40f3045957
and in libkvm. Then teach ps how to show them to you. Also, teach ps how to show the names for all the uids, the rest of the group numbers, and the "group access list".
1293 lines
32 KiB
C
1293 lines
32 KiB
C
/* $NetBSD: kvm_proc.c,v 1.50 2003/03/01 05:41:56 atatat Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Charles M. Hannum.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 1989, 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This code is derived from software developed by the Computer Systems
|
|
* Engineering group at Lawrence Berkeley Laboratory under DARPA contract
|
|
* BG 91-66 and contributed to Berkeley.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Berkeley and its contributors.
|
|
* 4. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
#if defined(LIBC_SCCS) && !defined(lint)
|
|
#if 0
|
|
static char sccsid[] = "@(#)kvm_proc.c 8.3 (Berkeley) 9/23/93";
|
|
#else
|
|
__RCSID("$NetBSD: kvm_proc.c,v 1.50 2003/03/01 05:41:56 atatat Exp $");
|
|
#endif
|
|
#endif /* LIBC_SCCS and not lint */
|
|
|
|
/*
|
|
* Proc traversal interface for kvm. ps and w are (probably) the exclusive
|
|
* users of this code, so we've factored it out into a separate module.
|
|
* Thus, we keep this grunge out of the other kvm applications (i.e.,
|
|
* most other applications are interested only in open/close/read/nlist).
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/user.h>
|
|
#include <sys/lwp.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/tty.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <nlist.h>
|
|
#include <kvm.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
#include <uvm/uvm_amap.h>
|
|
|
|
#include <sys/sysctl.h>
|
|
|
|
#include <limits.h>
|
|
#include <db.h>
|
|
#include <paths.h>
|
|
|
|
#include "kvm_private.h"
|
|
|
|
/*
|
|
* Common info from kinfo_proc and kinfo_proc2 used by helper routines.
|
|
*/
|
|
struct miniproc {
|
|
struct vmspace *p_vmspace;
|
|
char p_stat;
|
|
struct proc *p_paddr;
|
|
pid_t p_pid;
|
|
};
|
|
|
|
/*
|
|
* Convert from struct proc and kinfo_proc{,2} to miniproc.
|
|
*/
|
|
#define PTOMINI(kp, p) \
|
|
do { \
|
|
(p)->p_stat = (kp)->p_stat; \
|
|
(p)->p_pid = (kp)->p_pid; \
|
|
(p)->p_paddr = NULL; \
|
|
(p)->p_vmspace = (kp)->p_vmspace; \
|
|
} while (/*CONSTCOND*/0);
|
|
|
|
#define KPTOMINI(kp, p) \
|
|
do { \
|
|
(p)->p_stat = (kp)->kp_proc.p_stat; \
|
|
(p)->p_pid = (kp)->kp_proc.p_pid; \
|
|
(p)->p_paddr = (kp)->kp_eproc.e_paddr; \
|
|
(p)->p_vmspace = (kp)->kp_proc.p_vmspace; \
|
|
} while (/*CONSTCOND*/0);
|
|
|
|
#define KP2TOMINI(kp, p) \
|
|
do { \
|
|
(p)->p_stat = (kp)->p_stat; \
|
|
(p)->p_pid = (kp)->p_pid; \
|
|
(p)->p_paddr = (void *)(long)(kp)->p_paddr; \
|
|
(p)->p_vmspace = (void *)(long)(kp)->p_vmspace; \
|
|
} while (/*CONSTCOND*/0);
|
|
|
|
|
|
#define PTRTOINT64(foo) ((u_int64_t)(uintptr_t)(void *)(foo))
|
|
|
|
#define KREAD(kd, addr, obj) \
|
|
(kvm_read(kd, addr, (obj), sizeof(*obj)) != sizeof(*obj))
|
|
|
|
/* XXX: What uses these two functions? */
|
|
char *_kvm_uread __P((kvm_t *, const struct proc *, u_long,
|
|
u_long *));
|
|
ssize_t kvm_uread __P((kvm_t *, const struct proc *, u_long, char *,
|
|
size_t));
|
|
|
|
static char *_kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
|
|
u_long *));
|
|
static ssize_t kvm_ureadm __P((kvm_t *, const struct miniproc *, u_long,
|
|
char *, size_t));
|
|
|
|
static char **kvm_argv __P((kvm_t *, const struct miniproc *, u_long, int,
|
|
int));
|
|
static int kvm_deadprocs __P((kvm_t *, int, int, u_long, u_long, u_long,
|
|
int));
|
|
static char **kvm_doargv __P((kvm_t *, const struct miniproc *, int,
|
|
void (*)(struct ps_strings *, u_long *, int *)));
|
|
static char **kvm_doargv2 __P((kvm_t *, pid_t, int, int));
|
|
static int kvm_proclist __P((kvm_t *, int, int, struct proc *,
|
|
struct kinfo_proc *, int));
|
|
static int proc_verify __P((kvm_t *, u_long, const struct miniproc *));
|
|
static void ps_str_a __P((struct ps_strings *, u_long *, int *));
|
|
static void ps_str_e __P((struct ps_strings *, u_long *, int *));
|
|
|
|
|
|
static char *
|
|
_kvm_ureadm(kd, p, va, cnt)
|
|
kvm_t *kd;
|
|
const struct miniproc *p;
|
|
u_long va;
|
|
u_long *cnt;
|
|
{
|
|
int true = 1;
|
|
u_long addr, head;
|
|
u_long offset;
|
|
struct vm_map_entry vme;
|
|
struct vm_amap amap;
|
|
struct vm_anon *anonp, anon;
|
|
struct vm_page pg;
|
|
u_long slot;
|
|
|
|
if (kd->swapspc == NULL) {
|
|
kd->swapspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
|
|
if (kd->swapspc == NULL)
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Look through the address map for the memory object
|
|
* that corresponds to the given virtual address.
|
|
* The header just has the entire valid range.
|
|
*/
|
|
head = (u_long)&p->p_vmspace->vm_map.header;
|
|
addr = head;
|
|
while (true) {
|
|
if (KREAD(kd, addr, &vme))
|
|
return (NULL);
|
|
|
|
if (va >= vme.start && va < vme.end &&
|
|
vme.aref.ar_amap != NULL)
|
|
break;
|
|
|
|
addr = (u_long)vme.next;
|
|
if (addr == head)
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* we found the map entry, now to find the object...
|
|
*/
|
|
if (vme.aref.ar_amap == NULL)
|
|
return (NULL);
|
|
|
|
addr = (u_long)vme.aref.ar_amap;
|
|
if (KREAD(kd, addr, &amap))
|
|
return (NULL);
|
|
|
|
offset = va - vme.start;
|
|
slot = offset / kd->nbpg + vme.aref.ar_pageoff;
|
|
/* sanity-check slot number */
|
|
if (slot > amap.am_nslot)
|
|
return (NULL);
|
|
|
|
addr = (u_long)amap.am_anon + (offset / kd->nbpg) * sizeof(anonp);
|
|
if (KREAD(kd, addr, &anonp))
|
|
return (NULL);
|
|
|
|
addr = (u_long)anonp;
|
|
if (KREAD(kd, addr, &anon))
|
|
return (NULL);
|
|
|
|
addr = (u_long)anon.u.an_page;
|
|
if (addr) {
|
|
if (KREAD(kd, addr, &pg))
|
|
return (NULL);
|
|
|
|
if (pread(kd->pmfd, kd->swapspc, (size_t)kd->nbpg,
|
|
(off_t)pg.phys_addr) != kd->nbpg)
|
|
return (NULL);
|
|
} else {
|
|
if (pread(kd->swfd, kd->swapspc, (size_t)kd->nbpg,
|
|
(off_t)(anon.an_swslot * kd->nbpg)) != kd->nbpg)
|
|
return (NULL);
|
|
}
|
|
|
|
/* Found the page. */
|
|
offset %= kd->nbpg;
|
|
*cnt = kd->nbpg - offset;
|
|
return (&kd->swapspc[(size_t)offset]);
|
|
}
|
|
|
|
char *
|
|
_kvm_uread(kd, p, va, cnt)
|
|
kvm_t *kd;
|
|
const struct proc *p;
|
|
u_long va;
|
|
u_long *cnt;
|
|
{
|
|
struct miniproc mp;
|
|
|
|
PTOMINI(p, &mp);
|
|
return (_kvm_ureadm(kd, &mp, va, cnt));
|
|
}
|
|
|
|
/*
|
|
* Read proc's from memory file into buffer bp, which has space to hold
|
|
* at most maxcnt procs.
|
|
*/
|
|
static int
|
|
kvm_proclist(kd, what, arg, p, bp, maxcnt)
|
|
kvm_t *kd;
|
|
int what, arg;
|
|
struct proc *p;
|
|
struct kinfo_proc *bp;
|
|
int maxcnt;
|
|
{
|
|
int cnt = 0;
|
|
int nlwps;
|
|
struct kinfo_lwp *kl;
|
|
struct eproc eproc;
|
|
struct pgrp pgrp;
|
|
struct session sess;
|
|
struct tty tty;
|
|
struct proc proc;
|
|
|
|
for (; cnt < maxcnt && p != NULL; p = proc.p_list.le_next) {
|
|
if (KREAD(kd, (u_long)p, &proc)) {
|
|
_kvm_err(kd, kd->program, "can't read proc at %p", p);
|
|
return (-1);
|
|
}
|
|
if (KREAD(kd, (u_long)proc.p_cred, &eproc.e_pcred) == 0)
|
|
if (KREAD(kd, (u_long)eproc.e_pcred.pc_ucred,
|
|
&eproc.e_ucred)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read proc credentials at %p", p);
|
|
return (-1);
|
|
}
|
|
|
|
switch (what) {
|
|
|
|
case KERN_PROC_PID:
|
|
if (proc.p_pid != (pid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_UID:
|
|
if (eproc.e_ucred.cr_uid != (uid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_RUID:
|
|
if (eproc.e_pcred.p_ruid != (uid_t)arg)
|
|
continue;
|
|
break;
|
|
}
|
|
/*
|
|
* We're going to add another proc to the set. If this
|
|
* will overflow the buffer, assume the reason is because
|
|
* nprocs (or the proc list) is corrupt and declare an error.
|
|
*/
|
|
if (cnt >= maxcnt) {
|
|
_kvm_err(kd, kd->program, "nprocs corrupt");
|
|
return (-1);
|
|
}
|
|
/*
|
|
* gather eproc
|
|
*/
|
|
eproc.e_paddr = p;
|
|
if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
|
|
_kvm_err(kd, kd->program, "can't read pgrp at %p",
|
|
proc.p_pgrp);
|
|
return (-1);
|
|
}
|
|
eproc.e_sess = pgrp.pg_session;
|
|
eproc.e_pgid = pgrp.pg_id;
|
|
eproc.e_jobc = pgrp.pg_jobc;
|
|
if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
|
|
_kvm_err(kd, kd->program, "can't read session at %p",
|
|
pgrp.pg_session);
|
|
return (-1);
|
|
}
|
|
if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
|
|
if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read tty at %p", sess.s_ttyp);
|
|
return (-1);
|
|
}
|
|
eproc.e_tdev = tty.t_dev;
|
|
eproc.e_tsess = tty.t_session;
|
|
if (tty.t_pgrp != NULL) {
|
|
if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
|
|
_kvm_err(kd, kd->program,
|
|
"can't read tpgrp at %p",
|
|
tty.t_pgrp);
|
|
return (-1);
|
|
}
|
|
eproc.e_tpgid = pgrp.pg_id;
|
|
} else
|
|
eproc.e_tpgid = -1;
|
|
} else
|
|
eproc.e_tdev = NODEV;
|
|
eproc.e_flag = sess.s_ttyvp ? EPROC_CTTY : 0;
|
|
eproc.e_sid = sess.s_sid;
|
|
if (sess.s_leader == p)
|
|
eproc.e_flag |= EPROC_SLEADER;
|
|
/*
|
|
* Fill in the old-style proc.p_wmesg by copying the wmesg
|
|
* from the first avaliable LWP.
|
|
*/
|
|
kl = kvm_getlwps(kd, proc.p_pid,
|
|
(u_long)PTRTOINT64(eproc.e_paddr),
|
|
sizeof(struct kinfo_lwp), &nlwps);
|
|
if (kl) {
|
|
if (nlwps > 0) {
|
|
strcpy(eproc.e_wmesg, kl[0].l_wmesg);
|
|
}
|
|
}
|
|
(void)kvm_read(kd, (u_long)proc.p_vmspace, &eproc.e_vm,
|
|
sizeof(eproc.e_vm));
|
|
|
|
eproc.e_xsize = eproc.e_xrssize = 0;
|
|
eproc.e_xccount = eproc.e_xswrss = 0;
|
|
|
|
switch (what) {
|
|
|
|
case KERN_PROC_PGRP:
|
|
if (eproc.e_pgid != (pid_t)arg)
|
|
continue;
|
|
break;
|
|
|
|
case KERN_PROC_TTY:
|
|
if ((proc.p_flag & P_CONTROLT) == 0 ||
|
|
eproc.e_tdev != (dev_t)arg)
|
|
continue;
|
|
break;
|
|
}
|
|
memcpy(&bp->kp_proc, &proc, sizeof(proc));
|
|
memcpy(&bp->kp_eproc, &eproc, sizeof(eproc));
|
|
++bp;
|
|
++cnt;
|
|
}
|
|
return (cnt);
|
|
}
|
|
|
|
/*
|
|
* Build proc info array by reading in proc list from a crash dump.
|
|
* Return number of procs read. maxcnt is the max we will read.
|
|
*/
|
|
static int
|
|
kvm_deadprocs(kd, what, arg, a_allproc, a_deadproc, a_zombproc, maxcnt)
|
|
kvm_t *kd;
|
|
int what, arg;
|
|
u_long a_allproc;
|
|
u_long a_deadproc;
|
|
u_long a_zombproc;
|
|
int maxcnt;
|
|
{
|
|
struct kinfo_proc *bp = kd->procbase;
|
|
int acnt, dcnt, zcnt;
|
|
struct proc *p;
|
|
|
|
if (KREAD(kd, a_allproc, &p)) {
|
|
_kvm_err(kd, kd->program, "cannot read allproc");
|
|
return (-1);
|
|
}
|
|
acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
|
|
if (acnt < 0)
|
|
return (acnt);
|
|
|
|
if (KREAD(kd, a_deadproc, &p)) {
|
|
_kvm_err(kd, kd->program, "cannot read deadproc");
|
|
return (-1);
|
|
}
|
|
|
|
dcnt = kvm_proclist(kd, what, arg, p, bp, maxcnt - acnt);
|
|
if (dcnt < 0)
|
|
dcnt = 0;
|
|
|
|
if (KREAD(kd, a_zombproc, &p)) {
|
|
_kvm_err(kd, kd->program, "cannot read zombproc");
|
|
return (-1);
|
|
}
|
|
zcnt = kvm_proclist(kd, what, arg, p, bp + acnt,
|
|
maxcnt - (acnt + dcnt));
|
|
if (zcnt < 0)
|
|
zcnt = 0;
|
|
|
|
return (acnt + zcnt);
|
|
}
|
|
|
|
struct kinfo_proc2 *
|
|
kvm_getproc2(kd, op, arg, esize, cnt)
|
|
kvm_t *kd;
|
|
int op, arg;
|
|
size_t esize;
|
|
int *cnt;
|
|
{
|
|
size_t size;
|
|
int mib[6], st, nprocs;
|
|
struct pstats pstats;
|
|
|
|
if (kd->procbase2 != NULL) {
|
|
free(kd->procbase2);
|
|
/*
|
|
* Clear this pointer in case this call fails. Otherwise,
|
|
* kvm_close() will free it again.
|
|
*/
|
|
kd->procbase2 = NULL;
|
|
}
|
|
|
|
if (ISSYSCTL(kd)) {
|
|
size = 0;
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC2;
|
|
mib[2] = op;
|
|
mib[3] = arg;
|
|
mib[4] = esize;
|
|
mib[5] = 0;
|
|
st = sysctl(mib, 6, NULL, &size, NULL, 0);
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getproc2");
|
|
return (NULL);
|
|
}
|
|
|
|
mib[5] = size / esize;
|
|
kd->procbase2 = (struct kinfo_proc2 *)_kvm_malloc(kd, size);
|
|
if (kd->procbase2 == NULL)
|
|
return (NULL);
|
|
st = sysctl(mib, 6, kd->procbase2, &size, NULL, 0);
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getproc2");
|
|
return (NULL);
|
|
}
|
|
nprocs = size / esize;
|
|
} else {
|
|
char *kp2c;
|
|
struct kinfo_proc *kp;
|
|
struct kinfo_proc2 kp2, *kp2p;
|
|
struct kinfo_lwp *kl;
|
|
int i, nlwps;
|
|
|
|
kp = kvm_getprocs(kd, op, arg, &nprocs);
|
|
if (kp == NULL)
|
|
return (NULL);
|
|
|
|
kd->procbase2 = _kvm_malloc(kd, nprocs * esize);
|
|
kp2c = (char *)(void *)kd->procbase2;
|
|
kp2p = &kp2;
|
|
for (i = 0; i < nprocs; i++, kp++) {
|
|
kl = kvm_getlwps(kd, kp->kp_proc.p_pid,
|
|
(u_long)PTRTOINT64(kp->kp_eproc.e_paddr),
|
|
sizeof(struct kinfo_lwp), &nlwps);
|
|
/* We use kl[0] as the "representative" LWP */
|
|
memset(kp2p, 0, sizeof(kp2));
|
|
kp2p->p_forw = kl[0].l_forw;
|
|
kp2p->p_back = kl[0].l_back;
|
|
kp2p->p_paddr = PTRTOINT64(kp->kp_eproc.e_paddr);
|
|
kp2p->p_addr = kl[0].l_addr;
|
|
kp2p->p_fd = PTRTOINT64(kp->kp_proc.p_fd);
|
|
kp2p->p_cwdi = PTRTOINT64(kp->kp_proc.p_cwdi);
|
|
kp2p->p_stats = PTRTOINT64(kp->kp_proc.p_stats);
|
|
kp2p->p_limit = PTRTOINT64(kp->kp_proc.p_limit);
|
|
kp2p->p_vmspace = PTRTOINT64(kp->kp_proc.p_vmspace);
|
|
kp2p->p_sigacts = PTRTOINT64(kp->kp_proc.p_sigacts);
|
|
kp2p->p_sess = PTRTOINT64(kp->kp_eproc.e_sess);
|
|
kp2p->p_tsess = 0;
|
|
kp2p->p_ru = PTRTOINT64(kp->kp_proc.p_ru);
|
|
|
|
kp2p->p_eflag = 0;
|
|
kp2p->p_exitsig = kp->kp_proc.p_exitsig;
|
|
kp2p->p_flag = kp->kp_proc.p_flag;
|
|
|
|
kp2p->p_pid = kp->kp_proc.p_pid;
|
|
|
|
kp2p->p_ppid = kp->kp_eproc.e_ppid;
|
|
kp2p->p_sid = kp->kp_eproc.e_sid;
|
|
kp2p->p__pgid = kp->kp_eproc.e_pgid;
|
|
|
|
kp2p->p_tpgid = 30001 /* XXX NO_PID! */;
|
|
|
|
kp2p->p_uid = kp->kp_eproc.e_ucred.cr_uid;
|
|
kp2p->p_ruid = kp->kp_eproc.e_pcred.p_ruid;
|
|
kp2p->p_svuid = kp->kp_eproc.e_pcred.p_svuid;
|
|
kp2p->p_gid = kp->kp_eproc.e_ucred.cr_gid;
|
|
kp2p->p_rgid = kp->kp_eproc.e_pcred.p_rgid;
|
|
kp2p->p_svgid = kp->kp_eproc.e_pcred.p_svgid;
|
|
|
|
/*CONSTCOND*/
|
|
memcpy(kp2p->p_groups, kp->kp_eproc.e_ucred.cr_groups,
|
|
MIN(sizeof(kp2p->p_groups),
|
|
sizeof(kp->kp_eproc.e_ucred.cr_groups)));
|
|
kp2p->p_ngroups = kp->kp_eproc.e_ucred.cr_ngroups;
|
|
|
|
kp2p->p_jobc = kp->kp_eproc.e_jobc;
|
|
kp2p->p_tdev = kp->kp_eproc.e_tdev;
|
|
kp2p->p_tpgid = kp->kp_eproc.e_tpgid;
|
|
kp2p->p_tsess = PTRTOINT64(kp->kp_eproc.e_tsess);
|
|
|
|
kp2p->p_estcpu = kp->kp_proc.p_estcpu;
|
|
kp2p->p_rtime_sec = kp->kp_proc.p_estcpu;
|
|
kp2p->p_rtime_usec = kp->kp_proc.p_estcpu;
|
|
kp2p->p_cpticks = kp->kp_proc.p_cpticks;
|
|
kp2p->p_pctcpu = kp->kp_proc.p_pctcpu;
|
|
kp2p->p_swtime = kl[0].l_swtime;
|
|
kp2p->p_slptime = kl[0].l_slptime;
|
|
#if 0 /* XXX thorpej */
|
|
kp2p->p_schedflags = kp->kp_proc.p_schedflags;
|
|
#else
|
|
kp2p->p_schedflags = 0;
|
|
#endif
|
|
|
|
kp2p->p_uticks = kp->kp_proc.p_uticks;
|
|
kp2p->p_sticks = kp->kp_proc.p_sticks;
|
|
kp2p->p_iticks = kp->kp_proc.p_iticks;
|
|
|
|
kp2p->p_tracep = PTRTOINT64(kp->kp_proc.p_tracep);
|
|
kp2p->p_traceflag = kp->kp_proc.p_traceflag;
|
|
|
|
kp2p->p_holdcnt = kl[0].l_holdcnt;
|
|
|
|
memcpy(&kp2p->p_siglist,
|
|
&kp->kp_proc.p_sigctx.ps_siglist,
|
|
sizeof(ki_sigset_t));
|
|
memcpy(&kp2p->p_sigmask,
|
|
&kp->kp_proc.p_sigctx.ps_sigmask,
|
|
sizeof(ki_sigset_t));
|
|
memcpy(&kp2p->p_sigignore,
|
|
&kp->kp_proc.p_sigctx.ps_sigignore,
|
|
sizeof(ki_sigset_t));
|
|
memcpy(&kp2p->p_sigcatch,
|
|
&kp->kp_proc.p_sigctx.ps_sigcatch,
|
|
sizeof(ki_sigset_t));
|
|
|
|
kp2p->p_stat = kp->kp_proc.p_stat;
|
|
kp2p->p_priority = kl[0].l_priority;
|
|
kp2p->p_usrpri = kl[0].l_usrpri;
|
|
kp2p->p_nice = kp->kp_proc.p_nice;
|
|
|
|
kp2p->p_xstat = kp->kp_proc.p_xstat;
|
|
kp2p->p_acflag = kp->kp_proc.p_acflag;
|
|
|
|
/*CONSTCOND*/
|
|
strncpy(kp2p->p_comm, kp->kp_proc.p_comm,
|
|
MIN(sizeof(kp2p->p_comm),
|
|
sizeof(kp->kp_proc.p_comm)));
|
|
|
|
strncpy(kp2p->p_wmesg, kp->kp_eproc.e_wmesg,
|
|
sizeof(kp2p->p_wmesg));
|
|
kp2p->p_wchan = kl[0].l_wchan;
|
|
strncpy(kp2p->p_login, kp->kp_eproc.e_login,
|
|
sizeof(kp2p->p_login));
|
|
|
|
kp2p->p_vm_rssize = kp->kp_eproc.e_xrssize;
|
|
kp2p->p_vm_tsize = kp->kp_eproc.e_vm.vm_tsize;
|
|
kp2p->p_vm_dsize = kp->kp_eproc.e_vm.vm_dsize;
|
|
kp2p->p_vm_ssize = kp->kp_eproc.e_vm.vm_ssize;
|
|
|
|
kp2p->p_eflag = (int32_t)kp->kp_eproc.e_flag;
|
|
|
|
kp2p->p_realflag = kp->kp_proc.p_flag;
|
|
kp2p->p_nlwps = kp->kp_proc.p_nlwps;
|
|
kp2p->p_nrlwps = kp->kp_proc.p_nrlwps;
|
|
kp2p->p_realstat = kp->kp_proc.p_stat;
|
|
|
|
if (P_ZOMBIE(&kp->kp_proc) ||
|
|
kp->kp_proc.p_stats == NULL ||
|
|
KREAD(kd, (u_long)kp->kp_proc.p_stats, &pstats)) {
|
|
kp2p->p_uvalid = 0;
|
|
} else {
|
|
kp2p->p_uvalid = 1;
|
|
|
|
kp2p->p_ustart_sec = (u_int32_t)
|
|
pstats.p_start.tv_sec;
|
|
kp2p->p_ustart_usec = (u_int32_t)
|
|
pstats.p_start.tv_usec;
|
|
|
|
kp2p->p_uutime_sec = (u_int32_t)
|
|
pstats.p_ru.ru_utime.tv_sec;
|
|
kp2p->p_uutime_usec = (u_int32_t)
|
|
pstats.p_ru.ru_utime.tv_usec;
|
|
kp2p->p_ustime_sec = (u_int32_t)
|
|
pstats.p_ru.ru_stime.tv_sec;
|
|
kp2p->p_ustime_usec = (u_int32_t)
|
|
pstats.p_ru.ru_stime.tv_usec;
|
|
|
|
kp2p->p_uru_maxrss = pstats.p_ru.ru_maxrss;
|
|
kp2p->p_uru_ixrss = pstats.p_ru.ru_ixrss;
|
|
kp2p->p_uru_idrss = pstats.p_ru.ru_idrss;
|
|
kp2p->p_uru_isrss = pstats.p_ru.ru_isrss;
|
|
kp2p->p_uru_minflt = pstats.p_ru.ru_minflt;
|
|
kp2p->p_uru_majflt = pstats.p_ru.ru_majflt;
|
|
kp2p->p_uru_nswap = pstats.p_ru.ru_nswap;
|
|
kp2p->p_uru_inblock = pstats.p_ru.ru_inblock;
|
|
kp2p->p_uru_oublock = pstats.p_ru.ru_oublock;
|
|
kp2p->p_uru_msgsnd = pstats.p_ru.ru_msgsnd;
|
|
kp2p->p_uru_msgrcv = pstats.p_ru.ru_msgrcv;
|
|
kp2p->p_uru_nsignals = pstats.p_ru.ru_nsignals;
|
|
kp2p->p_uru_nvcsw = pstats.p_ru.ru_nvcsw;
|
|
kp2p->p_uru_nivcsw = pstats.p_ru.ru_nivcsw;
|
|
|
|
kp2p->p_uctime_sec = (u_int32_t)
|
|
(pstats.p_cru.ru_utime.tv_sec +
|
|
pstats.p_cru.ru_stime.tv_sec);
|
|
kp2p->p_uctime_usec = (u_int32_t)
|
|
(pstats.p_cru.ru_utime.tv_usec +
|
|
pstats.p_cru.ru_stime.tv_usec);
|
|
}
|
|
|
|
memcpy(kp2c, &kp2, esize);
|
|
kp2c += esize;
|
|
}
|
|
|
|
_kvm_freeprocs(kd);
|
|
}
|
|
*cnt = nprocs;
|
|
return (kd->procbase2);
|
|
}
|
|
|
|
struct kinfo_lwp *
|
|
kvm_getlwps(kd, pid, paddr, esize, cnt)
|
|
kvm_t *kd;
|
|
int pid;
|
|
u_long paddr;
|
|
size_t esize;
|
|
int *cnt;
|
|
{
|
|
size_t size;
|
|
int mib[5], st, nlwps;
|
|
struct kinfo_lwp *kl;
|
|
|
|
if (kd->lwpbase != NULL) {
|
|
free(kd->lwpbase);
|
|
/*
|
|
* Clear this pointer in case this call fails. Otherwise,
|
|
* kvm_close() will free it again.
|
|
*/
|
|
kd->lwpbase = NULL;
|
|
}
|
|
|
|
if (ISSYSCTL(kd)) {
|
|
size = 0;
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_LWP;
|
|
mib[2] = pid;
|
|
mib[3] = esize;
|
|
mib[4] = 0;
|
|
st = sysctl(mib, 5, NULL, &size, NULL, 0);
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getlwps");
|
|
return (NULL);
|
|
}
|
|
|
|
mib[4] = size / esize;
|
|
kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd, size);
|
|
if (kd->lwpbase == NULL)
|
|
return (NULL);
|
|
st = sysctl(mib, 5, kd->lwpbase, &size, NULL, 0);
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getlwps");
|
|
return (NULL);
|
|
}
|
|
nlwps = size / esize;
|
|
} else {
|
|
/* grovel through the memory image */
|
|
struct proc p;
|
|
struct lwp l;
|
|
u_long laddr;
|
|
int i;
|
|
|
|
st = kvm_read(kd, paddr, &p, sizeof(p));
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getlwps");
|
|
return (NULL);
|
|
}
|
|
|
|
nlwps = p.p_nlwps;
|
|
kd->lwpbase = (struct kinfo_lwp *)_kvm_malloc(kd,
|
|
nlwps * sizeof(struct kinfo_lwp));
|
|
if (kd->lwpbase == NULL)
|
|
return (NULL);
|
|
laddr = (u_long)PTRTOINT64(p.p_lwps.lh_first);
|
|
for (i = 0; (i < nlwps) && (laddr != 0); i++) {
|
|
st = kvm_read(kd, laddr, &l, sizeof(l));
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getlwps");
|
|
return (NULL);
|
|
}
|
|
kl = &kd->lwpbase[i];
|
|
kl->l_laddr = laddr;
|
|
kl->l_forw = PTRTOINT64(l.l_forw);
|
|
kl->l_back = PTRTOINT64(l.l_back);
|
|
kl->l_addr = PTRTOINT64(l.l_addr);
|
|
kl->l_lid = l.l_lid;
|
|
kl->l_flag = l.l_flag;
|
|
kl->l_swtime = l.l_swtime;
|
|
kl->l_slptime = l.l_slptime;
|
|
kl->l_schedflags = 0; /* XXX */
|
|
kl->l_holdcnt = l.l_holdcnt;
|
|
kl->l_priority = l.l_priority;
|
|
kl->l_usrpri = l.l_usrpri;
|
|
kl->l_stat = l.l_stat;
|
|
kl->l_wchan = PTRTOINT64(l.l_wchan);
|
|
if (l.l_wmesg)
|
|
(void)kvm_read(kd, (u_long)l.l_wmesg,
|
|
kl->l_wmesg, WMESGLEN);
|
|
kl->l_cpuid = KI_NOCPU;
|
|
laddr = (u_long)PTRTOINT64(l.l_sibling.le_next);
|
|
}
|
|
}
|
|
|
|
*cnt = nlwps;
|
|
return (kd->lwpbase);
|
|
}
|
|
|
|
struct kinfo_proc *
|
|
kvm_getprocs(kd, op, arg, cnt)
|
|
kvm_t *kd;
|
|
int op, arg;
|
|
int *cnt;
|
|
{
|
|
size_t size;
|
|
int mib[4], st, nprocs;
|
|
|
|
if (kd->procbase != NULL) {
|
|
free(kd->procbase);
|
|
/*
|
|
* Clear this pointer in case this call fails. Otherwise,
|
|
* kvm_close() will free it again.
|
|
*/
|
|
kd->procbase = NULL;
|
|
}
|
|
if (ISKMEM(kd)) {
|
|
size = 0;
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC;
|
|
mib[2] = op;
|
|
mib[3] = arg;
|
|
st = sysctl(mib, 4, NULL, &size, NULL, 0);
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getprocs");
|
|
return (NULL);
|
|
}
|
|
kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
|
|
if (kd->procbase == NULL)
|
|
return (NULL);
|
|
st = sysctl(mib, 4, kd->procbase, &size, NULL, 0);
|
|
if (st == -1) {
|
|
_kvm_syserr(kd, kd->program, "kvm_getprocs");
|
|
return (NULL);
|
|
}
|
|
if (size % sizeof(struct kinfo_proc) != 0) {
|
|
_kvm_err(kd, kd->program,
|
|
"proc size mismatch (%lu total, %lu chunks)",
|
|
(u_long)size, (u_long)sizeof(struct kinfo_proc));
|
|
return (NULL);
|
|
}
|
|
nprocs = size / sizeof(struct kinfo_proc);
|
|
} else if (ISSYSCTL(kd)) {
|
|
_kvm_err(kd, kd->program, "kvm_open called with KVM_NO_FILES, "
|
|
"can't use kvm_getprocs");
|
|
return (NULL);
|
|
} else {
|
|
struct nlist nl[5], *p;
|
|
|
|
nl[0].n_name = "_nprocs";
|
|
nl[1].n_name = "_allproc";
|
|
nl[2].n_name = "_deadproc";
|
|
nl[3].n_name = "_zombproc";
|
|
nl[4].n_name = NULL;
|
|
|
|
if (kvm_nlist(kd, nl) != 0) {
|
|
for (p = nl; p->n_type != 0; ++p)
|
|
continue;
|
|
_kvm_err(kd, kd->program,
|
|
"%s: no such symbol", p->n_name);
|
|
return (NULL);
|
|
}
|
|
if (KREAD(kd, nl[0].n_value, &nprocs)) {
|
|
_kvm_err(kd, kd->program, "can't read nprocs");
|
|
return (NULL);
|
|
}
|
|
size = nprocs * sizeof(struct kinfo_proc);
|
|
kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
|
|
if (kd->procbase == NULL)
|
|
return (NULL);
|
|
|
|
nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
|
|
nl[2].n_value, nl[3].n_value, nprocs);
|
|
if (nprocs < 0)
|
|
return (NULL);
|
|
#ifdef notdef
|
|
size = nprocs * sizeof(struct kinfo_proc);
|
|
(void)realloc(kd->procbase, size);
|
|
#endif
|
|
}
|
|
*cnt = nprocs;
|
|
return (kd->procbase);
|
|
}
|
|
|
|
void
|
|
_kvm_freeprocs(kd)
|
|
kvm_t *kd;
|
|
{
|
|
|
|
if (kd->procbase) {
|
|
free(kd->procbase);
|
|
kd->procbase = NULL;
|
|
}
|
|
}
|
|
|
|
void *
|
|
_kvm_realloc(kd, p, n)
|
|
kvm_t *kd;
|
|
void *p;
|
|
size_t n;
|
|
{
|
|
void *np = realloc(p, n);
|
|
|
|
if (np == NULL)
|
|
_kvm_err(kd, kd->program, "out of memory");
|
|
return (np);
|
|
}
|
|
|
|
/*
|
|
* Read in an argument vector from the user address space of process p.
|
|
* addr if the user-space base address of narg null-terminated contiguous
|
|
* strings. This is used to read in both the command arguments and
|
|
* environment strings. Read at most maxcnt characters of strings.
|
|
*/
|
|
static char **
|
|
kvm_argv(kd, p, addr, narg, maxcnt)
|
|
kvm_t *kd;
|
|
const struct miniproc *p;
|
|
u_long addr;
|
|
int narg;
|
|
int maxcnt;
|
|
{
|
|
char *np, *cp, *ep, *ap;
|
|
u_long oaddr = (u_long)~0L;
|
|
u_long len;
|
|
size_t cc;
|
|
char **argv;
|
|
|
|
/*
|
|
* Check that there aren't an unreasonable number of agruments,
|
|
* and that the address is in user space.
|
|
*/
|
|
if (narg > ARG_MAX || addr < kd->min_uva || addr >= kd->max_uva)
|
|
return (NULL);
|
|
|
|
if (kd->argv == NULL) {
|
|
/*
|
|
* Try to avoid reallocs.
|
|
*/
|
|
kd->argc = MAX(narg + 1, 32);
|
|
kd->argv = (char **)_kvm_malloc(kd, kd->argc *
|
|
sizeof(*kd->argv));
|
|
if (kd->argv == NULL)
|
|
return (NULL);
|
|
} else if (narg + 1 > kd->argc) {
|
|
kd->argc = MAX(2 * kd->argc, narg + 1);
|
|
kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
|
|
sizeof(*kd->argv));
|
|
if (kd->argv == NULL)
|
|
return (NULL);
|
|
}
|
|
if (kd->argspc == NULL) {
|
|
kd->argspc = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
|
|
if (kd->argspc == NULL)
|
|
return (NULL);
|
|
kd->arglen = kd->nbpg;
|
|
}
|
|
if (kd->argbuf == NULL) {
|
|
kd->argbuf = (char *)_kvm_malloc(kd, (size_t)kd->nbpg);
|
|
if (kd->argbuf == NULL)
|
|
return (NULL);
|
|
}
|
|
cc = sizeof(char *) * narg;
|
|
if (kvm_ureadm(kd, p, addr, (void *)kd->argv, cc) != cc)
|
|
return (NULL);
|
|
ap = np = kd->argspc;
|
|
argv = kd->argv;
|
|
len = 0;
|
|
/*
|
|
* Loop over pages, filling in the argument vector.
|
|
*/
|
|
while (argv < kd->argv + narg && *argv != NULL) {
|
|
addr = (u_long)*argv & ~(kd->nbpg - 1);
|
|
if (addr != oaddr) {
|
|
if (kvm_ureadm(kd, p, addr, kd->argbuf,
|
|
(size_t)kd->nbpg) != kd->nbpg)
|
|
return (NULL);
|
|
oaddr = addr;
|
|
}
|
|
addr = (u_long)*argv & (kd->nbpg - 1);
|
|
cp = kd->argbuf + (size_t)addr;
|
|
cc = kd->nbpg - (size_t)addr;
|
|
if (maxcnt > 0 && cc > (size_t)(maxcnt - len))
|
|
cc = (size_t)(maxcnt - len);
|
|
ep = memchr(cp, '\0', cc);
|
|
if (ep != NULL)
|
|
cc = ep - cp + 1;
|
|
if (len + cc > kd->arglen) {
|
|
int off;
|
|
char **pp;
|
|
char *op = kd->argspc;
|
|
|
|
kd->arglen *= 2;
|
|
kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
|
|
(size_t)kd->arglen);
|
|
if (kd->argspc == NULL)
|
|
return (NULL);
|
|
/*
|
|
* Adjust argv pointers in case realloc moved
|
|
* the string space.
|
|
*/
|
|
off = kd->argspc - op;
|
|
for (pp = kd->argv; pp < argv; pp++)
|
|
*pp += off;
|
|
ap += off;
|
|
np += off;
|
|
}
|
|
memcpy(np, cp, cc);
|
|
np += cc;
|
|
len += cc;
|
|
if (ep != NULL) {
|
|
*argv++ = ap;
|
|
ap = np;
|
|
} else
|
|
*argv += cc;
|
|
if (maxcnt > 0 && len >= maxcnt) {
|
|
/*
|
|
* We're stopping prematurely. Terminate the
|
|
* current string.
|
|
*/
|
|
if (ep == NULL) {
|
|
*np = '\0';
|
|
*argv++ = ap;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
/* Make sure argv is terminated. */
|
|
*argv = NULL;
|
|
return (kd->argv);
|
|
}
|
|
|
|
static void
|
|
ps_str_a(p, addr, n)
|
|
struct ps_strings *p;
|
|
u_long *addr;
|
|
int *n;
|
|
{
|
|
|
|
*addr = (u_long)p->ps_argvstr;
|
|
*n = p->ps_nargvstr;
|
|
}
|
|
|
|
static void
|
|
ps_str_e(p, addr, n)
|
|
struct ps_strings *p;
|
|
u_long *addr;
|
|
int *n;
|
|
{
|
|
|
|
*addr = (u_long)p->ps_envstr;
|
|
*n = p->ps_nenvstr;
|
|
}
|
|
|
|
/*
|
|
* Determine if the proc indicated by p is still active.
|
|
* This test is not 100% foolproof in theory, but chances of
|
|
* being wrong are very low.
|
|
*/
|
|
static int
|
|
proc_verify(kd, kernp, p)
|
|
kvm_t *kd;
|
|
u_long kernp;
|
|
const struct miniproc *p;
|
|
{
|
|
struct proc kernproc;
|
|
|
|
/*
|
|
* Just read in the whole proc. It's not that big relative
|
|
* to the cost of the read system call.
|
|
*/
|
|
if (kvm_read(kd, kernp, &kernproc, sizeof(kernproc)) !=
|
|
sizeof(kernproc))
|
|
return (0);
|
|
return (p->p_pid == kernproc.p_pid &&
|
|
(kernproc.p_stat != SZOMB || p->p_stat == SZOMB));
|
|
}
|
|
|
|
static char **
|
|
kvm_doargv(kd, p, nchr, info)
|
|
kvm_t *kd;
|
|
const struct miniproc *p;
|
|
int nchr;
|
|
void (*info)(struct ps_strings *, u_long *, int *);
|
|
{
|
|
char **ap;
|
|
u_long addr;
|
|
int cnt;
|
|
struct ps_strings arginfo;
|
|
|
|
/*
|
|
* Pointers are stored at the top of the user stack.
|
|
*/
|
|
if (p->p_stat == SZOMB)
|
|
return (NULL);
|
|
cnt = kvm_ureadm(kd, p, kd->usrstack - sizeof(arginfo),
|
|
(void *)&arginfo, sizeof(arginfo));
|
|
if (cnt != sizeof(arginfo))
|
|
return (NULL);
|
|
|
|
(*info)(&arginfo, &addr, &cnt);
|
|
if (cnt == 0)
|
|
return (NULL);
|
|
ap = kvm_argv(kd, p, addr, cnt, nchr);
|
|
/*
|
|
* For live kernels, make sure this process didn't go away.
|
|
*/
|
|
if (ap != NULL && ISALIVE(kd) &&
|
|
!proc_verify(kd, (u_long)p->p_paddr, p))
|
|
ap = NULL;
|
|
return (ap);
|
|
}
|
|
|
|
/*
|
|
* Get the command args. This code is now machine independent.
|
|
*/
|
|
char **
|
|
kvm_getargv(kd, kp, nchr)
|
|
kvm_t *kd;
|
|
const struct kinfo_proc *kp;
|
|
int nchr;
|
|
{
|
|
struct miniproc p;
|
|
|
|
KPTOMINI(kp, &p);
|
|
return (kvm_doargv(kd, &p, nchr, ps_str_a));
|
|
}
|
|
|
|
char **
|
|
kvm_getenvv(kd, kp, nchr)
|
|
kvm_t *kd;
|
|
const struct kinfo_proc *kp;
|
|
int nchr;
|
|
{
|
|
struct miniproc p;
|
|
|
|
KPTOMINI(kp, &p);
|
|
return (kvm_doargv(kd, &p, nchr, ps_str_e));
|
|
}
|
|
|
|
static char **
|
|
kvm_doargv2(kd, pid, type, nchr)
|
|
kvm_t *kd;
|
|
pid_t pid;
|
|
int type;
|
|
int nchr;
|
|
{
|
|
size_t bufs;
|
|
int narg, mib[4];
|
|
size_t newarglen;
|
|
char **ap, *bp, *endp;
|
|
|
|
/*
|
|
* Check that there aren't an unreasonable number of agruments.
|
|
*/
|
|
if (nchr > ARG_MAX)
|
|
return (NULL);
|
|
|
|
if (nchr == 0)
|
|
nchr = ARG_MAX;
|
|
|
|
/* Get number of strings in argv */
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC_ARGS;
|
|
mib[2] = pid;
|
|
mib[3] = type == KERN_PROC_ARGV ? KERN_PROC_NARGV : KERN_PROC_NENV;
|
|
bufs = sizeof(narg);
|
|
if (sysctl(mib, 4, &narg, &bufs, NULL, NULL) == -1)
|
|
return (NULL);
|
|
|
|
if (kd->argv == NULL) {
|
|
/*
|
|
* Try to avoid reallocs.
|
|
*/
|
|
kd->argc = MAX(narg + 1, 32);
|
|
kd->argv = (char **)_kvm_malloc(kd, kd->argc *
|
|
sizeof(*kd->argv));
|
|
if (kd->argv == NULL)
|
|
return (NULL);
|
|
} else if (narg + 1 > kd->argc) {
|
|
kd->argc = MAX(2 * kd->argc, narg + 1);
|
|
kd->argv = (char **)_kvm_realloc(kd, kd->argv, kd->argc *
|
|
sizeof(*kd->argv));
|
|
if (kd->argv == NULL)
|
|
return (NULL);
|
|
}
|
|
|
|
newarglen = MIN(nchr, ARG_MAX);
|
|
if (kd->arglen < newarglen) {
|
|
if (kd->arglen == 0)
|
|
kd->argspc = (char *)_kvm_malloc(kd, newarglen);
|
|
else
|
|
kd->argspc = (char *)_kvm_realloc(kd, kd->argspc,
|
|
newarglen);
|
|
if (kd->argspc == NULL)
|
|
return (NULL);
|
|
kd->arglen = newarglen;
|
|
}
|
|
memset(kd->argspc, 0, (size_t)kd->arglen); /* XXX necessary? */
|
|
|
|
mib[0] = CTL_KERN;
|
|
mib[1] = KERN_PROC_ARGS;
|
|
mib[2] = pid;
|
|
mib[3] = type;
|
|
bufs = kd->arglen;
|
|
if (sysctl(mib, 4, kd->argspc, &bufs, NULL, NULL) == -1)
|
|
return (NULL);
|
|
|
|
bp = kd->argspc;
|
|
bp[kd->arglen-1] = '\0'; /* make sure the string ends with nul */
|
|
ap = kd->argv;
|
|
endp = bp + MIN(nchr, bufs);
|
|
|
|
while (bp < endp) {
|
|
*ap++ = bp;
|
|
/*
|
|
* XXX: don't need following anymore, or stick check
|
|
* for max argc in above while loop?
|
|
*/
|
|
if (ap >= kd->argv + kd->argc) {
|
|
kd->argc *= 2;
|
|
kd->argv = _kvm_realloc(kd, kd->argv,
|
|
kd->argc * sizeof(*kd->argv));
|
|
ap = kd->argv;
|
|
}
|
|
bp += strlen(bp) + 1;
|
|
}
|
|
*ap = NULL;
|
|
|
|
return (kd->argv);
|
|
}
|
|
|
|
char **
|
|
kvm_getargv2(kd, kp, nchr)
|
|
kvm_t *kd;
|
|
const struct kinfo_proc2 *kp;
|
|
int nchr;
|
|
{
|
|
|
|
return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ARGV, nchr));
|
|
}
|
|
|
|
char **
|
|
kvm_getenvv2(kd, kp, nchr)
|
|
kvm_t *kd;
|
|
const struct kinfo_proc2 *kp;
|
|
int nchr;
|
|
{
|
|
|
|
return (kvm_doargv2(kd, kp->p_pid, KERN_PROC_ENV, nchr));
|
|
}
|
|
|
|
/*
|
|
* Read from user space. The user context is given by p.
|
|
*/
|
|
static ssize_t
|
|
kvm_ureadm(kd, p, uva, buf, len)
|
|
kvm_t *kd;
|
|
const struct miniproc *p;
|
|
u_long uva;
|
|
char *buf;
|
|
size_t len;
|
|
{
|
|
char *cp;
|
|
|
|
cp = buf;
|
|
while (len > 0) {
|
|
size_t cc;
|
|
char *dp;
|
|
u_long cnt;
|
|
|
|
dp = _kvm_ureadm(kd, p, uva, &cnt);
|
|
if (dp == NULL) {
|
|
_kvm_err(kd, 0, "invalid address (%lx)", uva);
|
|
return (0);
|
|
}
|
|
cc = (size_t)MIN(cnt, len);
|
|
memcpy(cp, dp, cc);
|
|
cp += cc;
|
|
uva += cc;
|
|
len -= cc;
|
|
}
|
|
return (ssize_t)(cp - buf);
|
|
}
|
|
|
|
ssize_t
|
|
kvm_uread(kd, p, uva, buf, len)
|
|
kvm_t *kd;
|
|
const struct proc *p;
|
|
u_long uva;
|
|
char *buf;
|
|
size_t len;
|
|
{
|
|
struct miniproc mp;
|
|
|
|
PTOMINI(p, &mp);
|
|
return (kvm_ureadm(kd, &mp, uva, buf, len));
|
|
}
|