haiku/headers/libs/agg/agg_math.h
DarkWyrm 39241fe228 Initial checkin
git-svn-id: file:///srv/svn/repos/haiku/trunk/current@9933 a95241bf-73f2-0310-859d-f6bbb57e9c96
2004-11-12 02:02:58 +00:00

248 lines
7.8 KiB
C++

//----------------------------------------------------------------------------
// Anti-Grain Geometry - Version 2.2
// Copyright (C) 2002-2004 Maxim Shemanarev (http://www.antigrain.com)
//
// Permission to copy, use, modify, sell and distribute this software
// is granted provided this copyright notice appears in all copies.
// This software is provided "as is" without express or implied
// warranty, and with no claim as to its suitability for any purpose.
//
//----------------------------------------------------------------------------
// Contact: mcseem@antigrain.com
// mcseemagg@yahoo.com
// http://www.antigrain.com
//----------------------------------------------------------------------------
#ifndef AGG_MATH_INCLUDED
#define AGG_MATH_INCLUDED
#include <math.h>
#include "agg_basics.h"
namespace agg
{
const double intersection_epsilon = 1.0e-8;
//------------------------------------------------------calc_point_location
inline double calc_point_location(double x1, double y1,
double x2, double y2,
double x, double y)
{
return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);
}
//--------------------------------------------------------point_in_triangle
inline bool point_in_triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double x, double y)
{
bool cp1 = calc_point_location(x1, y1, x2, y2, x, y) < 0.0;
bool cp2 = calc_point_location(x2, y2, x3, y3, x, y) < 0.0;
bool cp3 = calc_point_location(x3, y3, x1, y1, x, y) < 0.0;
return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;
}
//-----------------------------------------------------------calc_distance
inline double calc_distance(double x1, double y1, double x2, double y2)
{
double dx = x2-x1;
double dy = y2-y1;
return sqrt(dx * dx + dy * dy);
}
//------------------------------------------------calc_point_line_distance
inline double calc_point_line_distance(double x1, double y1,
double x2, double y2,
double x, double y)
{
double dx = x2-x1;
double dy = y2-y1;
return ((x - x2) * dy - (y - y2) * dx) / sqrt(dx * dx + dy * dy);
}
//-------------------------------------------------------calc_intersection
inline bool calc_intersection(double ax, double ay, double bx, double by,
double cx, double cy, double dx, double dy,
double* x, double* y)
{
double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy);
double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx);
if(fabs(den) < intersection_epsilon) return false;
double r = num / den;
*x = ax + r * (bx-ax);
*y = ay + r * (by-ay);
return true;
}
//--------------------------------------------------------calc_orthogonal
inline void calc_orthogonal(double thickness,
double x1, double y1,
double x2, double y2,
double* x, double* y)
{
double dx = x2 - x1;
double dy = y2 - y1;
double d = sqrt(dx*dx + dy*dy);
*x = thickness * dy / d;
*y = thickness * dx / d;
}
//--------------------------------------------------------dilate_triangle
inline void dilate_triangle(double x1, double y1,
double x2, double y2,
double x3, double y3,
double *x, double* y,
double d)
{
double dx1=0.0;
double dy1=0.0;
double dx2=0.0;
double dy2=0.0;
double dx3=0.0;
double dy3=0.0;
double loc = calc_point_location(x1, y1, x2, y2, x3, y3);
if(fabs(loc) > intersection_epsilon)
{
if(calc_point_location(x1, y1, x2, y2, x3, y3) > 0.0)
{
d = -d;
}
calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1);
calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2);
calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3);
}
*x++ = x1 + dx1; *y++ = y1 - dy1;
*x++ = x2 + dx1; *y++ = y2 - dy1;
*x++ = x2 + dx2; *y++ = y2 - dy2;
*x++ = x3 + dx2; *y++ = y3 - dy2;
*x++ = x3 + dx3; *y++ = y3 - dy3;
*x++ = x1 + dx3; *y++ = y1 - dy3;
}
//-------------------------------------------------------calc_polygon_area
template<class Storage> double calc_polygon_area(const Storage& st)
{
unsigned i;
double sum = 0.0;
double x = st[0].x;
double y = st[0].y;
double xs = x;
double ys = y;
for(i = 1; i < st.size(); i++)
{
const typename Storage::value_type& v = st[i];
sum += x * v.y - y * v.x;
x = v.x;
y = v.y;
}
return (sum + x * ys - y * xs) * 0.5;
}
//------------------------------------------------------------------------
// Tables for fast sqrt
extern int16u g_sqrt_table[1024];
extern int8 g_elder_bit_table[256];
//---------------------------------------------------------------fast_sqrt
//Fast integer Sqrt - really fast: no cycles, divisions or multiplications
#if defined(_MSC_VER)
#pragma warning(push)
#pragma warning(disable : 4035) //Disable warning "no return value"
#endif
inline unsigned fast_sqrt(unsigned val)
{
#if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM)
//For Ix86 family processors this assembler code is used.
//The key command here is bsr - determination the number of the most
//significant bit of the value. For other processors
//(and maybe compilers) the pure C "#else" section is used.
__asm
{
mov ebx, val
mov edx, 11
bsr ecx, ebx
sub ecx, 9
jle less_than_9_bits
shr ecx, 1
adc ecx, 0
sub edx, ecx
shl ecx, 1
shr ebx, cl
less_than_9_bits:
xor eax, eax
mov ax, g_sqrt_table[ebx*2]
mov ecx, edx
shr eax, cl
}
#else
//This code is actually pure C and portable to most
//arcitectures including 64bit ones.
unsigned t = val;
int bit=0;
unsigned shift = 11;
//The following piece of code is just an emulation of the
//Ix86 assembler command "bsr" (see above). However on old
//Intels (like Intel MMX 233MHz) this code is about twice
//faster (sic!) then just one "bsr". On PIII and PIV the
//bsr is optimized quite well.
bit = t >> 24;
if(bit)
{
bit = g_elder_bit_table[bit] + 24;
}
else
{
bit = (t >> 16) & 0xFF;
if(bit)
{
bit = g_elder_bit_table[bit] + 16;
}
else
{
bit = (t >> 8) & 0xFF;
if(bit)
{
bit = g_elder_bit_table[bit] + 8;
}
else
{
bit = g_elder_bit_table[t];
}
}
}
//This is calculation sqrt itself.
bit -= 9;
if(bit > 0)
{
bit = (bit >> 1) + (bit & 1);
shift -= bit;
val >>= (bit << 1);
}
return g_sqrt_table[val] >> shift;
#endif
}
#if defined(_MSC_VER)
#pragma warning(pop)
#endif
}
#endif