It now lives in OS.h. The idea is that this will now be
accessible to userland applications, so userland memory
is protected from access by other processes, just as
kernel memory is.
No functional change (the constants are still the same,
though I've changed some to use shifts to make clear
which bits are allocated are which are unused.)
Consider this scenario:
* A userland thread puts its ID into some structure so that it
can be woken up later, sets its wait_status to initiate the
begin of the wait, and then calls _user_block_thread.
* A second thread finishes whatever task the first thread
intended to wait for, reads the ID almost immediately
after it was written, and calls _user_unblock_thread.
* _user_unblock_thread was called so soon that the first
thread is not yet blocked on the _user_block_thread block,
but is instead blocked on e.g. the thread's main mutex.
* The first thread's thread_block() call returns B_OK.
As in this example it was inside mutex_lock, it thinks
that it now owns the mutex.
* But it doesn't own the mutex, and so (until yesterday)
all sorts of mayhem and then a random crash occurs, or
(after yesterday) an assert-failure is tripped that
the thread does not own the mutex it expected to.
The above scenario is not a hypothetical, but is in fact the
exact scenario behind the strange panics in #15211.
The solution is to only have _user_unblock_thread actually
unblock threads that were blocked by _user_block_thread,
so I've introduced a new BLOCK_TYPE to differentiate these.
While I'm at it, remove the BLOCK_TYPE_USER_BASE, which was
never used (and now never will be.) If we want to differentiate
different consumers of _user_block_thread for debugging
purposes, we should use the currently-unused "object"
argument to thread_block, instead of cluttering the
relatively-clean block type debugging code with special
types.
One final note: The race condition which was the case of
this bug does not, in fact, imply a deadlock on the part
of the rw_lock here. The wait_status is protected by the
thread's mutex, which is acquired by both _user_block_thread
and _user_unblock_thread, and so if _user_unblock_thread
succeeds faster than _user_block_thread can initiate
the block, it will just see that wait_status is already
<= 0 and return immediately.
Fixes#15211.
add-ons" is set.
Confirmed to fix#14361. It is finally possible to un-brick an install
with a bad system library in non-packaged without having to use another
install to do so.
Change-Id: Iafea7821f02cb34e77c766b1f97d1c19206b1081
Reviewed-on: https://review.haiku-os.org/c/1452
Reviewed-by: Adrien Destugues <pulkomandy@gmail.com>
* Kernel is 64 bit, and we won't need a 32bit load base.
Change-Id: I729bab01c8f71083002db061e153b0e5052b9a1c
Reviewed-on: https://review.haiku-os.org/c/1326
Reviewed-by: Alex von Gluck IV <kallisti5@unixzen.com>
Change-Id: Ia2a86d8814d06950ea2d2d19d966c642d26f81d6
Reviewed-on: https://review.haiku-os.org/c/1302
Reviewed-by: Alex von Gluck IV <kallisti5@unixzen.com>
Reviewed-by: Adrien Destugues <pulkomandy@gmail.com>
Add various stubs to fix undefined references. No implementation for
anything yet.
Change-Id: I2d398bc2369d099e3a35f0713058d6a5edc6801d
Reviewed-on: https://review.haiku-os.org/c/1138
Reviewed-by: waddlesplash <waddlesplash@gmail.com>
Add empty implementation of timer, elf, vm, debugger support, to let the
kernel link.
Also add the kernel linker script.
Change-Id: If0795fa6554aea3df1ee544c25cc4832634ffd78
Reviewed-on: https://review.haiku-os.org/c/1108
Reviewed-by: waddlesplash <waddlesplash@gmail.com>
Previous commit adding these was merged very quickly, so here's one
more...
Change-Id: I23c424db7631db1f0ec48e2d0ae47c8409ae6af2
Reviewed-on: https://review.haiku-os.org/c/1088
Reviewed-by: waddlesplash <waddlesplash@gmail.com>
Gets the stage0 bootstrap to run.
Imlementation is probably nonsense at this point.
Change-Id: I10876efbb54314b864c0ad951152757cdb2fd366
Reviewed-on: https://review.haiku-os.org/c/1061
Reviewed-by: waddlesplash <waddlesplash@gmail.com>
It is only used as an argument to _kern_load_image directly, not to
any of the load_image functions in image.h, so it belongs in a syscall-
specific header like other such constants.
No functional change intended.
This reverts commit c558f9c8fe.
This reverts commit 44f24718b1.
This reverts commit a69cb33030.
This reverts commit 951182620e.
There have been multiple reports that these changes break mounting NTFS partitions
(on all systems, see #14204), and shutting down (on certain systems, see #12405.)
Until they can be fixed, they are being backed out.
* in load_image_internal(), elf32_load_user_image checks whether the binary
format requires the compatibility mode.
* we then set up the flag THREAD_FLAGS_COMPAT_MODE and the address space size.
* the compatibility mode runtime_loader is hardcoded with x86/runtime_loader.
* if needed, the 64-bit flat_args structure is converted in-place to its 32-bit
layout.
* a 32-bit flat_args isn't handled yet (a 32-bit team execs a 64-bit binary).
Change-Id: Ia6a066bde8d1774d85de29b48dc500e27ae9668f
* x86 uses a commpage with 32-bit addresses, incompatible with the one used for
x86_64. For this reason, a compatibility commpage is needed to support a 32-bit
userland on x86_64.
* define ADDRESS_TYPE as a macro for addr_t (default) or uint32 (for the 32-bit
commpage).
* team_create_thread_start_internal() will use clone_commpage_area() with
KERNEL_USER_DATA_BASE or clone_commpage_compat_area() with
KERNEL_USER32_DATA_BASE, to setup the correct commpage.
* real_time_clock (in compatibility mode) also updates the compatibility
commpage with real time data.
Change-Id: I61605077ce0beabab4439ef54edd1eae26f26fd2
* define ELF32_COMPAT to enable ELF32 macros.
* add a flag ELF_LOAD_USER_IMAGE_TEST_EXECUTABLE to only check the format.
It will be used by load_image_internal() to check which mode to use when
loading an image.
* in arch_elf_relocate_rel(), switch to elf_addr instead of addr_t, which
would be the wrong size for elf32 on x86_64.
* the ELF compat loader reuses the relevant parts of elf.cpp and arch_elf.cpp,
excluding for instance load_kernel_add_on() or dump functions.
Change-Id: Ifa47334e5adefd45405a823a3accbd12eee5b116
* also adjust BOOT_GDT_SEGMENT_COUNT for x86, the definition is used by the
boot loader.
* add some 32-bit definitions.
* add a UserTLSDescriptor class, this will be used by 32-bit threads.
Change-Id: I5b1d978969a1ce97091a16c9ec2ad7c0ca831656
SMAP will generated page faults when the kernel tries to access user pages unless overriden.
If SMAP is enabled, the override instructions are written where needed in memory with
binary "altcodepatches".
Support is enabled by default, might be disabled per safemode setting.
Change-Id: Ife26cd765056aeaf65b2ffa3cadd0dcf4e273a96
* Fixes problems with setting the partition name after uninitializing
a partition in DriveSetup. Previously, UninitializeJob() was
followed by SetStringJob(), but the kernel was updating the
change counter for the parent partition when uninitializing a
partition, leading to SetStringJob() having an incorrect change
counter for the parent partition. Now the parent change counter
will be correct when SetStringJob() runs.
* Add function core_dump_write_core_file(). It writes a core file for
the current thread's team. The file format is similar to that of
other OSs (i.e. ELF with PT_LOAD segments and a PT_NOTE segment), but
most of the notes are Haiku specific (infos for team, areas, images,
threads). More data will probably need to be added.
* Add team flag TEAM_FLAG_DUMP_CORE, thread flag
THREAD_FLAGS_TRAP_FOR_CORE_DUMP, and Team property coreDumpCondition,
a condition variable available while a core dump is progress. A
thread that finds its flag THREAD_FLAGS_TRAP_FOR_CORE_DUMP set before
exiting the kernel to userland calls core_dump_trap_thread(), which
blocks on the condition variable until the core dump has finished. We
need the team's threads to stop so we can get their CPU state (and
have a generally unchanging team state while writing the core file).
* Add user debugger message B_DEBUG_WRITE_CORE_FILE. It causes
core_dump_write_core_file() to be called for the team.
* Dumping core as an immediate effect of a terminal signal has not been
implemented yet, but that should be fairly straight forward.
Reduce duplication of code by
* Removing from elf_common.h definitions available in os/kernel/elf.h
* Deleting elf32.h and elf64.h
* Renaming elf_common.h to elf_private.h
* Updating source to build using public and private ELF header files
together
Signed-off-by: Jessica Hamilton <jessica.l.hamilton@gmail.com>
The use of an unreliable test for relocatability effectively broke
runtime_loader's support for non-position-independent executables, as it
would insist on randomly positioning these files' segments in memory
anyway causing the program to quickly crash.
With this change runtime_loader uses the object type specified in the
file's header to determine whether its segments can be safely relocated,
restoring support for non-PI executables.
Fixes#12427.
Signed-off-by: Adrien Destugues <pulkomandy@pulkomandy.tk>
* Instead of letting the kernel search for the syslog port, the
daemon now registers itself with the kernel (which even solves
a TODO).
* A port is created for the actual log messages from the launch_daemon,
and used on start.
* However, the SyslogTest does not yet work, due to the BMessage <->
KMessage communication problems.
* Fixes sharing semantics, so non-shared semaphores in non-shared
memory do not become shared after a fork.
* Adds two new system calls: _user_mutex_sem_acquire/release(),
which reuse the user_mutex address-hashed wait mechanism.
* Named semaphores continue to use traditional sem_id semaphores.
The get_stack_trace syscall generates a stack trace using the kernel
debugging facilities and copies the resulting return address array to
the preallocated buffer from userland. It is only possible to get a
stack trace of the current thread.
The lookup_symbol syscall can be used to look up the symbol and image
name corresponding to an address. It can be used to resolve symbols
from a stack trace generated by the get_stack_trace syscall. Only
symbols of the current team can be looked up. Note that this uses
the symbol lookup of the kernel debugger which does not support lookup
of all symbols (static functions are missing for example).
This is meant to be used in situations where more elaborate stack trace
generation, like done in the userland debugging helpers, is not possible
due to constraints.
There is absolutely no reason for these functions to be in commpage,
they don't do anything that involves the kernel in any way.
Additionaly, this patch rewrites memset and memcpy to C++, current
implementation is quite simple (though it may perform surprisingly
well when dealing with large buffers on cpus with ermsb). Better
versions are coming soon.
Signed-off-by: Paweł Dziepak <pdziepak@quarnos.org>
* The new libstdc++.so contains program headers of type PT_RELRO (for
making segments read-only after relocation). While the actual feature
has not been implemented, the runtime_loader should now silently
accept (and ignore) those program headers.
This patch introduces support of ELF based TLS handling with lazy allocation
and initalization of TLS block for each DSO and thread. The implementation
generally follows the official ABI except that generation counter in dtv
is in fact a pointer to Generation object that contains both generation
counter and size of the dtv. That simplified the implementation a bit, but
could be changed later. The ABI requirements regariding in memory position
of TLS block is not honoured what results in static TLS model being
unsupported. However, that should not be a problem as long as
"executables" in Haiku are in fact shared objects and optimizations which
require specific TLS block in memory layout are not possible anyway.
... in filenames. Replace the existing Unicode conversion functions
with UTF conversion functions from js that he relicensed MIT for us.
Put the UTF conversion functions in a private but shared code location
so that they can be accessed throughout the kernel.
Right now we only provide functions to convert between UTF-8 and UTF-16.
At some point we should also add functions to convert between UTF-8 and
UTF-32 and UTF-16 and UTF-32 but these aren't needed by exfat.
Remove the old Unicode conversion functions from exfat as they assumed
UCS-2 characters and don't work with UTF-16 used by exfat.
Rename most variables with the term length with code unit where code units
are intended. The term length, when used, means length in bytes while code
units represent either a full 2-byte UTF-16 character or half a 4-byte
surrogate pair.