NetBSD/sys/kern/kern_synch.c

1220 lines
32 KiB
C

/* $NetBSD: kern_synch.c,v 1.349 2020/05/23 23:42:43 ad Exp $ */
/*-
* Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020
* The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
* Daniel Sieger.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1982, 1986, 1990, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.349 2020/05/23 23:42:43 ad Exp $");
#include "opt_kstack.h"
#include "opt_dtrace.h"
#define __MUTEX_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/cpu.h>
#include <sys/pserialize.h>
#include <sys/resourcevar.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/syscall_stats.h>
#include <sys/sleepq.h>
#include <sys/lockdebug.h>
#include <sys/evcnt.h>
#include <sys/intr.h>
#include <sys/lwpctl.h>
#include <sys/atomic.h>
#include <sys/syslog.h>
#include <uvm/uvm_extern.h>
#include <dev/lockstat.h>
#include <sys/dtrace_bsd.h>
int dtrace_vtime_active=0;
dtrace_vtime_switch_func_t dtrace_vtime_switch_func;
static void sched_unsleep(struct lwp *, bool);
static void sched_changepri(struct lwp *, pri_t);
static void sched_lendpri(struct lwp *, pri_t);
syncobj_t sleep_syncobj = {
.sobj_flag = SOBJ_SLEEPQ_SORTED,
.sobj_unsleep = sleepq_unsleep,
.sobj_changepri = sleepq_changepri,
.sobj_lendpri = sleepq_lendpri,
.sobj_owner = syncobj_noowner,
};
syncobj_t sched_syncobj = {
.sobj_flag = SOBJ_SLEEPQ_SORTED,
.sobj_unsleep = sched_unsleep,
.sobj_changepri = sched_changepri,
.sobj_lendpri = sched_lendpri,
.sobj_owner = syncobj_noowner,
};
syncobj_t kpause_syncobj = {
.sobj_flag = SOBJ_SLEEPQ_NULL,
.sobj_unsleep = sleepq_unsleep,
.sobj_changepri = sleepq_changepri,
.sobj_lendpri = sleepq_lendpri,
.sobj_owner = syncobj_noowner,
};
/* "Lightning bolt": once a second sleep address. */
kcondvar_t lbolt __cacheline_aligned;
u_int sched_pstats_ticks __cacheline_aligned;
/* Preemption event counters. */
static struct evcnt kpreempt_ev_crit __cacheline_aligned;
static struct evcnt kpreempt_ev_klock __cacheline_aligned;
static struct evcnt kpreempt_ev_immed __cacheline_aligned;
void
synch_init(void)
{
cv_init(&lbolt, "lbolt");
evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL,
"kpreempt", "defer: critical section");
evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL,
"kpreempt", "defer: kernel_lock");
evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL,
"kpreempt", "immediate");
}
/*
* OBSOLETE INTERFACE
*
* General sleep call. Suspends the current LWP until a wakeup is
* performed on the specified identifier. The LWP will then be made
* runnable with the specified priority. Sleeps at most timo/hz seconds (0
* means no timeout). If pri includes PCATCH flag, signals are checked
* before and after sleeping, else signals are not checked. Returns 0 if
* awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
* signal needs to be delivered, ERESTART is returned if the current system
* call should be restarted if possible, and EINTR is returned if the system
* call should be interrupted by the signal (return EINTR).
*/
int
tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo)
{
struct lwp *l = curlwp;
sleepq_t *sq;
kmutex_t *mp;
bool catch_p;
KASSERT((l->l_pflag & LP_INTR) == 0);
KASSERT(ident != &lbolt);
if (sleepq_dontsleep(l)) {
(void)sleepq_abort(NULL, 0);
return 0;
}
l->l_kpriority = true;
catch_p = priority & PCATCH;
sq = sleeptab_lookup(&sleeptab, ident, &mp);
sleepq_enter(sq, l, mp);
sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
return sleepq_block(timo, catch_p);
}
int
mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
kmutex_t *mtx)
{
struct lwp *l = curlwp;
sleepq_t *sq;
kmutex_t *mp;
bool catch_p;
int error;
KASSERT((l->l_pflag & LP_INTR) == 0);
KASSERT(ident != &lbolt);
if (sleepq_dontsleep(l)) {
(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
return 0;
}
l->l_kpriority = true;
catch_p = priority & PCATCH;
sq = sleeptab_lookup(&sleeptab, ident, &mp);
sleepq_enter(sq, l, mp);
sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p);
mutex_exit(mtx);
error = sleepq_block(timo, catch_p);
if ((priority & PNORELOCK) == 0)
mutex_enter(mtx);
return error;
}
/*
* General sleep call for situations where a wake-up is not expected.
*/
int
kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
{
struct lwp *l = curlwp;
int error;
KASSERT(!(timo == 0 && intr == false));
if (sleepq_dontsleep(l))
return sleepq_abort(NULL, 0);
if (mtx != NULL)
mutex_exit(mtx);
l->l_kpriority = true;
lwp_lock(l);
KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks);
sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr);
error = sleepq_block(timo, intr);
if (mtx != NULL)
mutex_enter(mtx);
return error;
}
/*
* OBSOLETE INTERFACE
*
* Make all LWPs sleeping on the specified identifier runnable.
*/
void
wakeup(wchan_t ident)
{
sleepq_t *sq;
kmutex_t *mp;
if (__predict_false(cold))
return;
sq = sleeptab_lookup(&sleeptab, ident, &mp);
sleepq_wake(sq, ident, (u_int)-1, mp);
}
/*
* General yield call. Puts the current LWP back on its run queue and
* performs a context switch.
*/
void
yield(void)
{
struct lwp *l = curlwp;
KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
lwp_lock(l);
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
KASSERT(l->l_stat == LSONPROC);
/* Voluntary - ditch kpriority boost. */
l->l_kpriority = false;
spc_lock(l->l_cpu);
mi_switch(l);
KERNEL_LOCK(l->l_biglocks, l);
}
/*
* General preemption call. Puts the current LWP back on its run queue
* and performs an involuntary context switch. Different from yield()
* in that:
*
* - It's counted differently (involuntary vs. voluntary).
* - Realtime threads go to the head of their runqueue vs. tail for yield().
* - Priority boost is retained unless LWP has exceeded timeslice.
*/
void
preempt(void)
{
struct lwp *l = curlwp;
KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
lwp_lock(l);
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
KASSERT(l->l_stat == LSONPROC);
spc_lock(l->l_cpu);
/* Involuntary - keep kpriority boost unless a CPU hog. */
if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) {
l->l_kpriority = false;
}
l->l_pflag |= LP_PREEMPTING;
mi_switch(l);
KERNEL_LOCK(l->l_biglocks, l);
}
/*
* Return true if the current LWP should yield the processor. Intended to
* be used by long-running code in kernel.
*/
inline bool
preempt_needed(void)
{
lwp_t *l = curlwp;
int needed;
KPREEMPT_DISABLE(l);
needed = l->l_cpu->ci_want_resched;
KPREEMPT_ENABLE(l);
return (needed != 0);
}
/*
* A breathing point for long running code in kernel.
*/
void
preempt_point(void)
{
if (__predict_false(preempt_needed())) {
preempt();
}
}
/*
* Handle a request made by another agent to preempt the current LWP
* in-kernel. Usually called when l_dopreempt may be non-zero.
*
* Character addresses for lockstat only.
*/
static char kpreempt_is_disabled;
static char kernel_lock_held;
static char is_softint_lwp;
static char spl_is_raised;
bool
kpreempt(uintptr_t where)
{
uintptr_t failed;
lwp_t *l;
int s, dop, lsflag;
l = curlwp;
failed = 0;
while ((dop = l->l_dopreempt) != 0) {
if (l->l_stat != LSONPROC) {
/*
* About to block (or die), let it happen.
* Doesn't really count as "preemption has
* been blocked", since we're going to
* context switch.
*/
atomic_swap_uint(&l->l_dopreempt, 0);
return true;
}
KASSERT((l->l_flag & LW_IDLE) == 0);
if (__predict_false(l->l_nopreempt != 0)) {
/* LWP holds preemption disabled, explicitly. */
if ((dop & DOPREEMPT_COUNTED) == 0) {
kpreempt_ev_crit.ev_count++;
}
failed = (uintptr_t)&kpreempt_is_disabled;
break;
}
if (__predict_false((l->l_pflag & LP_INTR) != 0)) {
/* Can't preempt soft interrupts yet. */
atomic_swap_uint(&l->l_dopreempt, 0);
failed = (uintptr_t)&is_softint_lwp;
break;
}
s = splsched();
if (__predict_false(l->l_blcnt != 0 ||
curcpu()->ci_biglock_wanted != NULL)) {
/* Hold or want kernel_lock, code is not MT safe. */
splx(s);
if ((dop & DOPREEMPT_COUNTED) == 0) {
kpreempt_ev_klock.ev_count++;
}
failed = (uintptr_t)&kernel_lock_held;
break;
}
if (__predict_false(!cpu_kpreempt_enter(where, s))) {
/*
* It may be that the IPL is too high.
* kpreempt_enter() can schedule an
* interrupt to retry later.
*/
splx(s);
failed = (uintptr_t)&spl_is_raised;
break;
}
/* Do it! */
if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) {
kpreempt_ev_immed.ev_count++;
}
lwp_lock(l);
/* Involuntary - keep kpriority boost. */
l->l_pflag |= LP_PREEMPTING;
spc_lock(l->l_cpu);
mi_switch(l);
l->l_nopreempt++;
splx(s);
/* Take care of any MD cleanup. */
cpu_kpreempt_exit(where);
l->l_nopreempt--;
}
if (__predict_true(!failed)) {
return false;
}
/* Record preemption failure for reporting via lockstat. */
atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED);
lsflag = 0;
LOCKSTAT_ENTER(lsflag);
if (__predict_false(lsflag)) {
if (where == 0) {
where = (uintptr_t)__builtin_return_address(0);
}
/* Preemption is on, might recurse, so make it atomic. */
if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL,
(void *)where) == NULL) {
LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime);
l->l_pfaillock = failed;
}
}
LOCKSTAT_EXIT(lsflag);
return true;
}
/*
* Return true if preemption is explicitly disabled.
*/
bool
kpreempt_disabled(void)
{
const lwp_t *l = curlwp;
return l->l_nopreempt != 0 || l->l_stat == LSZOMB ||
(l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 ||
cpu_kpreempt_disabled();
}
/*
* Disable kernel preemption.
*/
void
kpreempt_disable(void)
{
KPREEMPT_DISABLE(curlwp);
}
/*
* Reenable kernel preemption.
*/
void
kpreempt_enable(void)
{
KPREEMPT_ENABLE(curlwp);
}
/*
* Compute the amount of time during which the current lwp was running.
*
* - update l_rtime unless it's an idle lwp.
*/
void
updatertime(lwp_t *l, const struct bintime *now)
{
if (__predict_false(l->l_flag & LW_IDLE))
return;
/* rtime += now - stime */
bintime_add(&l->l_rtime, now);
bintime_sub(&l->l_rtime, &l->l_stime);
}
/*
* Select next LWP from the current CPU to run..
*/
static inline lwp_t *
nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc)
{
lwp_t *newl;
/*
* Let sched_nextlwp() select the LWP to run the CPU next.
* If no LWP is runnable, select the idle LWP.
*
* On arrival here LWPs on a run queue are locked by spc_mutex which
* is currently held. Idle LWPs are always locked by spc_lwplock,
* which may or may not be held here. On exit from this code block,
* in all cases newl is locked by spc_lwplock.
*/
newl = sched_nextlwp();
if (newl != NULL) {
sched_dequeue(newl);
KASSERT(lwp_locked(newl, spc->spc_mutex));
KASSERT(newl->l_cpu == ci);
newl->l_stat = LSONPROC;
newl->l_pflag |= LP_RUNNING;
spc->spc_curpriority = lwp_eprio(newl);
spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE);
lwp_setlock(newl, spc->spc_lwplock);
} else {
/*
* The idle LWP does not get set to LSONPROC, because
* otherwise it screws up the output from top(1) etc.
*/
newl = ci->ci_data.cpu_idlelwp;
newl->l_pflag |= LP_RUNNING;
spc->spc_curpriority = PRI_IDLE;
spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) |
SPCF_IDLE;
}
/*
* Only clear want_resched if there are no pending (slow) software
* interrupts. We can do this without an atomic, because no new
* LWPs can appear in the queue due to our hold on spc_mutex, and
* the update to ci_want_resched will become globally visible before
* the release of spc_mutex becomes globally visible.
*/
ci->ci_want_resched = ci->ci_data.cpu_softints;
return newl;
}
/*
* The machine independent parts of context switch.
*
* NOTE: l->l_cpu is not changed in this routine, because an LWP never
* changes its own l_cpu (that would screw up curcpu on many ports and could
* cause all kinds of other evil stuff). l_cpu is always changed by some
* other actor, when it's known the LWP is not running (the LP_RUNNING flag
* is checked under lock).
*/
void
mi_switch(lwp_t *l)
{
struct cpu_info *ci;
struct schedstate_percpu *spc;
struct lwp *newl;
kmutex_t *lock;
int oldspl;
struct bintime bt;
bool returning;
KASSERT(lwp_locked(l, NULL));
KASSERT(kpreempt_disabled());
KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex));
KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked");
kstack_check_magic(l);
binuptime(&bt);
KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
KASSERT((l->l_pflag & LP_RUNNING) != 0);
KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN);
ci = curcpu();
spc = &ci->ci_schedstate;
returning = false;
newl = NULL;
/*
* If we have been asked to switch to a specific LWP, then there
* is no need to inspect the run queues. If a soft interrupt is
* blocking, then return to the interrupted thread without adjusting
* VM context or its start time: neither have been changed in order
* to take the interrupt.
*/
if (l->l_switchto != NULL) {
if ((l->l_pflag & LP_INTR) != 0) {
returning = true;
softint_block(l);
if ((l->l_pflag & LP_TIMEINTR) != 0)
updatertime(l, &bt);
}
newl = l->l_switchto;
l->l_switchto = NULL;
}
#ifndef __HAVE_FAST_SOFTINTS
else if (ci->ci_data.cpu_softints != 0) {
/* There are pending soft interrupts, so pick one. */
newl = softint_picklwp();
newl->l_stat = LSONPROC;
newl->l_pflag |= LP_RUNNING;
}
#endif /* !__HAVE_FAST_SOFTINTS */
/*
* If on the CPU and we have gotten this far, then we must yield.
*/
if (l->l_stat == LSONPROC && l != newl) {
KASSERT(lwp_locked(l, spc->spc_lwplock));
KASSERT((l->l_flag & LW_IDLE) == 0);
l->l_stat = LSRUN;
lwp_setlock(l, spc->spc_mutex);
sched_enqueue(l);
sched_preempted(l);
/*
* Handle migration. Note that "migrating LWP" may
* be reset here, if interrupt/preemption happens
* early in idle LWP.
*/
if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) {
KASSERT((l->l_pflag & LP_INTR) == 0);
spc->spc_migrating = l;
}
}
/* Pick new LWP to run. */
if (newl == NULL) {
newl = nextlwp(ci, spc);
}
/* Items that must be updated with the CPU locked. */
if (!returning) {
/* Count time spent in current system call */
SYSCALL_TIME_SLEEP(l);
updatertime(l, &bt);
/* Update the new LWP's start time. */
newl->l_stime = bt;
/*
* ci_curlwp changes when a fast soft interrupt occurs.
* We use ci_onproc to keep track of which kernel or
* user thread is running 'underneath' the software
* interrupt. This is important for time accounting,
* itimers and forcing user threads to preempt (aston).
*/
ci->ci_onproc = newl;
}
/*
* Preemption related tasks. Must be done holding spc_mutex. Clear
* l_dopreempt without an atomic - it's only ever set non-zero by
* sched_resched_cpu() which also holds spc_mutex, and only ever
* cleared by the LWP itself (us) with atomics when not under lock.
*/
l->l_dopreempt = 0;
if (__predict_false(l->l_pfailaddr != 0)) {
LOCKSTAT_FLAG(lsflag);
LOCKSTAT_ENTER(lsflag);
LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime);
LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN,
1, l->l_pfailtime, l->l_pfailaddr);
LOCKSTAT_EXIT(lsflag);
l->l_pfailtime = 0;
l->l_pfaillock = 0;
l->l_pfailaddr = 0;
}
if (l != newl) {
struct lwp *prevlwp;
/* Release all locks, but leave the current LWP locked */
if (l->l_mutex == spc->spc_mutex) {
/*
* Drop spc_lwplock, if the current LWP has been moved
* to the run queue (it is now locked by spc_mutex).
*/
mutex_spin_exit(spc->spc_lwplock);
} else {
/*
* Otherwise, drop the spc_mutex, we are done with the
* run queues.
*/
mutex_spin_exit(spc->spc_mutex);
}
/* We're down to only one lock, so do debug checks. */
LOCKDEBUG_BARRIER(l->l_mutex, 1);
/* Count the context switch. */
CPU_COUNT(CPU_COUNT_NSWTCH, 1);
l->l_ncsw++;
if ((l->l_pflag & LP_PREEMPTING) != 0) {
l->l_nivcsw++;
l->l_pflag &= ~LP_PREEMPTING;
}
/*
* Increase the count of spin-mutexes before the release
* of the last lock - we must remain at IPL_SCHED after
* releasing the lock.
*/
KASSERTMSG(ci->ci_mtx_count == -1,
"%s: cpu%u: ci_mtx_count (%d) != -1 "
"(block with spin-mutex held)",
__func__, cpu_index(ci), ci->ci_mtx_count);
oldspl = MUTEX_SPIN_OLDSPL(ci);
ci->ci_mtx_count = -2;
/* Update status for lwpctl, if present. */
if (l->l_lwpctl != NULL) {
l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ?
LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE);
}
/*
* If curlwp is a soft interrupt LWP, there's nobody on the
* other side to unlock - we're returning into an assembly
* trampoline. Unlock now. This is safe because this is a
* kernel LWP and is bound to current CPU: the worst anyone
* else will do to it, is to put it back onto this CPU's run
* queue (and the CPU is busy here right now!).
*/
if (returning) {
/* Keep IPL_SCHED after this; MD code will fix up. */
l->l_pflag &= ~LP_RUNNING;
lwp_unlock(l);
} else {
/* A normal LWP: save old VM context. */
pmap_deactivate(l);
}
/*
* If DTrace has set the active vtime enum to anything
* other than INACTIVE (0), then it should have set the
* function to call.
*/
if (__predict_false(dtrace_vtime_active)) {
(*dtrace_vtime_switch_func)(newl);
}
/*
* We must ensure not to come here from inside a read section.
*/
KASSERT(pserialize_not_in_read_section());
/* Switch to the new LWP.. */
#ifdef MULTIPROCESSOR
KASSERT(curlwp == ci->ci_curlwp);
#endif
KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp);
prevlwp = cpu_switchto(l, newl, returning);
ci = curcpu();
#ifdef MULTIPROCESSOR
KASSERT(curlwp == ci->ci_curlwp);
#endif
KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p",
l, curlwp, prevlwp);
KASSERT(prevlwp != NULL);
KASSERT(l->l_cpu == ci);
KASSERT(ci->ci_mtx_count == -2);
/*
* Immediately mark the previous LWP as no longer running
* and unlock (to keep lock wait times short as possible).
* We'll still be at IPL_SCHED afterwards. If a zombie,
* don't touch after clearing LP_RUNNING as it could be
* reaped by another CPU. Issue a memory barrier to ensure
* this.
*/
KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0);
lock = prevlwp->l_mutex;
if (__predict_false(prevlwp->l_stat == LSZOMB)) {
membar_sync();
}
prevlwp->l_pflag &= ~LP_RUNNING;
mutex_spin_exit(lock);
/*
* Switched away - we have new curlwp.
* Restore VM context and IPL.
*/
pmap_activate(l);
pcu_switchpoint(l);
/* Update status for lwpctl, if present. */
if (l->l_lwpctl != NULL) {
l->l_lwpctl->lc_curcpu = (int)cpu_index(ci);
l->l_lwpctl->lc_pctr++;
}
/*
* Normalize the spin mutex count and restore the previous
* SPL. Note that, unless the caller disabled preemption,
* we can be preempted at any time after this splx().
*/
KASSERT(l->l_cpu == ci);
KASSERT(ci->ci_mtx_count == -1);
ci->ci_mtx_count = 0;
splx(oldspl);
} else {
/* Nothing to do - just unlock and return. */
mutex_spin_exit(spc->spc_mutex);
l->l_pflag &= ~LP_PREEMPTING;
lwp_unlock(l);
}
KASSERT(l == curlwp);
KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0);
SYSCALL_TIME_WAKEUP(l);
LOCKDEBUG_BARRIER(NULL, 1);
}
/*
* setrunnable: change LWP state to be runnable, placing it on the run queue.
*
* Call with the process and LWP locked. Will return with the LWP unlocked.
*/
void
setrunnable(struct lwp *l)
{
struct proc *p = l->l_proc;
struct cpu_info *ci;
kmutex_t *oldlock;
KASSERT((l->l_flag & LW_IDLE) == 0);
KASSERT((l->l_flag & LW_DBGSUSPEND) == 0);
KASSERT(mutex_owned(p->p_lock));
KASSERT(lwp_locked(l, NULL));
KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
switch (l->l_stat) {
case LSSTOP:
/*
* If we're being traced (possibly because someone attached us
* while we were stopped), check for a signal from the debugger.
*/
if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0)
signotify(l);
p->p_nrlwps++;
break;
case LSSUSPENDED:
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
l->l_flag &= ~LW_WSUSPEND;
p->p_nrlwps++;
cv_broadcast(&p->p_lwpcv);
break;
case LSSLEEP:
KASSERT(l->l_wchan != NULL);
break;
case LSIDL:
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock));
break;
default:
panic("setrunnable: lwp %p state was %d", l, l->l_stat);
}
/*
* If the LWP was sleeping, start it again.
*/
if (l->l_wchan != NULL) {
l->l_stat = LSSLEEP;
/* lwp_unsleep() will release the lock. */
lwp_unsleep(l, true);
return;
}
/*
* If the LWP is still on the CPU, mark it as LSONPROC. It may be
* about to call mi_switch(), in which case it will yield.
*/
if ((l->l_pflag & LP_RUNNING) != 0) {
l->l_stat = LSONPROC;
l->l_slptime = 0;
lwp_unlock(l);
return;
}
/*
* Look for a CPU to run.
* Set the LWP runnable.
*/
ci = sched_takecpu(l);
l->l_cpu = ci;
spc_lock(ci);
oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex);
sched_setrunnable(l);
l->l_stat = LSRUN;
l->l_slptime = 0;
sched_enqueue(l);
sched_resched_lwp(l, true);
/* SPC & LWP now unlocked. */
mutex_spin_exit(oldlock);
}
/*
* suspendsched:
*
* Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
*/
void
suspendsched(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
struct lwp *l;
struct proc *p;
/*
* We do this by process in order not to violate the locking rules.
*/
mutex_enter(&proc_lock);
PROCLIST_FOREACH(p, &allproc) {
mutex_enter(p->p_lock);
if ((p->p_flag & PK_SYSTEM) != 0) {
mutex_exit(p->p_lock);
continue;
}
if (p->p_stat != SSTOP) {
if (p->p_stat != SZOMB && p->p_stat != SDEAD) {
p->p_pptr->p_nstopchild++;
p->p_waited = 0;
}
p->p_stat = SSTOP;
}
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
if (l == curlwp)
continue;
lwp_lock(l);
/*
* Set L_WREBOOT so that the LWP will suspend itself
* when it tries to return to user mode. We want to
* try and get to get as many LWPs as possible to
* the user / kernel boundary, so that they will
* release any locks that they hold.
*/
l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
if (l->l_stat == LSSLEEP &&
(l->l_flag & LW_SINTR) != 0) {
/* setrunnable() will release the lock. */
setrunnable(l);
continue;
}
lwp_unlock(l);
}
mutex_exit(p->p_lock);
}
mutex_exit(&proc_lock);
/*
* Kick all CPUs to make them preempt any LWPs running in user mode.
* They'll trap into the kernel and suspend themselves in userret().
*
* Unusually, we don't hold any other scheduler object locked, which
* would keep preemption off for sched_resched_cpu(), so disable it
* explicitly.
*/
kpreempt_disable();
for (CPU_INFO_FOREACH(cii, ci)) {
spc_lock(ci);
sched_resched_cpu(ci, PRI_KERNEL, true);
/* spc now unlocked */
}
kpreempt_enable();
}
/*
* sched_unsleep:
*
* The is called when the LWP has not been awoken normally but instead
* interrupted: for example, if the sleep timed out. Because of this,
* it's not a valid action for running or idle LWPs.
*/
static void
sched_unsleep(struct lwp *l, bool cleanup)
{
lwp_unlock(l);
panic("sched_unsleep");
}
static void
sched_changepri(struct lwp *l, pri_t pri)
{
struct schedstate_percpu *spc;
struct cpu_info *ci;
KASSERT(lwp_locked(l, NULL));
ci = l->l_cpu;
spc = &ci->ci_schedstate;
if (l->l_stat == LSRUN) {
KASSERT(lwp_locked(l, spc->spc_mutex));
sched_dequeue(l);
l->l_priority = pri;
sched_enqueue(l);
sched_resched_lwp(l, false);
} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
/* On priority drop, only evict realtime LWPs. */
KASSERT(lwp_locked(l, spc->spc_lwplock));
l->l_priority = pri;
spc_lock(ci);
sched_resched_cpu(ci, spc->spc_maxpriority, true);
/* spc now unlocked */
} else {
l->l_priority = pri;
}
}
static void
sched_lendpri(struct lwp *l, pri_t pri)
{
struct schedstate_percpu *spc;
struct cpu_info *ci;
KASSERT(lwp_locked(l, NULL));
ci = l->l_cpu;
spc = &ci->ci_schedstate;
if (l->l_stat == LSRUN) {
KASSERT(lwp_locked(l, spc->spc_mutex));
sched_dequeue(l);
l->l_inheritedprio = pri;
l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
sched_enqueue(l);
sched_resched_lwp(l, false);
} else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) {
/* On priority drop, only evict realtime LWPs. */
KASSERT(lwp_locked(l, spc->spc_lwplock));
l->l_inheritedprio = pri;
l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
spc_lock(ci);
sched_resched_cpu(ci, spc->spc_maxpriority, true);
/* spc now unlocked */
} else {
l->l_inheritedprio = pri;
l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio);
}
}
struct lwp *
syncobj_noowner(wchan_t wchan)
{
return NULL;
}
/* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */
const fixpt_t ccpu = 0.95122942450071400909 * FSCALE;
/*
* Constants for averages over 1, 5 and 15 minutes when sampling at
* 5 second intervals.
*/
static const fixpt_t cexp[ ] = {
0.9200444146293232 * FSCALE, /* exp(-1/12) */
0.9834714538216174 * FSCALE, /* exp(-1/60) */
0.9944598480048967 * FSCALE, /* exp(-1/180) */
};
/*
* sched_pstats:
*
* => Update process statistics and check CPU resource allocation.
* => Call scheduler-specific hook to eventually adjust LWP priorities.
* => Compute load average of a quantity on 1, 5 and 15 minute intervals.
*/
void
sched_pstats(void)
{
extern struct loadavg averunnable;
struct loadavg *avg = &averunnable;
const int clkhz = (stathz != 0 ? stathz : hz);
static bool backwards = false;
static u_int lavg_count = 0;
struct proc *p;
int nrun;
sched_pstats_ticks++;
if (++lavg_count >= 5) {
lavg_count = 0;
nrun = 0;
}
mutex_enter(&proc_lock);
PROCLIST_FOREACH(p, &allproc) {
struct lwp *l;
struct rlimit *rlim;
time_t runtm;
int sig;
/* Increment sleep time (if sleeping), ignore overflow. */
mutex_enter(p->p_lock);
runtm = p->p_rtime.sec;
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
fixpt_t lpctcpu;
u_int lcpticks;
if (__predict_false((l->l_flag & LW_IDLE) != 0))
continue;
lwp_lock(l);
runtm += l->l_rtime.sec;
l->l_swtime++;
sched_lwp_stats(l);
/* For load average calculation. */
if (__predict_false(lavg_count == 0) &&
(l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) {
switch (l->l_stat) {
case LSSLEEP:
if (l->l_slptime > 1) {
break;
}
/* FALLTHROUGH */
case LSRUN:
case LSONPROC:
case LSIDL:
nrun++;
}
}
lwp_unlock(l);
l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
if (l->l_slptime != 0)
continue;
lpctcpu = l->l_pctcpu;
lcpticks = atomic_swap_uint(&l->l_cpticks, 0);
lpctcpu += ((FSCALE - ccpu) *
(lcpticks * FSCALE / clkhz)) >> FSHIFT;
l->l_pctcpu = lpctcpu;
}
/* Calculating p_pctcpu only for ps(1) */
p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
if (__predict_false(runtm < 0)) {
if (!backwards) {
backwards = true;
printf("WARNING: negative runtime; "
"monotonic clock has gone backwards\n");
}
mutex_exit(p->p_lock);
continue;
}
/*
* Check if the process exceeds its CPU resource allocation.
* If over the hard limit, kill it with SIGKILL.
* If over the soft limit, send SIGXCPU and raise
* the soft limit a little.
*/
rlim = &p->p_rlimit[RLIMIT_CPU];
sig = 0;
if (__predict_false(runtm >= rlim->rlim_cur)) {
if (runtm >= rlim->rlim_max) {
sig = SIGKILL;
log(LOG_NOTICE,
"pid %d, command %s, is killed: %s\n",
p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
uprintf("pid %d, command %s, is killed: %s\n",
p->p_pid, p->p_comm, "exceeded RLIMIT_CPU");
} else {
sig = SIGXCPU;
if (rlim->rlim_cur < rlim->rlim_max)
rlim->rlim_cur += 5;
}
}
mutex_exit(p->p_lock);
if (__predict_false(sig)) {
KASSERT((p->p_flag & PK_SYSTEM) == 0);
psignal(p, sig);
}
}
/* Load average calculation. */
if (__predict_false(lavg_count == 0)) {
int i;
CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg));
for (i = 0; i < __arraycount(cexp); i++) {
avg->ldavg[i] = (cexp[i] * avg->ldavg[i] +
nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT;
}
}
/* Lightning bolt. */
cv_broadcast(&lbolt);
mutex_exit(&proc_lock);
}