248 lines
7.8 KiB
C
248 lines
7.8 KiB
C
|
//----------------------------------------------------------------------------
|
||
|
// Anti-Grain Geometry - Version 2.2
|
||
|
// Copyright (C) 2002-2004 Maxim Shemanarev (http://www.antigrain.com)
|
||
|
//
|
||
|
// Permission to copy, use, modify, sell and distribute this software
|
||
|
// is granted provided this copyright notice appears in all copies.
|
||
|
// This software is provided "as is" without express or implied
|
||
|
// warranty, and with no claim as to its suitability for any purpose.
|
||
|
//
|
||
|
//----------------------------------------------------------------------------
|
||
|
// Contact: mcseem@antigrain.com
|
||
|
// mcseemagg@yahoo.com
|
||
|
// http://www.antigrain.com
|
||
|
//----------------------------------------------------------------------------
|
||
|
|
||
|
#ifndef AGG_MATH_INCLUDED
|
||
|
#define AGG_MATH_INCLUDED
|
||
|
|
||
|
#include <math.h>
|
||
|
#include "agg_basics.h"
|
||
|
|
||
|
namespace agg
|
||
|
{
|
||
|
|
||
|
const double intersection_epsilon = 1.0e-8;
|
||
|
|
||
|
//------------------------------------------------------calc_point_location
|
||
|
inline double calc_point_location(double x1, double y1,
|
||
|
double x2, double y2,
|
||
|
double x, double y)
|
||
|
{
|
||
|
return (x - x2) * (y2 - y1) - (y - y2) * (x2 - x1);
|
||
|
}
|
||
|
|
||
|
|
||
|
//--------------------------------------------------------point_in_triangle
|
||
|
inline bool point_in_triangle(double x1, double y1,
|
||
|
double x2, double y2,
|
||
|
double x3, double y3,
|
||
|
double x, double y)
|
||
|
{
|
||
|
bool cp1 = calc_point_location(x1, y1, x2, y2, x, y) < 0.0;
|
||
|
bool cp2 = calc_point_location(x2, y2, x3, y3, x, y) < 0.0;
|
||
|
bool cp3 = calc_point_location(x3, y3, x1, y1, x, y) < 0.0;
|
||
|
return cp1 == cp2 && cp2 == cp3 && cp3 == cp1;
|
||
|
}
|
||
|
|
||
|
|
||
|
//-----------------------------------------------------------calc_distance
|
||
|
inline double calc_distance(double x1, double y1, double x2, double y2)
|
||
|
{
|
||
|
double dx = x2-x1;
|
||
|
double dy = y2-y1;
|
||
|
return sqrt(dx * dx + dy * dy);
|
||
|
}
|
||
|
|
||
|
|
||
|
//------------------------------------------------calc_point_line_distance
|
||
|
inline double calc_point_line_distance(double x1, double y1,
|
||
|
double x2, double y2,
|
||
|
double x, double y)
|
||
|
{
|
||
|
double dx = x2-x1;
|
||
|
double dy = y2-y1;
|
||
|
return ((x - x2) * dy - (y - y2) * dx) / sqrt(dx * dx + dy * dy);
|
||
|
}
|
||
|
|
||
|
|
||
|
//-------------------------------------------------------calc_intersection
|
||
|
inline bool calc_intersection(double ax, double ay, double bx, double by,
|
||
|
double cx, double cy, double dx, double dy,
|
||
|
double* x, double* y)
|
||
|
{
|
||
|
double num = (ay-cy) * (dx-cx) - (ax-cx) * (dy-cy);
|
||
|
double den = (bx-ax) * (dy-cy) - (by-ay) * (dx-cx);
|
||
|
if(fabs(den) < intersection_epsilon) return false;
|
||
|
double r = num / den;
|
||
|
*x = ax + r * (bx-ax);
|
||
|
*y = ay + r * (by-ay);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
//--------------------------------------------------------calc_orthogonal
|
||
|
inline void calc_orthogonal(double thickness,
|
||
|
double x1, double y1,
|
||
|
double x2, double y2,
|
||
|
double* x, double* y)
|
||
|
{
|
||
|
double dx = x2 - x1;
|
||
|
double dy = y2 - y1;
|
||
|
double d = sqrt(dx*dx + dy*dy);
|
||
|
*x = thickness * dy / d;
|
||
|
*y = thickness * dx / d;
|
||
|
}
|
||
|
|
||
|
|
||
|
//--------------------------------------------------------dilate_triangle
|
||
|
inline void dilate_triangle(double x1, double y1,
|
||
|
double x2, double y2,
|
||
|
double x3, double y3,
|
||
|
double *x, double* y,
|
||
|
double d)
|
||
|
{
|
||
|
double dx1=0.0;
|
||
|
double dy1=0.0;
|
||
|
double dx2=0.0;
|
||
|
double dy2=0.0;
|
||
|
double dx3=0.0;
|
||
|
double dy3=0.0;
|
||
|
double loc = calc_point_location(x1, y1, x2, y2, x3, y3);
|
||
|
if(fabs(loc) > intersection_epsilon)
|
||
|
{
|
||
|
if(calc_point_location(x1, y1, x2, y2, x3, y3) > 0.0)
|
||
|
{
|
||
|
d = -d;
|
||
|
}
|
||
|
calc_orthogonal(d, x1, y1, x2, y2, &dx1, &dy1);
|
||
|
calc_orthogonal(d, x2, y2, x3, y3, &dx2, &dy2);
|
||
|
calc_orthogonal(d, x3, y3, x1, y1, &dx3, &dy3);
|
||
|
}
|
||
|
*x++ = x1 + dx1; *y++ = y1 - dy1;
|
||
|
*x++ = x2 + dx1; *y++ = y2 - dy1;
|
||
|
*x++ = x2 + dx2; *y++ = y2 - dy2;
|
||
|
*x++ = x3 + dx2; *y++ = y3 - dy2;
|
||
|
*x++ = x3 + dx3; *y++ = y3 - dy3;
|
||
|
*x++ = x1 + dx3; *y++ = y1 - dy3;
|
||
|
}
|
||
|
|
||
|
//-------------------------------------------------------calc_polygon_area
|
||
|
template<class Storage> double calc_polygon_area(const Storage& st)
|
||
|
{
|
||
|
unsigned i;
|
||
|
double sum = 0.0;
|
||
|
double x = st[0].x;
|
||
|
double y = st[0].y;
|
||
|
double xs = x;
|
||
|
double ys = y;
|
||
|
|
||
|
for(i = 1; i < st.size(); i++)
|
||
|
{
|
||
|
const typename Storage::value_type& v = st[i];
|
||
|
sum += x * v.y - y * v.x;
|
||
|
x = v.x;
|
||
|
y = v.y;
|
||
|
}
|
||
|
return (sum + x * ys - y * xs) * 0.5;
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------
|
||
|
// Tables for fast sqrt
|
||
|
extern int16u g_sqrt_table[1024];
|
||
|
extern int8 g_elder_bit_table[256];
|
||
|
|
||
|
|
||
|
//---------------------------------------------------------------fast_sqrt
|
||
|
//Fast integer Sqrt - really fast: no cycles, divisions or multiplications
|
||
|
#if defined(_MSC_VER)
|
||
|
#pragma warning(push)
|
||
|
#pragma warning(disable : 4035) //Disable warning "no return value"
|
||
|
#endif
|
||
|
inline unsigned fast_sqrt(unsigned val)
|
||
|
{
|
||
|
#if defined(_M_IX86) && defined(_MSC_VER) && !defined(AGG_NO_ASM)
|
||
|
//For Ix86 family processors this assembler code is used.
|
||
|
//The key command here is bsr - determination the number of the most
|
||
|
//significant bit of the value. For other processors
|
||
|
//(and maybe compilers) the pure C "#else" section is used.
|
||
|
__asm
|
||
|
{
|
||
|
mov ebx, val
|
||
|
mov edx, 11
|
||
|
bsr ecx, ebx
|
||
|
sub ecx, 9
|
||
|
jle less_than_9_bits
|
||
|
shr ecx, 1
|
||
|
adc ecx, 0
|
||
|
sub edx, ecx
|
||
|
shl ecx, 1
|
||
|
shr ebx, cl
|
||
|
less_than_9_bits:
|
||
|
xor eax, eax
|
||
|
mov ax, g_sqrt_table[ebx*2]
|
||
|
mov ecx, edx
|
||
|
shr eax, cl
|
||
|
}
|
||
|
#else
|
||
|
|
||
|
//This code is actually pure C and portable to most
|
||
|
//arcitectures including 64bit ones.
|
||
|
unsigned t = val;
|
||
|
int bit=0;
|
||
|
unsigned shift = 11;
|
||
|
|
||
|
//The following piece of code is just an emulation of the
|
||
|
//Ix86 assembler command "bsr" (see above). However on old
|
||
|
//Intels (like Intel MMX 233MHz) this code is about twice
|
||
|
//faster (sic!) then just one "bsr". On PIII and PIV the
|
||
|
//bsr is optimized quite well.
|
||
|
bit = t >> 24;
|
||
|
if(bit)
|
||
|
{
|
||
|
bit = g_elder_bit_table[bit] + 24;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
bit = (t >> 16) & 0xFF;
|
||
|
if(bit)
|
||
|
{
|
||
|
bit = g_elder_bit_table[bit] + 16;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
bit = (t >> 8) & 0xFF;
|
||
|
if(bit)
|
||
|
{
|
||
|
bit = g_elder_bit_table[bit] + 8;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
bit = g_elder_bit_table[t];
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//This is calculation sqrt itself.
|
||
|
bit -= 9;
|
||
|
if(bit > 0)
|
||
|
{
|
||
|
bit = (bit >> 1) + (bit & 1);
|
||
|
shift -= bit;
|
||
|
val >>= (bit << 1);
|
||
|
}
|
||
|
return g_sqrt_table[val] >> shift;
|
||
|
#endif
|
||
|
}
|
||
|
#if defined(_MSC_VER)
|
||
|
#pragma warning(pop)
|
||
|
#endif
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif
|