/* $NetBSD: kern_synch.c,v 1.349 2020/05/23 23:42:43 ad Exp $ */ /*- * Copyright (c) 1999, 2000, 2004, 2006, 2007, 2008, 2009, 2019, 2020 * The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility, * NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and * Daniel Sieger. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 1982, 1986, 1990, 1991, 1993 * The Regents of the University of California. All rights reserved. * (c) UNIX System Laboratories, Inc. * All or some portions of this file are derived from material licensed * to the University of California by American Telephone and Telegraph * Co. or Unix System Laboratories, Inc. and are reproduced herein with * the permission of UNIX System Laboratories, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. Neither the name of the University nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * @(#)kern_synch.c 8.9 (Berkeley) 5/19/95 */ #include __KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.349 2020/05/23 23:42:43 ad Exp $"); #include "opt_kstack.h" #include "opt_dtrace.h" #define __MUTEX_PRIVATE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include int dtrace_vtime_active=0; dtrace_vtime_switch_func_t dtrace_vtime_switch_func; static void sched_unsleep(struct lwp *, bool); static void sched_changepri(struct lwp *, pri_t); static void sched_lendpri(struct lwp *, pri_t); syncobj_t sleep_syncobj = { .sobj_flag = SOBJ_SLEEPQ_SORTED, .sobj_unsleep = sleepq_unsleep, .sobj_changepri = sleepq_changepri, .sobj_lendpri = sleepq_lendpri, .sobj_owner = syncobj_noowner, }; syncobj_t sched_syncobj = { .sobj_flag = SOBJ_SLEEPQ_SORTED, .sobj_unsleep = sched_unsleep, .sobj_changepri = sched_changepri, .sobj_lendpri = sched_lendpri, .sobj_owner = syncobj_noowner, }; syncobj_t kpause_syncobj = { .sobj_flag = SOBJ_SLEEPQ_NULL, .sobj_unsleep = sleepq_unsleep, .sobj_changepri = sleepq_changepri, .sobj_lendpri = sleepq_lendpri, .sobj_owner = syncobj_noowner, }; /* "Lightning bolt": once a second sleep address. */ kcondvar_t lbolt __cacheline_aligned; u_int sched_pstats_ticks __cacheline_aligned; /* Preemption event counters. */ static struct evcnt kpreempt_ev_crit __cacheline_aligned; static struct evcnt kpreempt_ev_klock __cacheline_aligned; static struct evcnt kpreempt_ev_immed __cacheline_aligned; void synch_init(void) { cv_init(&lbolt, "lbolt"); evcnt_attach_dynamic(&kpreempt_ev_crit, EVCNT_TYPE_MISC, NULL, "kpreempt", "defer: critical section"); evcnt_attach_dynamic(&kpreempt_ev_klock, EVCNT_TYPE_MISC, NULL, "kpreempt", "defer: kernel_lock"); evcnt_attach_dynamic(&kpreempt_ev_immed, EVCNT_TYPE_MISC, NULL, "kpreempt", "immediate"); } /* * OBSOLETE INTERFACE * * General sleep call. Suspends the current LWP until a wakeup is * performed on the specified identifier. The LWP will then be made * runnable with the specified priority. Sleeps at most timo/hz seconds (0 * means no timeout). If pri includes PCATCH flag, signals are checked * before and after sleeping, else signals are not checked. Returns 0 if * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a * signal needs to be delivered, ERESTART is returned if the current system * call should be restarted if possible, and EINTR is returned if the system * call should be interrupted by the signal (return EINTR). */ int tsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo) { struct lwp *l = curlwp; sleepq_t *sq; kmutex_t *mp; bool catch_p; KASSERT((l->l_pflag & LP_INTR) == 0); KASSERT(ident != &lbolt); if (sleepq_dontsleep(l)) { (void)sleepq_abort(NULL, 0); return 0; } l->l_kpriority = true; catch_p = priority & PCATCH; sq = sleeptab_lookup(&sleeptab, ident, &mp); sleepq_enter(sq, l, mp); sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p); return sleepq_block(timo, catch_p); } int mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo, kmutex_t *mtx) { struct lwp *l = curlwp; sleepq_t *sq; kmutex_t *mp; bool catch_p; int error; KASSERT((l->l_pflag & LP_INTR) == 0); KASSERT(ident != &lbolt); if (sleepq_dontsleep(l)) { (void)sleepq_abort(mtx, (priority & PNORELOCK) != 0); return 0; } l->l_kpriority = true; catch_p = priority & PCATCH; sq = sleeptab_lookup(&sleeptab, ident, &mp); sleepq_enter(sq, l, mp); sleepq_enqueue(sq, ident, wmesg, &sleep_syncobj, catch_p); mutex_exit(mtx); error = sleepq_block(timo, catch_p); if ((priority & PNORELOCK) == 0) mutex_enter(mtx); return error; } /* * General sleep call for situations where a wake-up is not expected. */ int kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx) { struct lwp *l = curlwp; int error; KASSERT(!(timo == 0 && intr == false)); if (sleepq_dontsleep(l)) return sleepq_abort(NULL, 0); if (mtx != NULL) mutex_exit(mtx); l->l_kpriority = true; lwp_lock(l); KERNEL_UNLOCK_ALL(NULL, &l->l_biglocks); sleepq_enqueue(NULL, l, wmesg, &kpause_syncobj, intr); error = sleepq_block(timo, intr); if (mtx != NULL) mutex_enter(mtx); return error; } /* * OBSOLETE INTERFACE * * Make all LWPs sleeping on the specified identifier runnable. */ void wakeup(wchan_t ident) { sleepq_t *sq; kmutex_t *mp; if (__predict_false(cold)) return; sq = sleeptab_lookup(&sleeptab, ident, &mp); sleepq_wake(sq, ident, (u_int)-1, mp); } /* * General yield call. Puts the current LWP back on its run queue and * performs a context switch. */ void yield(void) { struct lwp *l = curlwp; KERNEL_UNLOCK_ALL(l, &l->l_biglocks); lwp_lock(l); KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); KASSERT(l->l_stat == LSONPROC); /* Voluntary - ditch kpriority boost. */ l->l_kpriority = false; spc_lock(l->l_cpu); mi_switch(l); KERNEL_LOCK(l->l_biglocks, l); } /* * General preemption call. Puts the current LWP back on its run queue * and performs an involuntary context switch. Different from yield() * in that: * * - It's counted differently (involuntary vs. voluntary). * - Realtime threads go to the head of their runqueue vs. tail for yield(). * - Priority boost is retained unless LWP has exceeded timeslice. */ void preempt(void) { struct lwp *l = curlwp; KERNEL_UNLOCK_ALL(l, &l->l_biglocks); lwp_lock(l); KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); KASSERT(l->l_stat == LSONPROC); spc_lock(l->l_cpu); /* Involuntary - keep kpriority boost unless a CPU hog. */ if ((l->l_cpu->ci_schedstate.spc_flags & SPCF_SHOULDYIELD) != 0) { l->l_kpriority = false; } l->l_pflag |= LP_PREEMPTING; mi_switch(l); KERNEL_LOCK(l->l_biglocks, l); } /* * Return true if the current LWP should yield the processor. Intended to * be used by long-running code in kernel. */ inline bool preempt_needed(void) { lwp_t *l = curlwp; int needed; KPREEMPT_DISABLE(l); needed = l->l_cpu->ci_want_resched; KPREEMPT_ENABLE(l); return (needed != 0); } /* * A breathing point for long running code in kernel. */ void preempt_point(void) { if (__predict_false(preempt_needed())) { preempt(); } } /* * Handle a request made by another agent to preempt the current LWP * in-kernel. Usually called when l_dopreempt may be non-zero. * * Character addresses for lockstat only. */ static char kpreempt_is_disabled; static char kernel_lock_held; static char is_softint_lwp; static char spl_is_raised; bool kpreempt(uintptr_t where) { uintptr_t failed; lwp_t *l; int s, dop, lsflag; l = curlwp; failed = 0; while ((dop = l->l_dopreempt) != 0) { if (l->l_stat != LSONPROC) { /* * About to block (or die), let it happen. * Doesn't really count as "preemption has * been blocked", since we're going to * context switch. */ atomic_swap_uint(&l->l_dopreempt, 0); return true; } KASSERT((l->l_flag & LW_IDLE) == 0); if (__predict_false(l->l_nopreempt != 0)) { /* LWP holds preemption disabled, explicitly. */ if ((dop & DOPREEMPT_COUNTED) == 0) { kpreempt_ev_crit.ev_count++; } failed = (uintptr_t)&kpreempt_is_disabled; break; } if (__predict_false((l->l_pflag & LP_INTR) != 0)) { /* Can't preempt soft interrupts yet. */ atomic_swap_uint(&l->l_dopreempt, 0); failed = (uintptr_t)&is_softint_lwp; break; } s = splsched(); if (__predict_false(l->l_blcnt != 0 || curcpu()->ci_biglock_wanted != NULL)) { /* Hold or want kernel_lock, code is not MT safe. */ splx(s); if ((dop & DOPREEMPT_COUNTED) == 0) { kpreempt_ev_klock.ev_count++; } failed = (uintptr_t)&kernel_lock_held; break; } if (__predict_false(!cpu_kpreempt_enter(where, s))) { /* * It may be that the IPL is too high. * kpreempt_enter() can schedule an * interrupt to retry later. */ splx(s); failed = (uintptr_t)&spl_is_raised; break; } /* Do it! */ if (__predict_true((dop & DOPREEMPT_COUNTED) == 0)) { kpreempt_ev_immed.ev_count++; } lwp_lock(l); /* Involuntary - keep kpriority boost. */ l->l_pflag |= LP_PREEMPTING; spc_lock(l->l_cpu); mi_switch(l); l->l_nopreempt++; splx(s); /* Take care of any MD cleanup. */ cpu_kpreempt_exit(where); l->l_nopreempt--; } if (__predict_true(!failed)) { return false; } /* Record preemption failure for reporting via lockstat. */ atomic_or_uint(&l->l_dopreempt, DOPREEMPT_COUNTED); lsflag = 0; LOCKSTAT_ENTER(lsflag); if (__predict_false(lsflag)) { if (where == 0) { where = (uintptr_t)__builtin_return_address(0); } /* Preemption is on, might recurse, so make it atomic. */ if (atomic_cas_ptr_ni((void *)&l->l_pfailaddr, NULL, (void *)where) == NULL) { LOCKSTAT_START_TIMER(lsflag, l->l_pfailtime); l->l_pfaillock = failed; } } LOCKSTAT_EXIT(lsflag); return true; } /* * Return true if preemption is explicitly disabled. */ bool kpreempt_disabled(void) { const lwp_t *l = curlwp; return l->l_nopreempt != 0 || l->l_stat == LSZOMB || (l->l_flag & LW_IDLE) != 0 || (l->l_pflag & LP_INTR) != 0 || cpu_kpreempt_disabled(); } /* * Disable kernel preemption. */ void kpreempt_disable(void) { KPREEMPT_DISABLE(curlwp); } /* * Reenable kernel preemption. */ void kpreempt_enable(void) { KPREEMPT_ENABLE(curlwp); } /* * Compute the amount of time during which the current lwp was running. * * - update l_rtime unless it's an idle lwp. */ void updatertime(lwp_t *l, const struct bintime *now) { if (__predict_false(l->l_flag & LW_IDLE)) return; /* rtime += now - stime */ bintime_add(&l->l_rtime, now); bintime_sub(&l->l_rtime, &l->l_stime); } /* * Select next LWP from the current CPU to run.. */ static inline lwp_t * nextlwp(struct cpu_info *ci, struct schedstate_percpu *spc) { lwp_t *newl; /* * Let sched_nextlwp() select the LWP to run the CPU next. * If no LWP is runnable, select the idle LWP. * * On arrival here LWPs on a run queue are locked by spc_mutex which * is currently held. Idle LWPs are always locked by spc_lwplock, * which may or may not be held here. On exit from this code block, * in all cases newl is locked by spc_lwplock. */ newl = sched_nextlwp(); if (newl != NULL) { sched_dequeue(newl); KASSERT(lwp_locked(newl, spc->spc_mutex)); KASSERT(newl->l_cpu == ci); newl->l_stat = LSONPROC; newl->l_pflag |= LP_RUNNING; spc->spc_curpriority = lwp_eprio(newl); spc->spc_flags &= ~(SPCF_SWITCHCLEAR | SPCF_IDLE); lwp_setlock(newl, spc->spc_lwplock); } else { /* * The idle LWP does not get set to LSONPROC, because * otherwise it screws up the output from top(1) etc. */ newl = ci->ci_data.cpu_idlelwp; newl->l_pflag |= LP_RUNNING; spc->spc_curpriority = PRI_IDLE; spc->spc_flags = (spc->spc_flags & ~SPCF_SWITCHCLEAR) | SPCF_IDLE; } /* * Only clear want_resched if there are no pending (slow) software * interrupts. We can do this without an atomic, because no new * LWPs can appear in the queue due to our hold on spc_mutex, and * the update to ci_want_resched will become globally visible before * the release of spc_mutex becomes globally visible. */ ci->ci_want_resched = ci->ci_data.cpu_softints; return newl; } /* * The machine independent parts of context switch. * * NOTE: l->l_cpu is not changed in this routine, because an LWP never * changes its own l_cpu (that would screw up curcpu on many ports and could * cause all kinds of other evil stuff). l_cpu is always changed by some * other actor, when it's known the LWP is not running (the LP_RUNNING flag * is checked under lock). */ void mi_switch(lwp_t *l) { struct cpu_info *ci; struct schedstate_percpu *spc; struct lwp *newl; kmutex_t *lock; int oldspl; struct bintime bt; bool returning; KASSERT(lwp_locked(l, NULL)); KASSERT(kpreempt_disabled()); KASSERT(mutex_owned(curcpu()->ci_schedstate.spc_mutex)); KASSERTMSG(l->l_blcnt == 0, "kernel_lock leaked"); kstack_check_magic(l); binuptime(&bt); KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); KASSERT((l->l_pflag & LP_RUNNING) != 0); KASSERT(l->l_cpu == curcpu() || l->l_stat == LSRUN); ci = curcpu(); spc = &ci->ci_schedstate; returning = false; newl = NULL; /* * If we have been asked to switch to a specific LWP, then there * is no need to inspect the run queues. If a soft interrupt is * blocking, then return to the interrupted thread without adjusting * VM context or its start time: neither have been changed in order * to take the interrupt. */ if (l->l_switchto != NULL) { if ((l->l_pflag & LP_INTR) != 0) { returning = true; softint_block(l); if ((l->l_pflag & LP_TIMEINTR) != 0) updatertime(l, &bt); } newl = l->l_switchto; l->l_switchto = NULL; } #ifndef __HAVE_FAST_SOFTINTS else if (ci->ci_data.cpu_softints != 0) { /* There are pending soft interrupts, so pick one. */ newl = softint_picklwp(); newl->l_stat = LSONPROC; newl->l_pflag |= LP_RUNNING; } #endif /* !__HAVE_FAST_SOFTINTS */ /* * If on the CPU and we have gotten this far, then we must yield. */ if (l->l_stat == LSONPROC && l != newl) { KASSERT(lwp_locked(l, spc->spc_lwplock)); KASSERT((l->l_flag & LW_IDLE) == 0); l->l_stat = LSRUN; lwp_setlock(l, spc->spc_mutex); sched_enqueue(l); sched_preempted(l); /* * Handle migration. Note that "migrating LWP" may * be reset here, if interrupt/preemption happens * early in idle LWP. */ if (l->l_target_cpu != NULL && (l->l_pflag & LP_BOUND) == 0) { KASSERT((l->l_pflag & LP_INTR) == 0); spc->spc_migrating = l; } } /* Pick new LWP to run. */ if (newl == NULL) { newl = nextlwp(ci, spc); } /* Items that must be updated with the CPU locked. */ if (!returning) { /* Count time spent in current system call */ SYSCALL_TIME_SLEEP(l); updatertime(l, &bt); /* Update the new LWP's start time. */ newl->l_stime = bt; /* * ci_curlwp changes when a fast soft interrupt occurs. * We use ci_onproc to keep track of which kernel or * user thread is running 'underneath' the software * interrupt. This is important for time accounting, * itimers and forcing user threads to preempt (aston). */ ci->ci_onproc = newl; } /* * Preemption related tasks. Must be done holding spc_mutex. Clear * l_dopreempt without an atomic - it's only ever set non-zero by * sched_resched_cpu() which also holds spc_mutex, and only ever * cleared by the LWP itself (us) with atomics when not under lock. */ l->l_dopreempt = 0; if (__predict_false(l->l_pfailaddr != 0)) { LOCKSTAT_FLAG(lsflag); LOCKSTAT_ENTER(lsflag); LOCKSTAT_STOP_TIMER(lsflag, l->l_pfailtime); LOCKSTAT_EVENT_RA(lsflag, l->l_pfaillock, LB_NOPREEMPT|LB_SPIN, 1, l->l_pfailtime, l->l_pfailaddr); LOCKSTAT_EXIT(lsflag); l->l_pfailtime = 0; l->l_pfaillock = 0; l->l_pfailaddr = 0; } if (l != newl) { struct lwp *prevlwp; /* Release all locks, but leave the current LWP locked */ if (l->l_mutex == spc->spc_mutex) { /* * Drop spc_lwplock, if the current LWP has been moved * to the run queue (it is now locked by spc_mutex). */ mutex_spin_exit(spc->spc_lwplock); } else { /* * Otherwise, drop the spc_mutex, we are done with the * run queues. */ mutex_spin_exit(spc->spc_mutex); } /* We're down to only one lock, so do debug checks. */ LOCKDEBUG_BARRIER(l->l_mutex, 1); /* Count the context switch. */ CPU_COUNT(CPU_COUNT_NSWTCH, 1); l->l_ncsw++; if ((l->l_pflag & LP_PREEMPTING) != 0) { l->l_nivcsw++; l->l_pflag &= ~LP_PREEMPTING; } /* * Increase the count of spin-mutexes before the release * of the last lock - we must remain at IPL_SCHED after * releasing the lock. */ KASSERTMSG(ci->ci_mtx_count == -1, "%s: cpu%u: ci_mtx_count (%d) != -1 " "(block with spin-mutex held)", __func__, cpu_index(ci), ci->ci_mtx_count); oldspl = MUTEX_SPIN_OLDSPL(ci); ci->ci_mtx_count = -2; /* Update status for lwpctl, if present. */ if (l->l_lwpctl != NULL) { l->l_lwpctl->lc_curcpu = (l->l_stat == LSZOMB ? LWPCTL_CPU_EXITED : LWPCTL_CPU_NONE); } /* * If curlwp is a soft interrupt LWP, there's nobody on the * other side to unlock - we're returning into an assembly * trampoline. Unlock now. This is safe because this is a * kernel LWP and is bound to current CPU: the worst anyone * else will do to it, is to put it back onto this CPU's run * queue (and the CPU is busy here right now!). */ if (returning) { /* Keep IPL_SCHED after this; MD code will fix up. */ l->l_pflag &= ~LP_RUNNING; lwp_unlock(l); } else { /* A normal LWP: save old VM context. */ pmap_deactivate(l); } /* * If DTrace has set the active vtime enum to anything * other than INACTIVE (0), then it should have set the * function to call. */ if (__predict_false(dtrace_vtime_active)) { (*dtrace_vtime_switch_func)(newl); } /* * We must ensure not to come here from inside a read section. */ KASSERT(pserialize_not_in_read_section()); /* Switch to the new LWP.. */ #ifdef MULTIPROCESSOR KASSERT(curlwp == ci->ci_curlwp); #endif KASSERTMSG(l == curlwp, "l %p curlwp %p", l, curlwp); prevlwp = cpu_switchto(l, newl, returning); ci = curcpu(); #ifdef MULTIPROCESSOR KASSERT(curlwp == ci->ci_curlwp); #endif KASSERTMSG(l == curlwp, "l %p curlwp %p prevlwp %p", l, curlwp, prevlwp); KASSERT(prevlwp != NULL); KASSERT(l->l_cpu == ci); KASSERT(ci->ci_mtx_count == -2); /* * Immediately mark the previous LWP as no longer running * and unlock (to keep lock wait times short as possible). * We'll still be at IPL_SCHED afterwards. If a zombie, * don't touch after clearing LP_RUNNING as it could be * reaped by another CPU. Issue a memory barrier to ensure * this. */ KASSERT((prevlwp->l_pflag & LP_RUNNING) != 0); lock = prevlwp->l_mutex; if (__predict_false(prevlwp->l_stat == LSZOMB)) { membar_sync(); } prevlwp->l_pflag &= ~LP_RUNNING; mutex_spin_exit(lock); /* * Switched away - we have new curlwp. * Restore VM context and IPL. */ pmap_activate(l); pcu_switchpoint(l); /* Update status for lwpctl, if present. */ if (l->l_lwpctl != NULL) { l->l_lwpctl->lc_curcpu = (int)cpu_index(ci); l->l_lwpctl->lc_pctr++; } /* * Normalize the spin mutex count and restore the previous * SPL. Note that, unless the caller disabled preemption, * we can be preempted at any time after this splx(). */ KASSERT(l->l_cpu == ci); KASSERT(ci->ci_mtx_count == -1); ci->ci_mtx_count = 0; splx(oldspl); } else { /* Nothing to do - just unlock and return. */ mutex_spin_exit(spc->spc_mutex); l->l_pflag &= ~LP_PREEMPTING; lwp_unlock(l); } KASSERT(l == curlwp); KASSERT(l->l_stat == LSONPROC || (l->l_flag & LW_IDLE) != 0); SYSCALL_TIME_WAKEUP(l); LOCKDEBUG_BARRIER(NULL, 1); } /* * setrunnable: change LWP state to be runnable, placing it on the run queue. * * Call with the process and LWP locked. Will return with the LWP unlocked. */ void setrunnable(struct lwp *l) { struct proc *p = l->l_proc; struct cpu_info *ci; kmutex_t *oldlock; KASSERT((l->l_flag & LW_IDLE) == 0); KASSERT((l->l_flag & LW_DBGSUSPEND) == 0); KASSERT(mutex_owned(p->p_lock)); KASSERT(lwp_locked(l, NULL)); KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex); switch (l->l_stat) { case LSSTOP: /* * If we're being traced (possibly because someone attached us * while we were stopped), check for a signal from the debugger. */ if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xsig != 0) signotify(l); p->p_nrlwps++; break; case LSSUSPENDED: KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); l->l_flag &= ~LW_WSUSPEND; p->p_nrlwps++; cv_broadcast(&p->p_lwpcv); break; case LSSLEEP: KASSERT(l->l_wchan != NULL); break; case LSIDL: KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_lwplock)); break; default: panic("setrunnable: lwp %p state was %d", l, l->l_stat); } /* * If the LWP was sleeping, start it again. */ if (l->l_wchan != NULL) { l->l_stat = LSSLEEP; /* lwp_unsleep() will release the lock. */ lwp_unsleep(l, true); return; } /* * If the LWP is still on the CPU, mark it as LSONPROC. It may be * about to call mi_switch(), in which case it will yield. */ if ((l->l_pflag & LP_RUNNING) != 0) { l->l_stat = LSONPROC; l->l_slptime = 0; lwp_unlock(l); return; } /* * Look for a CPU to run. * Set the LWP runnable. */ ci = sched_takecpu(l); l->l_cpu = ci; spc_lock(ci); oldlock = lwp_setlock(l, l->l_cpu->ci_schedstate.spc_mutex); sched_setrunnable(l); l->l_stat = LSRUN; l->l_slptime = 0; sched_enqueue(l); sched_resched_lwp(l, true); /* SPC & LWP now unlocked. */ mutex_spin_exit(oldlock); } /* * suspendsched: * * Convert all non-LW_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED. */ void suspendsched(void) { CPU_INFO_ITERATOR cii; struct cpu_info *ci; struct lwp *l; struct proc *p; /* * We do this by process in order not to violate the locking rules. */ mutex_enter(&proc_lock); PROCLIST_FOREACH(p, &allproc) { mutex_enter(p->p_lock); if ((p->p_flag & PK_SYSTEM) != 0) { mutex_exit(p->p_lock); continue; } if (p->p_stat != SSTOP) { if (p->p_stat != SZOMB && p->p_stat != SDEAD) { p->p_pptr->p_nstopchild++; p->p_waited = 0; } p->p_stat = SSTOP; } LIST_FOREACH(l, &p->p_lwps, l_sibling) { if (l == curlwp) continue; lwp_lock(l); /* * Set L_WREBOOT so that the LWP will suspend itself * when it tries to return to user mode. We want to * try and get to get as many LWPs as possible to * the user / kernel boundary, so that they will * release any locks that they hold. */ l->l_flag |= (LW_WREBOOT | LW_WSUSPEND); if (l->l_stat == LSSLEEP && (l->l_flag & LW_SINTR) != 0) { /* setrunnable() will release the lock. */ setrunnable(l); continue; } lwp_unlock(l); } mutex_exit(p->p_lock); } mutex_exit(&proc_lock); /* * Kick all CPUs to make them preempt any LWPs running in user mode. * They'll trap into the kernel and suspend themselves in userret(). * * Unusually, we don't hold any other scheduler object locked, which * would keep preemption off for sched_resched_cpu(), so disable it * explicitly. */ kpreempt_disable(); for (CPU_INFO_FOREACH(cii, ci)) { spc_lock(ci); sched_resched_cpu(ci, PRI_KERNEL, true); /* spc now unlocked */ } kpreempt_enable(); } /* * sched_unsleep: * * The is called when the LWP has not been awoken normally but instead * interrupted: for example, if the sleep timed out. Because of this, * it's not a valid action for running or idle LWPs. */ static void sched_unsleep(struct lwp *l, bool cleanup) { lwp_unlock(l); panic("sched_unsleep"); } static void sched_changepri(struct lwp *l, pri_t pri) { struct schedstate_percpu *spc; struct cpu_info *ci; KASSERT(lwp_locked(l, NULL)); ci = l->l_cpu; spc = &ci->ci_schedstate; if (l->l_stat == LSRUN) { KASSERT(lwp_locked(l, spc->spc_mutex)); sched_dequeue(l); l->l_priority = pri; sched_enqueue(l); sched_resched_lwp(l, false); } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { /* On priority drop, only evict realtime LWPs. */ KASSERT(lwp_locked(l, spc->spc_lwplock)); l->l_priority = pri; spc_lock(ci); sched_resched_cpu(ci, spc->spc_maxpriority, true); /* spc now unlocked */ } else { l->l_priority = pri; } } static void sched_lendpri(struct lwp *l, pri_t pri) { struct schedstate_percpu *spc; struct cpu_info *ci; KASSERT(lwp_locked(l, NULL)); ci = l->l_cpu; spc = &ci->ci_schedstate; if (l->l_stat == LSRUN) { KASSERT(lwp_locked(l, spc->spc_mutex)); sched_dequeue(l); l->l_inheritedprio = pri; l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); sched_enqueue(l); sched_resched_lwp(l, false); } else if (l->l_stat == LSONPROC && l->l_class != SCHED_OTHER) { /* On priority drop, only evict realtime LWPs. */ KASSERT(lwp_locked(l, spc->spc_lwplock)); l->l_inheritedprio = pri; l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); spc_lock(ci); sched_resched_cpu(ci, spc->spc_maxpriority, true); /* spc now unlocked */ } else { l->l_inheritedprio = pri; l->l_auxprio = MAX(l->l_inheritedprio, l->l_protectprio); } } struct lwp * syncobj_noowner(wchan_t wchan) { return NULL; } /* Decay 95% of proc::p_pctcpu in 60 seconds, ccpu = exp(-1/20) */ const fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* * Constants for averages over 1, 5 and 15 minutes when sampling at * 5 second intervals. */ static const fixpt_t cexp[ ] = { 0.9200444146293232 * FSCALE, /* exp(-1/12) */ 0.9834714538216174 * FSCALE, /* exp(-1/60) */ 0.9944598480048967 * FSCALE, /* exp(-1/180) */ }; /* * sched_pstats: * * => Update process statistics and check CPU resource allocation. * => Call scheduler-specific hook to eventually adjust LWP priorities. * => Compute load average of a quantity on 1, 5 and 15 minute intervals. */ void sched_pstats(void) { extern struct loadavg averunnable; struct loadavg *avg = &averunnable; const int clkhz = (stathz != 0 ? stathz : hz); static bool backwards = false; static u_int lavg_count = 0; struct proc *p; int nrun; sched_pstats_ticks++; if (++lavg_count >= 5) { lavg_count = 0; nrun = 0; } mutex_enter(&proc_lock); PROCLIST_FOREACH(p, &allproc) { struct lwp *l; struct rlimit *rlim; time_t runtm; int sig; /* Increment sleep time (if sleeping), ignore overflow. */ mutex_enter(p->p_lock); runtm = p->p_rtime.sec; LIST_FOREACH(l, &p->p_lwps, l_sibling) { fixpt_t lpctcpu; u_int lcpticks; if (__predict_false((l->l_flag & LW_IDLE) != 0)) continue; lwp_lock(l); runtm += l->l_rtime.sec; l->l_swtime++; sched_lwp_stats(l); /* For load average calculation. */ if (__predict_false(lavg_count == 0) && (l->l_flag & (LW_SINTR | LW_SYSTEM)) == 0) { switch (l->l_stat) { case LSSLEEP: if (l->l_slptime > 1) { break; } /* FALLTHROUGH */ case LSRUN: case LSONPROC: case LSIDL: nrun++; } } lwp_unlock(l); l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT; if (l->l_slptime != 0) continue; lpctcpu = l->l_pctcpu; lcpticks = atomic_swap_uint(&l->l_cpticks, 0); lpctcpu += ((FSCALE - ccpu) * (lcpticks * FSCALE / clkhz)) >> FSHIFT; l->l_pctcpu = lpctcpu; } /* Calculating p_pctcpu only for ps(1) */ p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT; if (__predict_false(runtm < 0)) { if (!backwards) { backwards = true; printf("WARNING: negative runtime; " "monotonic clock has gone backwards\n"); } mutex_exit(p->p_lock); continue; } /* * Check if the process exceeds its CPU resource allocation. * If over the hard limit, kill it with SIGKILL. * If over the soft limit, send SIGXCPU and raise * the soft limit a little. */ rlim = &p->p_rlimit[RLIMIT_CPU]; sig = 0; if (__predict_false(runtm >= rlim->rlim_cur)) { if (runtm >= rlim->rlim_max) { sig = SIGKILL; log(LOG_NOTICE, "pid %d, command %s, is killed: %s\n", p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); uprintf("pid %d, command %s, is killed: %s\n", p->p_pid, p->p_comm, "exceeded RLIMIT_CPU"); } else { sig = SIGXCPU; if (rlim->rlim_cur < rlim->rlim_max) rlim->rlim_cur += 5; } } mutex_exit(p->p_lock); if (__predict_false(sig)) { KASSERT((p->p_flag & PK_SYSTEM) == 0); psignal(p, sig); } } /* Load average calculation. */ if (__predict_false(lavg_count == 0)) { int i; CTASSERT(__arraycount(cexp) == __arraycount(avg->ldavg)); for (i = 0; i < __arraycount(cexp); i++) { avg->ldavg[i] = (cexp[i] * avg->ldavg[i] + nrun * FSCALE * (FSCALE - cexp[i])) >> FSHIFT; } } /* Lightning bolt. */ cv_broadcast(&lbolt); mutex_exit(&proc_lock); }