST;
write_command(nic, E1000_REG_CTRL, status);
/* Clear statistical counters */
#if 0
/* Why does this get mad at us? */
for (int i = 0; i < 128; ++i) {
write_command(nic, 0x5200 + i * 4, 0);
}
for (int i = 0; i < 64; ++i) {
read_command(nic, 0x4000 + i * 4);
}
#endif
init_rx(nic);
init_tx(nic);
write_command(nic, E1000_REG_RDTR, 0);
write_command(nic, E1000_REG_ITR, 500);
read_command(nic, E1000_REG_STATUS);
nic->link_status = (read_command(nic, E1000_REG_STATUS) & (1 << 1));
nic->eth.device_node = calloc(sizeof(fs_node_t),1);
snprintf(nic->eth.device_node->name, 100, "%s", nic->eth.if_name);
nic->eth.device_node->flags = FS_BLOCKDEVICE; /* NETDEVICE? */
nic->eth.device_node->mask = 0666; /* temporary; shouldn't be doing this with these device files */
nic->eth.device_node->ioctl = ioctl_e1000;
nic->eth.device_node->write = write_e1000;
nic->eth.device_node->device = nic;
nic->eth.mtu = 1500; /* guess */
net_add_interface(nic->eth.if_name, nic->eth.device_node);
nic->configured = 1;
/* Twiddle interrupts */
write_command(nic, E1000_REG_IMS, INTS);
delay_yield(10000);
e1000_queuer(nic);
while (1) {
switch_task(0);
}
}
static void find_e1000(uint32_t device, uint16_t vendorid, uint16_t deviceid, void * found) {
if ((vendorid == 0x8086) && (deviceid == 0x100e || deviceid == 0x1004 || deviceid == 0x100f || deviceid == 0x10ea || deviceid == 0x10d3)) {
dprintf("e1000: device found\n");
/* Allocate a device */
struct e1000_nic * nic = calloc(1,sizeof(struct e1000_nic));
nic->pci_device = device;
nic->deviceid = deviceid;
devices[device_count++] = nic;
snprintf(nic->eth.if_name, 31,
"enp%ds%d",
(int)pci_extract_bus(device),
(int)pci_extract_slot(device));
char worker_name[34];
snprintf(worker_name, 33, "[%s]", nic->eth.if_name);
spawn_worker_thread(e1000_init, worker_name, nic);
*(int*)found = 1;
}
}
int e1000_install(int argc, char * argv[]) {
uint32_t found = 0;
pci_scan(&find_e1000, -1, &found);
if (!found) {
/* TODO: Clean up? Remove ourselves? */
return -ENODEV;
}
return 0;
}

View File

@ -633,18 +633,22 @@ int kmain(uintptr_t dtb_base, uintptr_t phys_base, uintptr_t rpi_tag) {
/* Start other cores here */
if (!rpi_tag ){
aarch64_smp_start();
} else {
extern void rpi_smp_init(void);
rpi_smp_init();
}
if (!rpi_tag) {
/* Install drivers that may need to sleep here */
virtio_input();
/* Set up serial input */
extern void pl011_start(void);
pl011_start();
extern int ac97_install(int argc, char * argv[]);
ac97_install(0,NULL);
extern int e1000_install(int argc, char * argv[]);
e1000_install(0,NULL);
} else {
extern void rpi_smp_init(void);
rpi_smp_init();
}
generic_main();