NetBSD/sys/net/rtsock.c

2083 lines
52 KiB
C

/* $NetBSD: rtsock.c,v 1.212 2017/04/11 13:55:55 roy Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1988, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)rtsock.c 8.7 (Berkeley) 10/12/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rtsock.c,v 1.212 2017/04/11 13:55:55 roy Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_mpls.h"
#include "opt_compat_netbsd.h"
#include "opt_sctp.h"
#include "opt_net_mpsafe.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/sysctl.h>
#include <sys/kauth.h>
#include <sys/kmem.h>
#include <sys/intr.h>
#include <net/if.h>
#include <net/if_llatbl.h>
#include <net/if_types.h>
#include <net/route.h>
#include <net/raw_cb.h>
#include <netinet/in_var.h>
#include <netinet/if_inarp.h>
#include <netmpls/mpls.h>
#ifdef SCTP
extern void sctp_add_ip_address(struct ifaddr *);
extern void sctp_delete_ip_address(struct ifaddr *);
#endif
#if defined(COMPAT_14) || defined(COMPAT_50) || defined(COMPAT_70)
#include <compat/net/if.h>
#include <compat/net/route.h>
#endif
#ifdef COMPAT_RTSOCK
#define RTM_XVERSION RTM_OVERSION
#define RTM_XNEWADDR RTM_ONEWADDR
#define RTM_XDELADDR RTM_ODELADDR
#define RTM_XCHGADDR RTM_OCHGADDR
#define RT_XADVANCE(a,b) RT_OADVANCE(a,b)
#define RT_XROUNDUP(n) RT_OROUNDUP(n)
#define PF_XROUTE PF_OROUTE
#define rt_xmsghdr rt_msghdr50
#define if_xmsghdr if_msghdr /* if_msghdr50 is for RTM_OIFINFO */
#define ifa_xmsghdr ifa_msghdr50
#define if_xannouncemsghdr if_announcemsghdr50
#define COMPATNAME(x) compat_50_ ## x
#define DOMAINNAME "oroute"
CTASSERT(sizeof(struct ifa_xmsghdr) == 20);
DOMAIN_DEFINE(compat_50_routedomain); /* forward declare and add to link set */
#undef COMPAT_70
#else /* COMPAT_RTSOCK */
#define RTM_XVERSION RTM_VERSION
#define RTM_XNEWADDR RTM_NEWADDR
#define RTM_XDELADDR RTM_DELADDR
#define RTM_XCHGADDR RTM_CHGADDR
#define RT_XADVANCE(a,b) RT_ADVANCE(a,b)
#define RT_XROUNDUP(n) RT_ROUNDUP(n)
#define PF_XROUTE PF_ROUTE
#define rt_xmsghdr rt_msghdr
#define if_xmsghdr if_msghdr
#define ifa_xmsghdr ifa_msghdr
#define if_xannouncemsghdr if_announcemsghdr
#define COMPATNAME(x) x
#define DOMAINNAME "route"
CTASSERT(sizeof(struct ifa_xmsghdr) == 32);
#ifdef COMPAT_50
#define COMPATCALL(name, args) compat_50_ ## name args
#endif
DOMAIN_DEFINE(routedomain); /* forward declare and add to link set */
#undef COMPAT_50
#undef COMPAT_14
#endif /* COMPAT_RTSOCK */
#ifndef COMPATCALL
#define COMPATCALL(name, args) do { } while (/*CONSTCOND*/ 0)
#endif
#ifdef RTSOCK_DEBUG
#define RT_IN_PRINT(info, b, a) (in_print((b), sizeof(b), \
&((const struct sockaddr_in *)(info)->rti_info[(a)])->sin_addr), (b))
#endif /* RTSOCK_DEBUG */
struct route_info COMPATNAME(route_info) = {
.ri_dst = { .sa_len = 2, .sa_family = PF_XROUTE, },
.ri_src = { .sa_len = 2, .sa_family = PF_XROUTE, },
.ri_maxqlen = IFQ_MAXLEN,
};
#define PRESERVED_RTF (RTF_UP | RTF_GATEWAY | RTF_HOST | RTF_DONE | RTF_MASK)
static void COMPATNAME(route_init)(void);
static int COMPATNAME(route_output)(struct mbuf *, struct socket *);
static int rt_xaddrs(u_char, const char *, const char *, struct rt_addrinfo *);
static struct mbuf *rt_makeifannouncemsg(struct ifnet *, int, int,
struct rt_addrinfo *);
static int rt_msg2(int, struct rt_addrinfo *, void *, struct rt_walkarg *, int *);
static void rt_setmetrics(int, const struct rt_xmsghdr *, struct rtentry *);
static void rtm_setmetrics(const struct rtentry *, struct rt_xmsghdr *);
static void sysctl_net_route_setup(struct sysctllog **);
static int sysctl_dumpentry(struct rtentry *, void *);
static int sysctl_iflist(int, struct rt_walkarg *, int);
static int sysctl_rtable(SYSCTLFN_PROTO);
static void rt_adjustcount(int, int);
static const struct protosw COMPATNAME(route_protosw)[];
struct routecb {
struct rawcb rocb_rcb;
unsigned int rocb_msgfilter;
#define RTMSGFILTER(m) (1U << (m))
};
#define sotoroutecb(so) ((struct routecb *)(so)->so_pcb)
static void
rt_adjustcount(int af, int cnt)
{
struct route_cb * const cb = &COMPATNAME(route_info).ri_cb;
cb->any_count += cnt;
switch (af) {
case AF_INET:
cb->ip_count += cnt;
return;
#ifdef INET6
case AF_INET6:
cb->ip6_count += cnt;
return;
#endif
case AF_MPLS:
cb->mpls_count += cnt;
return;
}
}
static int
COMPATNAME(route_filter)(struct mbuf *m, struct sockproto *proto,
struct rawcb *rp)
{
struct routecb *rop = (struct routecb *)rp;
struct rt_xmsghdr *rtm;
KASSERT(m != NULL);
KASSERT(proto != NULL);
KASSERT(rp != NULL);
/* Wrong family for this socket. */
if (proto->sp_family != PF_ROUTE)
return ENOPROTOOPT;
/* If no filter set, just return. */
if (rop->rocb_msgfilter == 0)
return 0;
/* Ensure we can access rtm_type */
if (m->m_len <
offsetof(struct rt_xmsghdr, rtm_type) + sizeof(rtm->rtm_type))
return EINVAL;
rtm = mtod(m, struct rt_xmsghdr *);
/* If the rtm type is filtered out, return a positive. */
if (!(rop->rocb_msgfilter & RTMSGFILTER(rtm->rtm_type)))
return EEXIST;
/* Passed the filter. */
return 0;
}
static int
COMPATNAME(route_attach)(struct socket *so, int proto)
{
struct rawcb *rp;
struct routecb *rop;
int s, error;
KASSERT(sotorawcb(so) == NULL);
rop = kmem_zalloc(sizeof(*rop), KM_SLEEP);
rp = &rop->rocb_rcb;
rp->rcb_len = sizeof(*rop);
so->so_pcb = rp;
s = splsoftnet();
if ((error = raw_attach(so, proto)) == 0) {
rt_adjustcount(rp->rcb_proto.sp_protocol, 1);
rp->rcb_laddr = &COMPATNAME(route_info).ri_src;
rp->rcb_faddr = &COMPATNAME(route_info).ri_dst;
rp->rcb_filter = COMPATNAME(route_filter);
}
splx(s);
if (error) {
kmem_free(rop, sizeof(*rop));
so->so_pcb = NULL;
return error;
}
soisconnected(so);
so->so_options |= SO_USELOOPBACK;
KASSERT(solocked(so));
return error;
}
static void
COMPATNAME(route_detach)(struct socket *so)
{
struct rawcb *rp = sotorawcb(so);
int s;
KASSERT(rp != NULL);
KASSERT(solocked(so));
s = splsoftnet();
rt_adjustcount(rp->rcb_proto.sp_protocol, -1);
raw_detach(so);
splx(s);
}
static int
COMPATNAME(route_accept)(struct socket *so, struct sockaddr *nam)
{
KASSERT(solocked(so));
panic("route_accept");
return EOPNOTSUPP;
}
static int
COMPATNAME(route_bind)(struct socket *so, struct sockaddr *nam, struct lwp *l)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
static int
COMPATNAME(route_listen)(struct socket *so, struct lwp *l)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
static int
COMPATNAME(route_connect)(struct socket *so, struct sockaddr *nam, struct lwp *l)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
static int
COMPATNAME(route_connect2)(struct socket *so, struct socket *so2)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
static int
COMPATNAME(route_disconnect)(struct socket *so)
{
struct rawcb *rp = sotorawcb(so);
int s;
KASSERT(solocked(so));
KASSERT(rp != NULL);
s = splsoftnet();
soisdisconnected(so);
raw_disconnect(rp);
splx(s);
return 0;
}
static int
COMPATNAME(route_shutdown)(struct socket *so)
{
int s;
KASSERT(solocked(so));
/*
* Mark the connection as being incapable of further input.
*/
s = splsoftnet();
socantsendmore(so);
splx(s);
return 0;
}
static int
COMPATNAME(route_abort)(struct socket *so)
{
KASSERT(solocked(so));
panic("route_abort");
return EOPNOTSUPP;
}
static int
COMPATNAME(route_ioctl)(struct socket *so, u_long cmd, void *nam,
struct ifnet * ifp)
{
return EOPNOTSUPP;
}
static int
COMPATNAME(route_stat)(struct socket *so, struct stat *ub)
{
KASSERT(solocked(so));
return 0;
}
static int
COMPATNAME(route_peeraddr)(struct socket *so, struct sockaddr *nam)
{
struct rawcb *rp = sotorawcb(so);
KASSERT(solocked(so));
KASSERT(rp != NULL);
KASSERT(nam != NULL);
if (rp->rcb_faddr == NULL)
return ENOTCONN;
raw_setpeeraddr(rp, nam);
return 0;
}
static int
COMPATNAME(route_sockaddr)(struct socket *so, struct sockaddr *nam)
{
struct rawcb *rp = sotorawcb(so);
KASSERT(solocked(so));
KASSERT(rp != NULL);
KASSERT(nam != NULL);
if (rp->rcb_faddr == NULL)
return ENOTCONN;
raw_setsockaddr(rp, nam);
return 0;
}
static int
COMPATNAME(route_rcvd)(struct socket *so, int flags, struct lwp *l)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
static int
COMPATNAME(route_recvoob)(struct socket *so, struct mbuf *m, int flags)
{
KASSERT(solocked(so));
return EOPNOTSUPP;
}
static int
COMPATNAME(route_send)(struct socket *so, struct mbuf *m,
struct sockaddr *nam, struct mbuf *control, struct lwp *l)
{
int error = 0;
int s;
KASSERT(solocked(so));
KASSERT(so->so_proto == &COMPATNAME(route_protosw)[0]);
s = splsoftnet();
error = raw_send(so, m, nam, control, l, &COMPATNAME(route_output));
splx(s);
return error;
}
static int
COMPATNAME(route_sendoob)(struct socket *so, struct mbuf *m,
struct mbuf *control)
{
KASSERT(solocked(so));
m_freem(m);
m_freem(control);
return EOPNOTSUPP;
}
static int
COMPATNAME(route_purgeif)(struct socket *so, struct ifnet *ifp)
{
panic("route_purgeif");
return EOPNOTSUPP;
}
#ifdef INET
static int
route_get_sdl_index(struct rt_addrinfo *info, int *sdl_index)
{
struct rtentry *nrt;
int error;
error = rtrequest1(RTM_GET, info, &nrt);
if (error != 0)
return error;
/*
* nrt->rt_ifp->if_index may not be correct
* due to changing to ifplo0.
*/
*sdl_index = satosdl(nrt->rt_gateway)->sdl_index;
rt_unref(nrt);
return 0;
}
#endif /* INET */
static void
route_get_sdl(const struct ifnet *ifp, const struct sockaddr *dst,
struct sockaddr_dl *sdl, int *flags)
{
struct llentry *la;
KASSERT(ifp != NULL);
IF_AFDATA_RLOCK(ifp);
switch (dst->sa_family) {
case AF_INET:
la = lla_lookup(LLTABLE(ifp), 0, dst);
break;
case AF_INET6:
la = lla_lookup(LLTABLE6(ifp), 0, dst);
break;
default:
la = NULL;
KASSERTMSG(0, "Invalid AF=%d\n", dst->sa_family);
break;
}
IF_AFDATA_RUNLOCK(ifp);
void *a = (LLE_IS_VALID(la) && (la->la_flags & LLE_VALID) == LLE_VALID)
? &la->ll_addr : NULL;
a = sockaddr_dl_init(sdl, sizeof(*sdl), ifp->if_index, ifp->if_type,
NULL, 0, a, ifp->if_addrlen);
KASSERT(a != NULL);
if (la != NULL) {
*flags = la->la_flags;
LLE_RUNLOCK(la);
}
}
static int
route_output_report(struct rtentry *rt, struct rt_addrinfo *info,
struct rt_xmsghdr *rtm, struct rt_xmsghdr **new_rtm)
{
int len;
struct ifnet *ifp;
if ((rtm->rtm_addrs & (RTA_IFP | RTA_IFA)) == 0)
;
else if ((ifp = rt->rt_ifp) != NULL) {
const struct ifaddr *rtifa;
info->rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
/* rtifa used to be simply rt->rt_ifa.
* If rt->rt_ifa != NULL, then
* rt_get_ifa() != NULL. So this
* ought to still be safe. --dyoung
*/
rtifa = rt_get_ifa(rt);
info->rti_info[RTAX_IFA] = rtifa->ifa_addr;
#ifdef RTSOCK_DEBUG
if (info->rti_info[RTAX_IFA]->sa_family == AF_INET) {
char ibuf[INET_ADDRSTRLEN];
char abuf[INET_ADDRSTRLEN];
printf("%s: copying out RTAX_IFA %s "
"for info->rti_info[RTAX_DST] %s "
"ifa_getifa %p ifa_seqno %p\n",
__func__,
RT_IN_PRINT(info, ibuf, RTAX_IFA),
RT_IN_PRINT(info, abuf, RTAX_DST),
(void *)rtifa->ifa_getifa,
rtifa->ifa_seqno);
}
#endif /* RTSOCK_DEBUG */
if (ifp->if_flags & IFF_POINTOPOINT)
info->rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
else
info->rti_info[RTAX_BRD] = NULL;
rtm->rtm_index = ifp->if_index;
} else {
info->rti_info[RTAX_IFP] = NULL;
info->rti_info[RTAX_IFA] = NULL;
}
(void)rt_msg2(rtm->rtm_type, info, NULL, NULL, &len);
if (len > rtm->rtm_msglen) {
struct rt_xmsghdr *old_rtm = rtm;
R_Malloc(*new_rtm, struct rt_xmsghdr *, len);
if (*new_rtm == NULL)
return ENOBUFS;
(void)memcpy(*new_rtm, old_rtm, old_rtm->rtm_msglen);
rtm = *new_rtm;
}
(void)rt_msg2(rtm->rtm_type, info, rtm, NULL, 0);
rtm->rtm_flags = rt->rt_flags;
rtm_setmetrics(rt, rtm);
rtm->rtm_addrs = info->rti_addrs;
return 0;
}
static struct ifaddr *
route_output_get_ifa(const struct rt_addrinfo info, const struct rtentry *rt,
struct ifnet **ifp, struct psref *psref)
{
struct ifaddr *ifa = NULL;
*ifp = NULL;
if (info.rti_info[RTAX_IFP] != NULL) {
ifa = ifa_ifwithnet_psref(info.rti_info[RTAX_IFP], psref);
if (ifa == NULL)
goto next;
*ifp = ifa->ifa_ifp;
if (info.rti_info[RTAX_IFA] == NULL &&
info.rti_info[RTAX_GATEWAY] == NULL)
goto next;
if (info.rti_info[RTAX_IFA] == NULL) {
/* route change <dst> <gw> -ifp <if> */
ifa = ifaof_ifpforaddr_psref(info.rti_info[RTAX_GATEWAY],
*ifp, psref);
} else {
/* route change <dst> -ifp <if> -ifa <addr> */
ifa = ifa_ifwithaddr_psref(info.rti_info[RTAX_IFA], psref);
if (ifa != NULL)
goto out;
ifa = ifaof_ifpforaddr_psref(info.rti_info[RTAX_IFA],
*ifp, psref);
}
goto out;
}
next:
if (info.rti_info[RTAX_IFA] != NULL) {
/* route change <dst> <gw> -ifa <addr> */
ifa = ifa_ifwithaddr_psref(info.rti_info[RTAX_IFA], psref);
if (ifa != NULL)
goto out;
}
if (info.rti_info[RTAX_GATEWAY] != NULL) {
/* route change <dst> <gw> */
ifa = ifa_ifwithroute_psref(rt->rt_flags, rt_getkey(rt),
info.rti_info[RTAX_GATEWAY], psref);
}
out:
if (ifa != NULL && *ifp == NULL)
*ifp = ifa->ifa_ifp;
return ifa;
}
static int
route_output_change(struct rtentry *rt, struct rt_addrinfo *info,
struct rt_xmsghdr *rtm)
{
int error = 0;
struct ifnet *ifp = NULL, *new_ifp;
struct ifaddr *ifa = NULL, *new_ifa;
struct psref psref_ifa, psref_new_ifa, psref_ifp;
bool newgw;
/*
* New gateway could require new ifaddr, ifp;
* flags may also be different; ifp may be specified
* by ll sockaddr when protocol address is ambiguous
*/
newgw = info->rti_info[RTAX_GATEWAY] != NULL &&
sockaddr_cmp(info->rti_info[RTAX_GATEWAY], rt->rt_gateway) != 0;
if (newgw || info->rti_info[RTAX_IFP] != NULL ||
info->rti_info[RTAX_IFA] != NULL) {
ifp = rt_getifp(info, &psref_ifp);
ifa = rt_getifa(info, &psref_ifa);
if (ifa == NULL) {
error = ENETUNREACH;
goto out;
}
}
if (newgw) {
error = rt_setgate(rt, info->rti_info[RTAX_GATEWAY]);
if (error != 0)
goto out;
}
if (info->rti_info[RTAX_TAG]) {
const struct sockaddr *tag;
tag = rt_settag(rt, info->rti_info[RTAX_TAG]);
if (tag == NULL) {
error = ENOBUFS;
goto out;
}
}
/*
* New gateway could require new ifaddr, ifp;
* flags may also be different; ifp may be specified
* by ll sockaddr when protocol address is ambiguous
*/
new_ifa = route_output_get_ifa(*info, rt, &new_ifp, &psref_new_ifa);
if (new_ifa != NULL) {
ifa_release(ifa, &psref_ifa);
ifa = new_ifa;
}
if (ifa) {
struct ifaddr *oifa = rt->rt_ifa;
if (oifa != ifa && !ifa_is_destroying(ifa) &&
new_ifp != NULL && !if_is_deactivated(new_ifp)) {
if (oifa && oifa->ifa_rtrequest)
oifa->ifa_rtrequest(RTM_DELETE, rt, info);
rt_replace_ifa(rt, ifa);
rt->rt_ifp = new_ifp;
}
if (new_ifa == NULL)
ifa_release(ifa, &psref_ifa);
}
ifa_release(new_ifa, &psref_new_ifa);
if (new_ifp && rt->rt_ifp != new_ifp && !if_is_deactivated(new_ifp))
rt->rt_ifp = new_ifp;
rt_setmetrics(rtm->rtm_inits, rtm, rt);
if (rt->rt_flags != info->rti_flags) {
rt->rt_flags = (info->rti_flags & ~PRESERVED_RTF) |
(rt->rt_flags & PRESERVED_RTF);
}
if (rt->rt_ifa && rt->rt_ifa->ifa_rtrequest)
rt->rt_ifa->ifa_rtrequest(RTM_ADD, rt, info);
out:
if_put(ifp, &psref_ifp);
return error;
}
/*ARGSUSED*/
int
COMPATNAME(route_output)(struct mbuf *m, struct socket *so)
{
struct sockproto proto = { .sp_family = PF_XROUTE, };
struct rt_xmsghdr *rtm = NULL;
struct rt_xmsghdr *old_rtm = NULL, *new_rtm = NULL;
struct rtentry *rt = NULL;
struct rtentry *saved_nrt = NULL;
struct rt_addrinfo info;
int len, error = 0;
sa_family_t family;
struct sockaddr_dl sdl;
int bound = curlwp_bind();
bool do_rt_free = false;
#define senderr(e) do { error = e; goto flush;} while (/*CONSTCOND*/ 0)
if (m == NULL || ((m->m_len < sizeof(int32_t)) &&
(m = m_pullup(m, sizeof(int32_t))) == NULL)) {
error = ENOBUFS;
goto out;
}
if ((m->m_flags & M_PKTHDR) == 0)
panic("%s", __func__);
len = m->m_pkthdr.len;
if (len < sizeof(*rtm) ||
len != mtod(m, struct rt_xmsghdr *)->rtm_msglen) {
info.rti_info[RTAX_DST] = NULL;
senderr(EINVAL);
}
R_Malloc(rtm, struct rt_xmsghdr *, len);
if (rtm == NULL) {
info.rti_info[RTAX_DST] = NULL;
senderr(ENOBUFS);
}
m_copydata(m, 0, len, rtm);
if (rtm->rtm_version != RTM_XVERSION) {
info.rti_info[RTAX_DST] = NULL;
senderr(EPROTONOSUPPORT);
}
rtm->rtm_pid = curproc->p_pid;
memset(&info, 0, sizeof(info));
info.rti_addrs = rtm->rtm_addrs;
if (rt_xaddrs(rtm->rtm_type, (const char *)(rtm + 1), len + (char *)rtm,
&info)) {
senderr(EINVAL);
}
info.rti_flags = rtm->rtm_flags;
#ifdef RTSOCK_DEBUG
if (info.rti_info[RTAX_DST]->sa_family == AF_INET) {
char abuf[INET_ADDRSTRLEN];
printf("%s: extracted info.rti_info[RTAX_DST] %s\n", __func__,
RT_IN_PRINT(&info, abuf, RTAX_DST));
}
#endif /* RTSOCK_DEBUG */
if (info.rti_info[RTAX_DST] == NULL ||
(info.rti_info[RTAX_DST]->sa_family >= AF_MAX)) {
senderr(EINVAL);
}
if (info.rti_info[RTAX_GATEWAY] != NULL &&
(info.rti_info[RTAX_GATEWAY]->sa_family >= AF_MAX)) {
senderr(EINVAL);
}
/*
* Verify that the caller has the appropriate privilege; RTM_GET
* is the only operation the non-superuser is allowed.
*/
if (kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_ROUTE,
0, rtm, NULL, NULL) != 0)
senderr(EACCES);
switch (rtm->rtm_type) {
case RTM_ADD:
if (info.rti_info[RTAX_GATEWAY] == NULL) {
senderr(EINVAL);
}
#ifdef INET
/* support for new ARP code with keeping backcompat */
if (info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) {
const struct sockaddr_dl *sdlp =
satocsdl(info.rti_info[RTAX_GATEWAY]);
/* Allow routing requests by interface index */
if (sdlp->sdl_nlen == 0 && sdlp->sdl_alen == 0
&& sdlp->sdl_slen == 0)
goto fallback;
/*
* Old arp binaries don't set the sdl_index
* so we have to complement it.
*/
int sdl_index = sdlp->sdl_index;
if (sdl_index == 0) {
error = route_get_sdl_index(&info, &sdl_index);
if (error != 0)
goto fallback;
} else if (
info.rti_info[RTAX_DST]->sa_family == AF_INET) {
/*
* XXX workaround for SIN_PROXY case; proxy arp
* entry should be in an interface that has
* a network route including the destination,
* not a local (link) route that may not be a
* desired place, for example a tap.
*/
const struct sockaddr_inarp *sina =
(const struct sockaddr_inarp *)
info.rti_info[RTAX_DST];
if (sina->sin_other & SIN_PROXY) {
error = route_get_sdl_index(&info,
&sdl_index);
if (error != 0)
goto fallback;
}
}
error = lla_rt_output(rtm->rtm_type, rtm->rtm_flags,
rtm->rtm_rmx.rmx_expire, &info, sdl_index);
break;
}
fallback:
#endif /* INET */
error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
if (error == 0) {
rt_setmetrics(rtm->rtm_inits, rtm, saved_nrt);
rt_unref(saved_nrt);
}
break;
case RTM_DELETE:
#ifdef INET
/* support for new ARP code */
if (info.rti_info[RTAX_GATEWAY] &&
(info.rti_info[RTAX_GATEWAY]->sa_family == AF_LINK) &&
(rtm->rtm_flags & RTF_LLDATA) != 0) {
error = lla_rt_output(rtm->rtm_type, rtm->rtm_flags,
rtm->rtm_rmx.rmx_expire, &info, 0);
break;
}
#endif /* INET */
error = rtrequest1(rtm->rtm_type, &info, &saved_nrt);
if (error != 0)
break;
rt = saved_nrt;
do_rt_free = true;
info.rti_info[RTAX_DST] = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_TAG] = rt_gettag(rt);
error = route_output_report(rt, &info, rtm, &new_rtm);
if (error)
senderr(error);
if (new_rtm != NULL) {
old_rtm = rtm;
rtm = new_rtm;
}
break;
case RTM_GET:
case RTM_CHANGE:
case RTM_LOCK:
/* XXX This will mask info.rti_info[RTAX_DST] with
* info.rti_info[RTAX_NETMASK] before
* searching. It did not used to do that. --dyoung
*/
rt = NULL;
error = rtrequest1(RTM_GET, &info, &rt);
if (error != 0)
senderr(error);
if (rtm->rtm_type != RTM_GET) {/* XXX: too grotty */
if (memcmp(info.rti_info[RTAX_DST], rt_getkey(rt),
info.rti_info[RTAX_DST]->sa_len) != 0)
senderr(ESRCH);
if (info.rti_info[RTAX_NETMASK] == NULL &&
rt_mask(rt) != NULL)
senderr(ETOOMANYREFS);
}
/*
* XXX if arp/ndp requests an L2 entry, we have to obtain
* it from lltable while for the route command we have to
* return a route as it is. How to distinguish them?
* For newer arp/ndp, RTF_LLDATA flag set by arp/ndp
* indicates an L2 entry is requested. For old arp/ndp
* binaries, we check RTF_UP flag is NOT set; it works
* by the fact that arp/ndp don't set it while the route
* command sets it.
*/
if (((rtm->rtm_flags & RTF_LLDATA) != 0 ||
(rtm->rtm_flags & RTF_UP) == 0) &&
rtm->rtm_type == RTM_GET &&
sockaddr_cmp(rt_getkey(rt), info.rti_info[RTAX_DST]) != 0) {
int ll_flags = 0;
route_get_sdl(rt->rt_ifp, info.rti_info[RTAX_DST], &sdl,
&ll_flags);
info.rti_info[RTAX_GATEWAY] = sstocsa(&sdl);
error = route_output_report(rt, &info, rtm, &new_rtm);
if (error)
senderr(error);
if (new_rtm != NULL) {
old_rtm = rtm;
rtm = new_rtm;
}
rtm->rtm_flags |= RTF_LLDATA;
rtm->rtm_flags |= (ll_flags & LLE_STATIC) ? RTF_STATIC : 0;
break;
}
switch (rtm->rtm_type) {
case RTM_GET:
info.rti_info[RTAX_DST] = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_TAG] = rt_gettag(rt);
error = route_output_report(rt, &info, rtm, &new_rtm);
if (error)
senderr(error);
if (new_rtm != NULL) {
old_rtm = rtm;
rtm = new_rtm;
}
break;
case RTM_CHANGE:
#ifdef NET_MPSAFE
error = rt_update_prepare(rt);
if (error == 0) {
error = route_output_change(rt, &info, rtm);
rt_update_finish(rt);
}
#else
error = route_output_change(rt, &info, rtm);
#endif
if (error != 0)
goto flush;
/*FALLTHROUGH*/
case RTM_LOCK:
rt->rt_rmx.rmx_locks &= ~(rtm->rtm_inits);
rt->rt_rmx.rmx_locks |=
(rtm->rtm_inits & rtm->rtm_rmx.rmx_locks);
break;
}
break;
default:
senderr(EOPNOTSUPP);
}
flush:
if (rtm) {
if (error)
rtm->rtm_errno = error;
else
rtm->rtm_flags |= RTF_DONE;
}
family = info.rti_info[RTAX_DST] ? info.rti_info[RTAX_DST]->sa_family :
0;
/* We cannot free old_rtm until we have stopped using the
* pointers in info, some of which may point to sockaddrs
* in old_rtm.
*/
if (old_rtm != NULL)
Free(old_rtm);
if (rt) {
if (do_rt_free)
rt_free(rt);
else
rt_unref(rt);
}
{
struct rawcb *rp = NULL;
/*
* Check to see if we don't want our own messages.
*/
if ((so->so_options & SO_USELOOPBACK) == 0) {
if (COMPATNAME(route_info).ri_cb.any_count <= 1) {
if (rtm)
Free(rtm);
m_freem(m);
goto out;
}
/* There is another listener, so construct message */
rp = sotorawcb(so);
}
if (rtm) {
m_copyback(m, 0, rtm->rtm_msglen, rtm);
if (m->m_pkthdr.len < rtm->rtm_msglen) {
m_freem(m);
m = NULL;
} else if (m->m_pkthdr.len > rtm->rtm_msglen)
m_adj(m, rtm->rtm_msglen - m->m_pkthdr.len);
Free(rtm);
}
if (rp)
rp->rcb_proto.sp_family = 0; /* Avoid us */
if (family)
proto.sp_protocol = family;
if (m)
raw_input(m, &proto, &COMPATNAME(route_info).ri_src,
&COMPATNAME(route_info).ri_dst);
if (rp)
rp->rcb_proto.sp_family = PF_XROUTE;
}
out:
curlwp_bindx(bound);
return error;
}
static int
route_ctloutput(int op, struct socket *so, struct sockopt *sopt)
{
struct routecb *rop = sotoroutecb(so);
int error = 0;
unsigned char *rtm_type;
size_t len;
unsigned int msgfilter;
KASSERT(solocked(so));
if (sopt->sopt_level != AF_ROUTE) {
error = ENOPROTOOPT;
} else switch (op) {
case PRCO_SETOPT:
switch (sopt->sopt_name) {
case RO_MSGFILTER:
msgfilter = 0;
for (rtm_type = sopt->sopt_data, len = sopt->sopt_size;
len != 0;
rtm_type++, len -= sizeof(*rtm_type))
{
/* Guard against overflowing our storage. */
if (*rtm_type >= sizeof(msgfilter) * CHAR_BIT) {
error = EOVERFLOW;
break;
}
msgfilter |= RTMSGFILTER(*rtm_type);
}
if (error == 0)
rop->rocb_msgfilter = msgfilter;
break;
default:
error = ENOPROTOOPT;
break;
}
break;
case PRCO_GETOPT:
switch (sopt->sopt_name) {
case RO_MSGFILTER:
error = ENOTSUP;
break;
default:
error = ENOPROTOOPT;
break;
}
}
return error;
}
static void
rt_setmetrics(int which, const struct rt_xmsghdr *in, struct rtentry *out)
{
#define metric(f, e) if (which & (f)) out->rt_rmx.e = in->rtm_rmx.e;
metric(RTV_RPIPE, rmx_recvpipe);
metric(RTV_SPIPE, rmx_sendpipe);
metric(RTV_SSTHRESH, rmx_ssthresh);
metric(RTV_RTT, rmx_rtt);
metric(RTV_RTTVAR, rmx_rttvar);
metric(RTV_HOPCOUNT, rmx_hopcount);
metric(RTV_MTU, rmx_mtu);
#undef metric
if (which & RTV_EXPIRE) {
out->rt_rmx.rmx_expire = in->rtm_rmx.rmx_expire ?
time_wall_to_mono(in->rtm_rmx.rmx_expire) : 0;
}
}
static void
rtm_setmetrics(const struct rtentry *in, struct rt_xmsghdr *out)
{
#define metric(e) out->rtm_rmx.e = in->rt_rmx.e;
metric(rmx_recvpipe);
metric(rmx_sendpipe);
metric(rmx_ssthresh);
metric(rmx_rtt);
metric(rmx_rttvar);
metric(rmx_hopcount);
metric(rmx_mtu);
metric(rmx_locks);
#undef metric
out->rtm_rmx.rmx_expire = in->rt_rmx.rmx_expire ?
time_mono_to_wall(in->rt_rmx.rmx_expire) : 0;
}
static int
rt_xaddrs(u_char rtmtype, const char *cp, const char *cplim,
struct rt_addrinfo *rtinfo)
{
const struct sockaddr *sa = NULL; /* Quell compiler warning */
int i;
for (i = 0; i < RTAX_MAX && cp < cplim; i++) {
if ((rtinfo->rti_addrs & (1 << i)) == 0)
continue;
rtinfo->rti_info[i] = sa = (const struct sockaddr *)cp;
RT_XADVANCE(cp, sa);
}
/*
* Check for extra addresses specified, except RTM_GET asking
* for interface info.
*/
if (rtmtype == RTM_GET) {
if (((rtinfo->rti_addrs &
(~((1 << RTAX_IFP) | (1 << RTAX_IFA)))) & (~0U << i)) != 0)
return 1;
} else if ((rtinfo->rti_addrs & (~0U << i)) != 0)
return 1;
/* Check for bad data length. */
if (cp != cplim) {
if (i == RTAX_NETMASK + 1 && sa != NULL &&
cp - RT_XROUNDUP(sa->sa_len) + sa->sa_len == cplim)
/*
* The last sockaddr was info.rti_info[RTAX_NETMASK].
* We accept this for now for the sake of old
* binaries or third party softwares.
*/
;
else
return 1;
}
return 0;
}
static int
rt_getlen(int type)
{
#ifndef COMPAT_RTSOCK
CTASSERT(__alignof(struct ifa_msghdr) >= sizeof(uint64_t));
CTASSERT(__alignof(struct if_msghdr) >= sizeof(uint64_t));
CTASSERT(__alignof(struct if_announcemsghdr) >= sizeof(uint64_t));
CTASSERT(__alignof(struct rt_msghdr) >= sizeof(uint64_t));
#endif
switch (type) {
case RTM_ODELADDR:
case RTM_ONEWADDR:
case RTM_OCHGADDR:
#ifdef COMPAT_70
return sizeof(struct ifa_msghdr70);
#else
#ifdef RTSOCK_DEBUG
printf("%s: unsupported RTM type %d\n", __func__, type);
#endif
return -1;
#endif
case RTM_DELADDR:
case RTM_NEWADDR:
case RTM_CHGADDR:
return sizeof(struct ifa_xmsghdr);
case RTM_OOIFINFO:
#ifdef COMPAT_14
return sizeof(struct if_msghdr14);
#else
#ifdef RTSOCK_DEBUG
printf("%s: unsupported RTM type RTM_OOIFINFO\n", __func__);
#endif
return -1;
#endif
case RTM_OIFINFO:
#ifdef COMPAT_50
return sizeof(struct if_msghdr50);
#else
#ifdef RTSOCK_DEBUG
printf("%s: unsupported RTM type RTM_OIFINFO\n", __func__);
#endif
return -1;
#endif
case RTM_IFINFO:
return sizeof(struct if_xmsghdr);
case RTM_IFANNOUNCE:
case RTM_IEEE80211:
return sizeof(struct if_xannouncemsghdr);
default:
return sizeof(struct rt_xmsghdr);
}
}
struct mbuf *
COMPATNAME(rt_msg1)(int type, struct rt_addrinfo *rtinfo, void *data, int datalen)
{
struct rt_xmsghdr *rtm;
struct mbuf *m;
int i;
const struct sockaddr *sa;
int len, dlen;
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL)
return m;
MCLAIM(m, &COMPATNAME(routedomain).dom_mowner);
if ((len = rt_getlen(type)) == -1)
goto out;
if (len > MHLEN + MLEN)
panic("%s: message too long", __func__);
else if (len > MHLEN) {
m->m_next = m_get(M_DONTWAIT, MT_DATA);
if (m->m_next == NULL)
goto out;
MCLAIM(m->m_next, m->m_owner);
m->m_pkthdr.len = len;
m->m_len = MHLEN;
m->m_next->m_len = len - MHLEN;
} else {
m->m_pkthdr.len = m->m_len = len;
}
m_reset_rcvif(m);
m_copyback(m, 0, datalen, data);
if (len > datalen)
(void)memset(mtod(m, char *) + datalen, 0, len - datalen);
rtm = mtod(m, struct rt_xmsghdr *);
for (i = 0; i < RTAX_MAX; i++) {
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = RT_XROUNDUP(sa->sa_len);
m_copyback(m, len, sa->sa_len, sa);
if (dlen != sa->sa_len) {
/*
* Up to 6 + 1 nul's since roundup is to
* sizeof(uint64_t) (8 bytes)
*/
m_copyback(m, len + sa->sa_len,
dlen - sa->sa_len, "\0\0\0\0\0\0");
}
len += dlen;
}
if (m->m_pkthdr.len != len)
goto out;
rtm->rtm_msglen = len;
rtm->rtm_version = RTM_XVERSION;
rtm->rtm_type = type;
return m;
out:
m_freem(m);
return NULL;
}
/*
* rt_msg2
*
* fills 'cp' or 'w'.w_tmem with the routing socket message and
* returns the length of the message in 'lenp'.
*
* if walkarg is 0, cp is expected to be 0 or a buffer large enough to hold
* the message
* otherwise walkarg's w_needed is updated and if the user buffer is
* specified and w_needed indicates space exists the information is copied
* into the temp space (w_tmem). w_tmem is [re]allocated if necessary,
* if the allocation fails ENOBUFS is returned.
*/
static int
rt_msg2(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w,
int *lenp)
{
int i;
int len, dlen, second_time = 0;
char *cp0, *cp = cpv;
rtinfo->rti_addrs = 0;
again:
if ((len = rt_getlen(type)) == -1)
return EINVAL;
if ((cp0 = cp) != NULL)
cp += len;
for (i = 0; i < RTAX_MAX; i++) {
const struct sockaddr *sa;
if ((sa = rtinfo->rti_info[i]) == NULL)
continue;
rtinfo->rti_addrs |= (1 << i);
dlen = RT_XROUNDUP(sa->sa_len);
if (cp) {
int diff = dlen - sa->sa_len;
(void)memcpy(cp, sa, (size_t)sa->sa_len);
cp += sa->sa_len;
if (diff > 0) {
(void)memset(cp, 0, (size_t)diff);
cp += diff;
}
}
len += dlen;
}
if (cp == NULL && w != NULL && !second_time) {
struct rt_walkarg *rw = w;
rw->w_needed += len;
if (rw->w_needed <= 0 && rw->w_where) {
if (rw->w_tmemsize < len) {
if (rw->w_tmem)
kmem_free(rw->w_tmem, rw->w_tmemsize);
rw->w_tmem = kmem_alloc(len, KM_SLEEP);
if (rw->w_tmem)
rw->w_tmemsize = len;
else
rw->w_tmemsize = 0;
}
if (rw->w_tmem) {
cp = rw->w_tmem;
second_time = 1;
goto again;
} else {
rw->w_tmemneeded = len;
return ENOBUFS;
}
}
}
if (cp) {
struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)cp0;
rtm->rtm_version = RTM_XVERSION;
rtm->rtm_type = type;
rtm->rtm_msglen = len;
}
if (lenp)
*lenp = len;
return 0;
}
#ifndef COMPAT_RTSOCK
int
rt_msg3(int type, struct rt_addrinfo *rtinfo, void *cpv, struct rt_walkarg *w,
int *lenp)
{
return rt_msg2(type, rtinfo, cpv, w, lenp);
}
#endif
/*
* This routine is called to generate a message from the routing
* socket indicating that a redirect has occurred, a routing lookup
* has failed, or that a protocol has detected timeouts to a particular
* destination.
*/
void
COMPATNAME(rt_missmsg)(int type, const struct rt_addrinfo *rtinfo, int flags,
int error)
{
struct rt_xmsghdr rtm;
struct mbuf *m;
const struct sockaddr *sa = rtinfo->rti_info[RTAX_DST];
struct rt_addrinfo info = *rtinfo;
COMPATCALL(rt_missmsg, (type, rtinfo, flags, error));
if (COMPATNAME(route_info).ri_cb.any_count == 0)
return;
memset(&rtm, 0, sizeof(rtm));
rtm.rtm_pid = curproc->p_pid;
rtm.rtm_flags = RTF_DONE | flags;
rtm.rtm_errno = error;
m = COMPATNAME(rt_msg1)(type, &info, &rtm, sizeof(rtm));
if (m == NULL)
return;
mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs;
COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0);
}
/*
* This routine is called to generate a message from the routing
* socket indicating that the status of a network interface has changed.
*/
void
COMPATNAME(rt_ifmsg)(struct ifnet *ifp)
{
struct if_xmsghdr ifm;
struct mbuf *m;
struct rt_addrinfo info;
COMPATCALL(rt_ifmsg, (ifp));
if (COMPATNAME(route_info).ri_cb.any_count == 0)
return;
(void)memset(&info, 0, sizeof(info));
(void)memset(&ifm, 0, sizeof(ifm));
ifm.ifm_index = ifp->if_index;
ifm.ifm_flags = ifp->if_flags;
ifm.ifm_data = ifp->if_data;
ifm.ifm_addrs = 0;
m = COMPATNAME(rt_msg1)(RTM_IFINFO, &info, &ifm, sizeof(ifm));
if (m == NULL)
return;
COMPATNAME(route_enqueue)(m, 0);
#ifdef COMPAT_14
compat_14_rt_oifmsg(ifp);
#endif
#ifdef COMPAT_50
compat_50_rt_oifmsg(ifp);
#endif
}
#ifndef COMPAT_RTSOCK
static int
if_addrflags(struct ifaddr *ifa)
{
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
return ((struct in_ifaddr *)ifa)->ia4_flags;
#endif
#ifdef INET6
case AF_INET6:
return ((struct in6_ifaddr *)ifa)->ia6_flags;
#endif
default:
return 0;
}
}
#endif
/*
* This is called to generate messages from the routing socket
* indicating a network interface has had addresses associated with it.
* if we ever reverse the logic and replace messages TO the routing
* socket indicate a request to configure interfaces, then it will
* be unnecessary as the routing socket will automatically generate
* copies of it.
*/
void
COMPATNAME(rt_newaddrmsg)(int cmd, struct ifaddr *ifa, int error,
struct rtentry *rt)
{
#define cmdpass(__cmd, __pass) (((__cmd) << 2) | (__pass))
struct rt_addrinfo info;
const struct sockaddr *sa;
int pass;
struct mbuf *m;
struct ifnet *ifp;
struct rt_xmsghdr rtm;
struct ifa_xmsghdr ifam;
int ncmd;
KASSERT(ifa != NULL);
KASSERT(ifa->ifa_addr != NULL);
ifp = ifa->ifa_ifp;
#ifdef SCTP
if (cmd == RTM_ADD) {
sctp_add_ip_address(ifa);
} else if (cmd == RTM_DELETE) {
sctp_delete_ip_address(ifa);
}
#endif
COMPATCALL(rt_newaddrmsg, (cmd, ifa, error, rt));
if (COMPATNAME(route_info).ri_cb.any_count == 0)
return;
for (pass = 1; pass < 3; pass++) {
memset(&info, 0, sizeof(info));
switch (cmdpass(cmd, pass)) {
case cmdpass(RTM_ADD, 1):
case cmdpass(RTM_CHANGE, 1):
case cmdpass(RTM_DELETE, 2):
case cmdpass(RTM_NEWADDR, 1):
case cmdpass(RTM_DELADDR, 1):
case cmdpass(RTM_CHGADDR, 1):
switch (cmd) {
case RTM_ADD:
ncmd = RTM_XNEWADDR;
break;
case RTM_DELETE:
ncmd = RTM_XDELADDR;
break;
case RTM_CHANGE:
ncmd = RTM_XCHGADDR;
break;
case RTM_NEWADDR:
ncmd = RTM_XNEWADDR;
break;
case RTM_DELADDR:
ncmd = RTM_XDELADDR;
break;
case RTM_CHGADDR:
ncmd = RTM_XCHGADDR;
break;
default:
panic("%s: unknown command %d", __func__, cmd);
}
#ifdef COMPAT_70
compat_70_rt_newaddrmsg1(ncmd, ifa);
#endif
info.rti_info[RTAX_IFA] = sa = ifa->ifa_addr;
KASSERT(ifp->if_dl != NULL);
info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
memset(&ifam, 0, sizeof(ifam));
ifam.ifam_index = ifp->if_index;
ifam.ifam_metric = ifa->ifa_metric;
ifam.ifam_flags = ifa->ifa_flags;
#ifndef COMPAT_RTSOCK
ifam.ifam_pid = curproc->p_pid;
ifam.ifam_addrflags = if_addrflags(ifa);
#endif
m = COMPATNAME(rt_msg1)(ncmd, &info, &ifam, sizeof(ifam));
if (m == NULL)
continue;
mtod(m, struct ifa_xmsghdr *)->ifam_addrs =
info.rti_addrs;
break;
case cmdpass(RTM_ADD, 2):
case cmdpass(RTM_CHANGE, 2):
case cmdpass(RTM_DELETE, 1):
if (rt == NULL)
continue;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_DST] = sa = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
memset(&rtm, 0, sizeof(rtm));
rtm.rtm_pid = curproc->p_pid;
rtm.rtm_index = ifp->if_index;
rtm.rtm_flags |= rt->rt_flags;
rtm.rtm_errno = error;
m = COMPATNAME(rt_msg1)(cmd, &info, &rtm, sizeof(rtm));
if (m == NULL)
continue;
mtod(m, struct rt_xmsghdr *)->rtm_addrs = info.rti_addrs;
break;
default:
continue;
}
KASSERTMSG(m != NULL, "called with wrong command");
COMPATNAME(route_enqueue)(m, sa ? sa->sa_family : 0);
}
#undef cmdpass
}
static struct mbuf *
rt_makeifannouncemsg(struct ifnet *ifp, int type, int what,
struct rt_addrinfo *info)
{
struct if_xannouncemsghdr ifan;
memset(info, 0, sizeof(*info));
memset(&ifan, 0, sizeof(ifan));
ifan.ifan_index = ifp->if_index;
strlcpy(ifan.ifan_name, ifp->if_xname, sizeof(ifan.ifan_name));
ifan.ifan_what = what;
return COMPATNAME(rt_msg1)(type, info, &ifan, sizeof(ifan));
}
/*
* This is called to generate routing socket messages indicating
* network interface arrival and departure.
*/
void
COMPATNAME(rt_ifannouncemsg)(struct ifnet *ifp, int what)
{
struct mbuf *m;
struct rt_addrinfo info;
COMPATCALL(rt_ifannouncemsg, (ifp, what));
if (COMPATNAME(route_info).ri_cb.any_count == 0)
return;
m = rt_makeifannouncemsg(ifp, RTM_IFANNOUNCE, what, &info);
if (m == NULL)
return;
COMPATNAME(route_enqueue)(m, 0);
}
/*
* This is called to generate routing socket messages indicating
* IEEE80211 wireless events.
* XXX we piggyback on the RTM_IFANNOUNCE msg format in a clumsy way.
*/
void
COMPATNAME(rt_ieee80211msg)(struct ifnet *ifp, int what, void *data,
size_t data_len)
{
struct mbuf *m;
struct rt_addrinfo info;
COMPATCALL(rt_ieee80211msg, (ifp, what, data, data_len));
if (COMPATNAME(route_info).ri_cb.any_count == 0)
return;
m = rt_makeifannouncemsg(ifp, RTM_IEEE80211, what, &info);
if (m == NULL)
return;
/*
* Append the ieee80211 data. Try to stick it in the
* mbuf containing the ifannounce msg; otherwise allocate
* a new mbuf and append.
*
* NB: we assume m is a single mbuf.
*/
if (data_len > M_TRAILINGSPACE(m)) {
struct mbuf *n = m_get(M_NOWAIT, MT_DATA);
if (n == NULL) {
m_freem(m);
return;
}
(void)memcpy(mtod(n, void *), data, data_len);
n->m_len = data_len;
m->m_next = n;
} else if (data_len > 0) {
(void)memcpy(mtod(m, uint8_t *) + m->m_len, data, data_len);
m->m_len += data_len;
}
if (m->m_flags & M_PKTHDR)
m->m_pkthdr.len += data_len;
mtod(m, struct if_xannouncemsghdr *)->ifan_msglen += data_len;
COMPATNAME(route_enqueue)(m, 0);
}
/*
* This is used in dumping the kernel table via sysctl().
*/
static int
sysctl_dumpentry(struct rtentry *rt, void *v)
{
struct rt_walkarg *w = v;
int error = 0, size;
struct rt_addrinfo info;
if (w->w_op == NET_RT_FLAGS && !(rt->rt_flags & w->w_arg))
return 0;
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = rt_getkey(rt);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
info.rti_info[RTAX_TAG] = rt_gettag(rt);
if (rt->rt_ifp) {
const struct ifaddr *rtifa;
info.rti_info[RTAX_IFP] = rt->rt_ifp->if_dl->ifa_addr;
/* rtifa used to be simply rt->rt_ifa. If rt->rt_ifa != NULL,
* then rt_get_ifa() != NULL. So this ought to still be safe.
* --dyoung
*/
rtifa = rt_get_ifa(rt);
info.rti_info[RTAX_IFA] = rtifa->ifa_addr;
if (rt->rt_ifp->if_flags & IFF_POINTOPOINT)
info.rti_info[RTAX_BRD] = rtifa->ifa_dstaddr;
}
if ((error = rt_msg2(RTM_GET, &info, 0, w, &size)))
return error;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
struct rt_xmsghdr *rtm = (struct rt_xmsghdr *)w->w_tmem;
rtm->rtm_flags = rt->rt_flags;
rtm->rtm_use = rt->rt_use;
rtm_setmetrics(rt, rtm);
KASSERT(rt->rt_ifp != NULL);
rtm->rtm_index = rt->rt_ifp->if_index;
rtm->rtm_errno = rtm->rtm_pid = rtm->rtm_seq = 0;
rtm->rtm_addrs = info.rti_addrs;
if ((error = copyout(rtm, w->w_where, size)) != 0)
w->w_where = NULL;
else
w->w_where = (char *)w->w_where + size;
}
return error;
}
static int
sysctl_iflist_if(struct ifnet *ifp, struct rt_walkarg *w,
struct rt_addrinfo *info, size_t len)
{
struct if_xmsghdr *ifm;
int error;
ifm = (struct if_xmsghdr *)w->w_tmem;
ifm->ifm_index = ifp->if_index;
ifm->ifm_flags = ifp->if_flags;
ifm->ifm_data = ifp->if_data;
ifm->ifm_addrs = info->rti_addrs;
if ((error = copyout(ifm, w->w_where, len)) == 0)
w->w_where = (char *)w->w_where + len;
return error;
}
static int
sysctl_iflist_addr(struct rt_walkarg *w, struct ifaddr *ifa,
struct rt_addrinfo *info)
{
int len, error;
if ((error = rt_msg2(RTM_XNEWADDR, info, 0, w, &len)))
return error;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
struct ifa_xmsghdr *ifam;
ifam = (struct ifa_xmsghdr *)w->w_tmem;
ifam->ifam_index = ifa->ifa_ifp->if_index;
ifam->ifam_flags = ifa->ifa_flags;
ifam->ifam_metric = ifa->ifa_metric;
ifam->ifam_addrs = info->rti_addrs;
#ifndef COMPAT_RTSOCK
ifam->ifam_pid = 0;
ifam->ifam_addrflags = if_addrflags(ifa);
#endif
if ((error = copyout(w->w_tmem, w->w_where, len)) == 0)
w->w_where = (char *)w->w_where + len;
}
return error;
}
static int
sysctl_iflist(int af, struct rt_walkarg *w, int type)
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct rt_addrinfo info;
int cmd, len, error = 0;
int (*iflist_if)(struct ifnet *, struct rt_walkarg *,
struct rt_addrinfo *, size_t);
int (*iflist_addr)(struct rt_walkarg *, struct ifaddr *,
struct rt_addrinfo *);
int s;
struct psref psref;
int bound;
switch (type) {
case NET_RT_IFLIST:
cmd = RTM_IFINFO;
iflist_if = sysctl_iflist_if;
iflist_addr = sysctl_iflist_addr;
break;
#ifdef COMPAT_14
case NET_RT_OOOIFLIST:
cmd = RTM_OOIFINFO;
iflist_if = compat_14_iflist;
iflist_addr = compat_70_iflist_addr;
break;
#endif
#ifdef COMPAT_50
case NET_RT_OOIFLIST:
cmd = RTM_OIFINFO;
iflist_if = compat_50_iflist;
iflist_addr = compat_70_iflist_addr;
break;
#endif
#ifdef COMPAT_70
case NET_RT_OIFLIST:
cmd = RTM_IFINFO;
iflist_if = sysctl_iflist_if;
iflist_addr = compat_70_iflist_addr;
break;
#endif
default:
#ifdef RTSOCK_DEBUG
printf("%s: unsupported IFLIST type %d\n", __func__, type);
#endif
return EINVAL;
}
memset(&info, 0, sizeof(info));
bound = curlwp_bind();
s = pserialize_read_enter();
IFNET_READER_FOREACH(ifp) {
int _s;
if (w->w_arg && w->w_arg != ifp->if_index)
continue;
if (IFADDR_READER_EMPTY(ifp))
continue;
if_acquire(ifp, &psref);
pserialize_read_exit(s);
info.rti_info[RTAX_IFP] = ifp->if_dl->ifa_addr;
if ((error = rt_msg2(cmd, &info, NULL, w, &len)) != 0)
goto release_exit;
info.rti_info[RTAX_IFP] = NULL;
if (w->w_where && w->w_tmem && w->w_needed <= 0) {
if ((error = iflist_if(ifp, w, &info, len)) != 0)
goto release_exit;
}
_s = pserialize_read_enter();
IFADDR_READER_FOREACH(ifa, ifp) {
struct psref _psref;
if (af && af != ifa->ifa_addr->sa_family)
continue;
ifa_acquire(ifa, &_psref);
pserialize_read_exit(_s);
info.rti_info[RTAX_IFA] = ifa->ifa_addr;
info.rti_info[RTAX_NETMASK] = ifa->ifa_netmask;
info.rti_info[RTAX_BRD] = ifa->ifa_dstaddr;
error = iflist_addr(w, ifa, &info);
_s = pserialize_read_enter();
ifa_release(ifa, &_psref);
if (error != 0) {
pserialize_read_exit(_s);
goto release_exit;
}
}
pserialize_read_exit(_s);
info.rti_info[RTAX_IFA] = info.rti_info[RTAX_NETMASK] =
info.rti_info[RTAX_BRD] = NULL;
s = pserialize_read_enter();
if_release(ifp, &psref);
}
pserialize_read_exit(s);
curlwp_bindx(bound);
return 0;
release_exit:
if_release(ifp, &psref);
curlwp_bindx(bound);
return error;
}
static int
sysctl_rtable(SYSCTLFN_ARGS)
{
void *where = oldp;
size_t *given = oldlenp;
int i, s, error = EINVAL;
u_char af;
struct rt_walkarg w;
if (namelen == 1 && name[0] == CTL_QUERY)
return sysctl_query(SYSCTLFN_CALL(rnode));
if (newp)
return EPERM;
if (namelen != 3)
return EINVAL;
af = name[0];
w.w_tmemneeded = 0;
w.w_tmemsize = 0;
w.w_tmem = NULL;
again:
/* we may return here if a later [re]alloc of the t_mem buffer fails */
if (w.w_tmemneeded) {
w.w_tmem = kmem_alloc(w.w_tmemneeded, KM_SLEEP);
w.w_tmemsize = w.w_tmemneeded;
w.w_tmemneeded = 0;
}
w.w_op = name[1];
w.w_arg = name[2];
w.w_given = *given;
w.w_needed = 0 - w.w_given;
w.w_where = where;
s = splsoftnet();
switch (w.w_op) {
case NET_RT_DUMP:
case NET_RT_FLAGS:
#ifdef INET
/*
* take care of llinfo entries, the caller must
* specify an AF
*/
if (w.w_op == NET_RT_FLAGS &&
(w.w_arg == 0 || w.w_arg & RTF_LLDATA)) {
if (af != 0)
error = lltable_sysctl_dumparp(af, &w);
else
error = EINVAL;
break;
}
#endif /* INET */
for (i = 1; i <= AF_MAX; i++)
if ((af == 0 || af == i) &&
(error = rt_walktree(i, sysctl_dumpentry, &w)))
break;
break;
#ifdef COMPAT_14
case NET_RT_OOOIFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
#endif
#ifdef COMPAT_50
case NET_RT_OOIFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
#endif
#ifdef COMPAT_70
case NET_RT_OIFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
#endif
case NET_RT_IFLIST:
error = sysctl_iflist(af, &w, w.w_op);
break;
}
splx(s);
/* check to see if we couldn't allocate memory with NOWAIT */
if (error == ENOBUFS && w.w_tmem == 0 && w.w_tmemneeded)
goto again;
if (w.w_tmem)
kmem_free(w.w_tmem, w.w_tmemsize);
w.w_needed += w.w_given;
if (where) {
*given = (char *)w.w_where - (char *)where;
if (*given < w.w_needed)
return ENOMEM;
} else {
*given = (11 * w.w_needed) / 10;
}
return error;
}
/*
* Routing message software interrupt routine
*/
static void
COMPATNAME(route_intr)(void *cookie)
{
struct sockproto proto = { .sp_family = PF_XROUTE, };
struct route_info * const ri = &COMPATNAME(route_info);
struct mbuf *m;
mutex_enter(softnet_lock);
KERNEL_LOCK(1, NULL);
for (;;) {
IFQ_LOCK(&ri->ri_intrq);
IF_DEQUEUE(&ri->ri_intrq, m);
IFQ_UNLOCK(&ri->ri_intrq);
if (m == NULL)
break;
proto.sp_protocol = M_GETCTX(m, uintptr_t);
raw_input(m, &proto, &ri->ri_src, &ri->ri_dst);
}
KERNEL_UNLOCK_ONE(NULL);
mutex_exit(softnet_lock);
}
/*
* Enqueue a message to the software interrupt routine.
*/
void
COMPATNAME(route_enqueue)(struct mbuf *m, int family)
{
struct route_info * const ri = &COMPATNAME(route_info);
int wasempty;
IFQ_LOCK(&ri->ri_intrq);
if (IF_QFULL(&ri->ri_intrq)) {
IF_DROP(&ri->ri_intrq);
IFQ_UNLOCK(&ri->ri_intrq);
m_freem(m);
} else {
wasempty = IF_IS_EMPTY(&ri->ri_intrq);
M_SETCTX(m, (uintptr_t)family);
IF_ENQUEUE(&ri->ri_intrq, m);
IFQ_UNLOCK(&ri->ri_intrq);
if (wasempty) {
kpreempt_disable();
softint_schedule(ri->ri_sih);
kpreempt_enable();
}
}
}
static void
COMPATNAME(route_init)(void)
{
struct route_info * const ri = &COMPATNAME(route_info);
#ifndef COMPAT_RTSOCK
rt_init();
#endif
sysctl_net_route_setup(NULL);
ri->ri_intrq.ifq_maxlen = ri->ri_maxqlen;
ri->ri_sih = softint_establish(SOFTINT_NET | SOFTINT_MPSAFE,
COMPATNAME(route_intr), NULL);
IFQ_LOCK_INIT(&ri->ri_intrq);
}
/*
* Definitions of protocols supported in the ROUTE domain.
*/
#ifndef COMPAT_RTSOCK
PR_WRAP_USRREQS(route);
#else
PR_WRAP_USRREQS(compat_50_route);
#endif
static const struct pr_usrreqs route_usrreqs = {
.pr_attach = COMPATNAME(route_attach_wrapper),
.pr_detach = COMPATNAME(route_detach_wrapper),
.pr_accept = COMPATNAME(route_accept_wrapper),
.pr_bind = COMPATNAME(route_bind_wrapper),
.pr_listen = COMPATNAME(route_listen_wrapper),
.pr_connect = COMPATNAME(route_connect_wrapper),
.pr_connect2 = COMPATNAME(route_connect2_wrapper),
.pr_disconnect = COMPATNAME(route_disconnect_wrapper),
.pr_shutdown = COMPATNAME(route_shutdown_wrapper),
.pr_abort = COMPATNAME(route_abort_wrapper),
.pr_ioctl = COMPATNAME(route_ioctl_wrapper),
.pr_stat = COMPATNAME(route_stat_wrapper),
.pr_peeraddr = COMPATNAME(route_peeraddr_wrapper),
.pr_sockaddr = COMPATNAME(route_sockaddr_wrapper),
.pr_rcvd = COMPATNAME(route_rcvd_wrapper),
.pr_recvoob = COMPATNAME(route_recvoob_wrapper),
.pr_send = COMPATNAME(route_send_wrapper),
.pr_sendoob = COMPATNAME(route_sendoob_wrapper),
.pr_purgeif = COMPATNAME(route_purgeif_wrapper),
};
static const struct protosw COMPATNAME(route_protosw)[] = {
{
.pr_type = SOCK_RAW,
.pr_domain = &COMPATNAME(routedomain),
.pr_flags = PR_ATOMIC|PR_ADDR,
.pr_input = raw_input,
.pr_ctlinput = raw_ctlinput,
.pr_ctloutput = route_ctloutput,
.pr_usrreqs = &route_usrreqs,
.pr_init = raw_init,
},
};
struct domain COMPATNAME(routedomain) = {
.dom_family = PF_XROUTE,
.dom_name = DOMAINNAME,
.dom_init = COMPATNAME(route_init),
.dom_protosw = COMPATNAME(route_protosw),
.dom_protoswNPROTOSW =
&COMPATNAME(route_protosw)[__arraycount(COMPATNAME(route_protosw))],
};
static void
sysctl_net_route_setup(struct sysctllog **clog)
{
const struct sysctlnode *rnode = NULL;
sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, DOMAINNAME,
SYSCTL_DESCR("PF_ROUTE information"),
NULL, 0, NULL, 0,
CTL_NET, PF_XROUTE, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "rtable",
SYSCTL_DESCR("Routing table information"),
sysctl_rtable, 0, NULL, 0,
CTL_NET, PF_XROUTE, 0 /* any protocol */, CTL_EOL);
sysctl_createv(clog, 0, &rnode, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "stats",
SYSCTL_DESCR("Routing statistics"),
NULL, 0, &rtstat, sizeof(rtstat),
CTL_CREATE, CTL_EOL);
}