un-wanted route(4) messages.
Inspired by the ROUTE_MSGFILTER equivalent in OpenBSD,
but with an API which allows the full range of potential message types.
This change needs a tweak in route_output_change to unbreak route
change commands (e.g., route change -inet6 default -reject).
PR kern/52077 (s-yamaguchi@IIJ and ozaki-r@)
See the following descriptions for details.
Proposed on tech-kern and tech-net
Overview
--------
We protect the routing table with a rwock and protect
rtcaches with another rwlock. Each rtentry is protected
from being freed or updated via reference counting and psref.
Global rwlocks
--------------
There are two rwlocks; one for the routing table (rt_lock) and
the other for rtcaches (rtcache_lock). rtcache_lock covers
all existing rtcaches; there may have room for optimizations
(future work).
The locking order is rtcache_lock first and rt_lock is next.
rtentry references
------------------
References to an rtentry is managed with reference counting
and psref. Either of the two mechanisms is used depending on
where a rtentry is obtained. Reference counting is used when
we obtain a rtentry from the routing table directly via
rtalloc1 and rtrequest{,1} while psref is used when we obtain
a rtentry from a rtcache via rtcache_* APIs. In both cases,
a caller can sleep/block with holding an obtained rtentry.
The reasons why we use two different mechanisms are (i) only
using reference counting hurts the performance due to atomic
instructions (rtcache case) (ii) ease of implementation;
applying psref to APIs such rtaloc1 and rtrequest{,1} requires
additional works (adding a local variable and an argument).
We will finally migrate to use only psref but we can do it
when we have a lockless routing table alternative.
Reference counting for rtentry
------------------------------
rt_refcnt now doesn't count permanent references such as for
rt_timers and rtcaches, instead it is used only for temporal
references when obtaining a rtentry via rtalloc1 and rtrequest{,1}.
We can do so because destroying a rtentry always involves
removing references of rt_timers and rtcaches to the rtentry
and we don't need to track such references. This also makes
it easy to wait for readers to release references on deleting
or updating a rtentry, i.e., we can simply wait until the
reference counter is 0 or 1. (If there are permanent references
the counter can be arbitrary.)
rt_ref increments a reference counter of a rtentry and rt_unref
decrements it. rt_ref is called inside APIs (rtalloc1 and
rtrequest{,1} so users don't need to care about it while
users must call rt_unref to an obtained rtentry after using it.
rtfree is removed and we use rt_unref and rt_free instead.
rt_unref now just decrements the counter of a given rtentry
and rt_free just tries to destroy a given rtentry.
See the next section for destructions of rtentries by rt_free.
Destructions of rtentries
-------------------------
We destroy a rtentry only when we call rtrequst{,1}(RTM_DELETE);
the original implementation can destroy in any rtfree where it's
the last reference. If we use reference counting or psref, it's
easy to understand if the place that a rtentry is destroyed is
fixed.
rt_free waits for references to a given rtentry to be released
before actually destroying the rtentry. rt_free uses a condition
variable (cv_wait) (and psref_target_destroy for psref) to wait.
Unfortunately rtrequst{,1}(RTM_DELETE) can be called in softint
that we cannot use cv_wait. In that case, we have to defer the
destruction to a workqueue.
rtentry#rt_cv, rtentry#rt_psref and global variables
(see rt_free_global) are added to conduct the procedure.
Updates of rtentries
--------------------
One difficulty to use refcnt/psref instead of rwlock for rtentry
is updates of rtentries. We need an additional mechanism to
prevent readers from seeing inconsistency of a rtentry being
updated.
We introduce RTF_UPDATING flag to rtentries that are updating.
While the flag is set to a rtentry, users cannot acquire the
rtentry. By doing so, we avoid users to see inconsistent
rtentries.
There are two options when a user tries to acquire a rtentry
with the RTF_UPDATING flag; if a user runs in softint context
the user fails to acquire a rtentry (NULL is returned).
Otherwise a user waits until the update completes by waiting
on cv.
The procedure of a updater is simpler to destruction of
a rtentry. Wait on cv (and psref) and after all readers left,
proceed with the update.
Global variables (see rt_update_global) are added to conduct
the procedure.
Currently we apply the mechanism to only RTM_CHANGE in
rtsock.c. We would have to apply other codes. See
"Known issues" section.
psref for rtentry
-----------------
When we obtain a rtentry from a rtcache via rtcache_* APIs,
psref is used to reference to the rtentry.
rtcache_ref acquires a reference to a rtentry with psref
and rtcache_unref releases the reference after using it.
rtcache_ref is called inside rtcache_* APIs and users don't
need to take care of it while users must call rtcache_unref
to release the reference.
struct psref and int bound that is needed for psref is
embedded into struct route. By doing so we don't need to
add local variables and additional argument to APIs.
However this adds another constraint to psref other than
reference counting one's; holding a reference of an rtentry
via a rtcache is allowed by just one caller at the same time.
So we must not acquire a rtentry via a rtcache twice and
avoid a recursive use of a rtcache. And also a rtcache must
be arranged to be used by a LWP/softint at the same time
somehow. For IP forwarding case, we have per-CPU rtcaches
used in softint so the constraint is guaranteed. For a h
rtcache of a PCB case, the constraint is guaranteed by the
solock of each PCB. Any other cases (pf, ipf, stf and ipsec)
are currently guaranteed by only the existence of the global
locks (softnet_lock and/or KERNEL_LOCK). If we've found the
cases that we cannot guarantee the constraint, we would need
to introduce other rtcache APIs that use simple reference
counting.
psref of rtcache is created with IPL_SOFTNET and so rtcache
shouldn't used at an IPL higher than IPL_SOFTNET.
Note that rtcache_free is used to invalidate a given rtcache.
We don't need another care by my change; just keep them as
they are.
Performance impact
------------------
When NET_MPSAFE is disabled the performance drop is 3% while
when it's enabled the drop is increased to 11%. The difference
comes from that currently we don't take any global locks and
don't use psref if NET_MPSAFE is disabled.
We can optimize the performance of the case of NET_MPSAFE
on by reducing lookups of rtcache that uses psref;
currently we do two lookups but we should be able to trim
one of two. This is a future work.
Known issues
------------
There are two known issues to be solved; one is that
a caller of rtrequest(RTM_ADD) may change rtentry (see rtinit).
We need to prevent new references during the update. Or
we may be able to remove the code (perhaps, need more
investigations).
The other is rtredirect that updates a rtentry. We need
to apply our update mechanism, however it's not easy because
rtredirect is called in softint and we cannot apply our
mechanism simply. One solution is to defer rtredirect to
a workqueue but it requires some code restructuring.
If a underlying network device driver supports MSI/MSI-X, RX interrupts
can be delivered to arbitrary CPUs. This means that Layer 2 subroutines
such as ether_input (softint) and subsequent Layer 3 subroutines (softint)
which are called via traditional netisr can be dispatched on an arbitrary
CPU. Layer 2 subroutines now run without any locks (expected) and so a
Layer 2 subroutine and a Layer 3 subroutine can run in parallel.
There is a shared data between a Layer 2 routine and a Layer 3 routine,
that is ifqueue and IF_ENQUEUE (from L2) and IF_DEQUEUE (from L3) on it
are racy now.
To fix the race condition, use ifqueue#ifq_lock to protect ifqueue
instead of splnet that is meaningless now.
The same race condition exists in route_intr. Fix it as well.
Reviewed by knakahara@
Setup a command and function pointer in one case statement
instead of having a seconary case statement within a loop.
This makes the code much easier to follow, and possibly to add more compat
in the future.
Don't panic when running an old binary without compat support.
This change makes struct ifaddr and its variants (in_ifaddr and in6_ifaddr)
MP-safe by using pserialize and psref. At this moment, pserialize_perform
and psref_target_destroy are disabled because (1) we don't need them
because of softnet_lock (2) they cause a deadlock because of softnet_lock.
So we'll enable them when we remove softnet_lock in the future.
The API is used to set (or reset) a received interface of a mbuf.
They are counterpart of m_get_rcvif, which will come in another
commit, hide internal of rcvif operation, and reduce the diff of
the upcoming change.
No functional change.
The change ensures that ifnet objects in the ifnet list aren't freed during
list iterations by using pserialize(9) and psref(9).
Note that the change adds a pslist(9) for ifnet but doesn't remove the
original ifnet list (ifnet_list) to avoid breaking kvm(3) users. We
shouldn't use the original list in the kernel anymore.
By this change, nexthop caches (IP-MAC address pair) are not stored
in the routing table anymore. Instead nexthop caches are stored in
each network interface; we already have lltable/llentry data structure
for this purpose. This change also obsoletes the concept of cloning/cloned
routes. Cloned routes no longer exist while cloning routes still exist
with renamed to connected routes.
Noticeable changes are:
- Nexthop caches aren't listed in route show/netstat -r
- sysctl(NET_RT_DUMP) doesn't return them
- If RTF_LLDATA is specified, it returns nexthop caches
- Several definitions of routing flags and messages are removed
- RTF_CLONING, RTF_XRESOLVE, RTF_LLINFO, RTF_CLONED and RTM_RESOLVE
- RTF_CONNECTED is added
- It has the same value of RTF_CLONING for backward compatibility
- route's -xresolve, -[no]cloned and -llinfo options are removed
- -[no]cloning remains because it seems there are users
- -[no]connected is introduced and recommended
to be used instead of -[no]cloning
- route show/netstat -r drops some flags
- 'L' and 'c' are not seen anymore
- 'C' now indicates a connected route
- Gateway value of a route of an interface address is now not
a L2 address but "link#N" like a connected (cloning) route
- Proxy ARP: "arp -s ... pub" doesn't create a route
You can know details of behavior changes by seeing diffs under tests/.
Proposed on tech-net and tech-kern:
http://mail-index.netbsd.org/tech-net/2016/03/11/msg005701.html
You can't use this unless you know what it is a priori: the formal
prototype is variadic, and the different instances (e.g., ip_output,
route_output) have different real prototypes.
Convert the only user of it, raw_send in net/raw_cb.c, to take an
explicit callback argument. Convert the only instances of it,
route_output and key_output, to such explicit callbacks for raw_send.
Use assertions to make sure the conversion to explicit callbacks is
warranted.
Discussed on tech-net with no objections:
https://mail-index.netbsd.org/tech-net/2016/01/16/msg005484.html
Some codes in sys/net* use time_second to manage time periods such as
cache expirations. However, time_second doesn't increase monotonically
and can leap by say settimeofday(2) according to time_second(9). We
should use time_uptime instead of it to avoid such time leaps.
This change replaces time_second with time_uptime. Additionally it
converts a time based on time_uptime to a time based on time_second
when the kernel passes the time to userland programs that expect
the latter, and vice versa.
Note that we shouldn't leak time_uptime to other hosts over the
netowrk. My investigation shows there is no such leak:
http://mail-index.netbsd.org/tech-net/2015/08/06/msg005332.html
Discussed on tech-kern and tech-net.
rt_refcnt of rtentry was used in bad manners, for example, direct rt_refcnt++
and rt_refcnt-- outside route.c, "rt->rt_refcnt++; rtfree(rt);" idiom, and
touching rt after rt->rt_refcnt--.
These abuses seem to be needed because rt_refcnt manages only references
between rtentry and doesn't take care of references during packet processing
(IOW references from local variables). In order to reduce the above abuses,
the latter cases should be counted by rt_refcnt as well as the former cases.
This change improves consistency of use of rt_refcnt:
- rtentry is always accessed with rt_refcnt incremented
- rtentry's rt_refcnt is decremented after use (rtfree is always used instead
of rt_refcnt--)
- functions returning rtentry increment its rt_refcnt (and caller rtfree it)
Note that rt_refcnt prevents rtentry from being freed but doesn't prevent
rtentry from being updated. Toward MP-safe, we need to provide another
protection for rtentry, e.g., locks. (Or introduce a better data structure
allowing concurrent readers during updates.)
nam parameter type from buf * to sockaddr *.
final commit for parameter type changes to protocol user requests
* bump kernel version to 7.99.15 for parameter type changes to pr_{send,connect}
pr_{accept,sockname,peername} nam parameter type from mbuf * to sockaddr *.
* retained use of mbuftypes[MT_SONAME] for now.
* bump to netbsd version 7.99.12 for parameter type change.
patch posted to tech-net@ 2015/04/19
* update protocol bind implementations to use/expect sockaddr *
instead of mbuf *
* introduce sockaddr_big struct for storage of addr data passed via
sys_bind; sockaddr_big is of sufficient size and alignment to
accommodate all addr data sizes received.
* modify sys_bind to allocate sockaddr_big instead of using an mbuf.
* bump kernel version to 7.99.9 for change to pr_bind() parameter type.
Patch posted to tech-net@
http://mail-index.netbsd.org/tech-net/2015/03/15/msg005004.html
The choice to use a new structure sockaddr_big has been retained since
changing sockaddr_storage size would lead to unnecessary ABI change. The
use of the new structure does not preclude future work that increases
the size of sockaddr_storage and at that time sockaddr_big may be
trivially replaced.
Tested by mrg@ and myself, discussed with rmind@, posted to tech-net@
switches and put into separate functions
- always KASSERT(solocked(so)) even if not implemented
(for PRU_CONNECT2 only)
- replace calls to pr_generic() with req = PRU_CONNECT2 with calls to
pr_connect2()
- replace calls to pr_generic() with req = PRU_PURGEIF with calls to
pr_purgeif()
put common code from unp_connect2() (used by unp_connect() into
unp_connect1() and call out to it when needed
patch only briefly reviewed by rmind@