3001 lines
77 KiB
C
3001 lines
77 KiB
C
/* $NetBSD: udf_subr.c,v 1.37 2007/09/24 00:42:15 rumble Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2006 Reinoud Zandijk
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the
|
|
* NetBSD Project. See http://www.NetBSD.org/ for
|
|
* information about NetBSD.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
|
|
#include <sys/cdefs.h>
|
|
#ifndef lint
|
|
__RCSID("$NetBSD: udf_subr.c,v 1.37 2007/09/24 00:42:15 rumble Exp $");
|
|
#endif /* not lint */
|
|
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_quota.h"
|
|
#include "opt_compat_netbsd.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/vnode.h>
|
|
#include <miscfs/genfs/genfs_node.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/file.h>
|
|
#include <sys/device.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/dirent.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kauth.h>
|
|
#include <dev/clock_subr.h>
|
|
|
|
#include <fs/udf/ecma167-udf.h>
|
|
#include <fs/udf/udf_mount.h>
|
|
|
|
#include "udf.h"
|
|
#include "udf_subr.h"
|
|
#include "udf_bswap.h"
|
|
|
|
|
|
#define VTOI(vnode) ((struct udf_node *) vnode->v_data)
|
|
|
|
|
|
/* predefines */
|
|
|
|
|
|
#if 0
|
|
{
|
|
int i, j, dlen;
|
|
uint8_t *blob;
|
|
|
|
blob = (uint8_t *) fid;
|
|
dlen = file_size - (*offset);
|
|
|
|
printf("blob = %p\n", blob);
|
|
printf("dump of %d bytes\n", dlen);
|
|
|
|
for (i = 0; i < dlen; i+ = 16) {
|
|
printf("%04x ", i);
|
|
for (j = 0; j < 16; j++) {
|
|
if (i+j < dlen) {
|
|
printf("%02x ", blob[i+j]);
|
|
} else {
|
|
printf(" ");
|
|
}
|
|
}
|
|
for (j = 0; j < 16; j++) {
|
|
if (i+j < dlen) {
|
|
if (blob[i+j]>32 && blob[i+j]! = 127) {
|
|
printf("%c", blob[i+j]);
|
|
} else {
|
|
printf(".");
|
|
}
|
|
}
|
|
}
|
|
printf("\n");
|
|
}
|
|
printf("\n");
|
|
}
|
|
Debugger();
|
|
#endif
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* STUB */
|
|
|
|
static int
|
|
udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp)
|
|
{
|
|
int sector_size = ump->discinfo.sector_size;
|
|
int blks = sector_size / DEV_BSIZE;
|
|
|
|
/* NOTE bread() checks if block is in cache or not */
|
|
return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp);
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Check if the blob starts with a good UDF tag. Tags are protected by a
|
|
* checksum over the reader except one byte at position 4 that is the checksum
|
|
* itself.
|
|
*/
|
|
|
|
int
|
|
udf_check_tag(void *blob)
|
|
{
|
|
struct desc_tag *tag = blob;
|
|
uint8_t *pos, sum, cnt;
|
|
|
|
/* check TAG header checksum */
|
|
pos = (uint8_t *) tag;
|
|
sum = 0;
|
|
|
|
for(cnt = 0; cnt < 16; cnt++) {
|
|
if (cnt != 4)
|
|
sum += *pos;
|
|
pos++;
|
|
}
|
|
if (sum != tag->cksum) {
|
|
/* bad tag header checksum; this is not a valid tag */
|
|
return EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* check tag payload will check descriptor CRC as specified.
|
|
* If the descriptor is too short, it will return EIO otherwise EINVAL.
|
|
*/
|
|
|
|
int
|
|
udf_check_tag_payload(void *blob, uint32_t max_length)
|
|
{
|
|
struct desc_tag *tag = blob;
|
|
uint16_t crc, crc_len;
|
|
|
|
crc_len = udf_rw16(tag->desc_crc_len);
|
|
|
|
/* check payload CRC if applicable */
|
|
if (crc_len == 0)
|
|
return 0;
|
|
|
|
if (crc_len > max_length)
|
|
return EIO;
|
|
|
|
crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len);
|
|
if (crc != udf_rw16(tag->desc_crc)) {
|
|
/* bad payload CRC; this is a broken tag */
|
|
return EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_validate_tag_sum(void *blob)
|
|
{
|
|
struct desc_tag *tag = blob;
|
|
uint8_t *pos, sum, cnt;
|
|
|
|
/* calculate TAG header checksum */
|
|
pos = (uint8_t *) tag;
|
|
sum = 0;
|
|
|
|
for(cnt = 0; cnt < 16; cnt++) {
|
|
if (cnt != 4) sum += *pos;
|
|
pos++;
|
|
}
|
|
tag->cksum = sum; /* 8 bit */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* assumes sector number of descriptor to be saved already present */
|
|
|
|
int
|
|
udf_validate_tag_and_crc_sums(void *blob)
|
|
{
|
|
struct desc_tag *tag = blob;
|
|
uint8_t *btag = (uint8_t *) tag;
|
|
uint16_t crc, crc_len;
|
|
|
|
crc_len = udf_rw16(tag->desc_crc_len);
|
|
|
|
/* check payload CRC if applicable */
|
|
if (crc_len > 0) {
|
|
crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len);
|
|
tag->desc_crc = udf_rw16(crc);
|
|
}
|
|
|
|
/* calculate TAG header checksum */
|
|
return udf_validate_tag_sum(blob);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* XXX note the different semantics from udfclient: for FIDs it still rounds
|
|
* up to sectors. Use udf_fidsize() for a correct length.
|
|
*/
|
|
|
|
int
|
|
udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size)
|
|
{
|
|
uint32_t size, tag_id, num_secs, elmsz;
|
|
|
|
tag_id = udf_rw16(dscr->tag.id);
|
|
|
|
switch (tag_id) {
|
|
case TAGID_LOGVOL :
|
|
size = sizeof(struct logvol_desc) - 1;
|
|
size += udf_rw32(dscr->lvd.mt_l);
|
|
break;
|
|
case TAGID_UNALLOC_SPACE :
|
|
elmsz = sizeof(struct extent_ad);
|
|
size = sizeof(struct unalloc_sp_desc) - elmsz;
|
|
size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz;
|
|
break;
|
|
case TAGID_FID :
|
|
size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu);
|
|
size = (size + 3) & ~3;
|
|
break;
|
|
case TAGID_LOGVOL_INTEGRITY :
|
|
size = sizeof(struct logvol_int_desc) - sizeof(uint32_t);
|
|
size += udf_rw32(dscr->lvid.l_iu);
|
|
size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t));
|
|
break;
|
|
case TAGID_SPACE_BITMAP :
|
|
size = sizeof(struct space_bitmap_desc) - 1;
|
|
size += udf_rw32(dscr->sbd.num_bytes);
|
|
break;
|
|
case TAGID_SPARING_TABLE :
|
|
elmsz = sizeof(struct spare_map_entry);
|
|
size = sizeof(struct udf_sparing_table) - elmsz;
|
|
size += udf_rw16(dscr->spt.rt_l) * elmsz;
|
|
break;
|
|
case TAGID_FENTRY :
|
|
size = sizeof(struct file_entry);
|
|
size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1;
|
|
break;
|
|
case TAGID_EXTFENTRY :
|
|
size = sizeof(struct extfile_entry);
|
|
size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1;
|
|
break;
|
|
case TAGID_FSD :
|
|
size = sizeof(struct fileset_desc);
|
|
break;
|
|
default :
|
|
size = sizeof(union dscrptr);
|
|
break;
|
|
}
|
|
|
|
if ((size == 0) || (udf_sector_size == 0)) return 0;
|
|
|
|
/* round up in sectors */
|
|
num_secs = (size + udf_sector_size -1) / udf_sector_size;
|
|
return num_secs * udf_sector_size;
|
|
}
|
|
|
|
|
|
static int
|
|
udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size)
|
|
{
|
|
uint32_t size;
|
|
|
|
if (udf_rw16(fid->tag.id) != TAGID_FID)
|
|
panic("got udf_fidsize on non FID\n");
|
|
|
|
size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu);
|
|
size = (size + 3) & ~3;
|
|
|
|
return size;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Problem with read_descriptor are long descriptors spanning more than one
|
|
* sector. Luckily long descriptors can't be in `logical space'.
|
|
*
|
|
* Size of allocated piece is returned in multiple of sector size due to
|
|
* udf_calc_udf_malloc_size().
|
|
*/
|
|
|
|
int
|
|
udf_read_descriptor(struct udf_mount *ump, uint32_t sector,
|
|
struct malloc_type *mtype, union dscrptr **dstp)
|
|
{
|
|
union dscrptr *src, *dst;
|
|
struct buf *bp;
|
|
uint8_t *pos;
|
|
int blks, blk, dscrlen;
|
|
int i, error, sector_size;
|
|
|
|
sector_size = ump->discinfo.sector_size;
|
|
|
|
*dstp = dst = NULL;
|
|
dscrlen = sector_size;
|
|
|
|
/* read initial piece */
|
|
error = udf_bread(ump, sector, &bp);
|
|
DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error));
|
|
|
|
if (!error) {
|
|
/* check if its a valid tag */
|
|
error = udf_check_tag(bp->b_data);
|
|
if (error) {
|
|
/* check if its an empty block */
|
|
pos = bp->b_data;
|
|
for (i = 0; i < sector_size; i++, pos++) {
|
|
if (*pos) break;
|
|
}
|
|
if (i == sector_size) {
|
|
/* return no error but with no dscrptr */
|
|
/* dispose first block */
|
|
brelse(bp);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n"));
|
|
if (!error) {
|
|
src = (union dscrptr *) bp->b_data;
|
|
dscrlen = udf_tagsize(src, sector_size);
|
|
dst = malloc(dscrlen, mtype, M_WAITOK);
|
|
memcpy(dst, src, sector_size);
|
|
}
|
|
/* dispose first block */
|
|
bp->b_flags |= B_AGE;
|
|
brelse(bp);
|
|
|
|
if (!error && (dscrlen > sector_size)) {
|
|
DPRINTF(DESCRIPTOR, ("multi block descriptor read\n"));
|
|
/*
|
|
* Read the rest of descriptor. Since it is only used at mount
|
|
* time its overdone to define and use a specific udf_breadn
|
|
* for this alone.
|
|
*/
|
|
blks = (dscrlen + sector_size -1) / sector_size;
|
|
for (blk = 1; blk < blks; blk++) {
|
|
error = udf_bread(ump, sector + blk, &bp);
|
|
if (error) {
|
|
brelse(bp);
|
|
break;
|
|
}
|
|
pos = (uint8_t *) dst + blk*sector_size;
|
|
memcpy(pos, bp->b_data, sector_size);
|
|
|
|
/* dispose block */
|
|
bp->b_flags |= B_AGE;
|
|
brelse(bp);
|
|
}
|
|
DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n",
|
|
error));
|
|
}
|
|
if (!error) {
|
|
error = udf_check_tag_payload(dst, dscrlen);
|
|
DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n"));
|
|
}
|
|
if (error && dst) {
|
|
free(dst, mtype);
|
|
dst = NULL;
|
|
}
|
|
*dstp = dst;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
#ifdef DEBUG
|
|
static void
|
|
udf_dump_discinfo(struct udf_mount *ump)
|
|
{
|
|
char bits[128];
|
|
struct mmc_discinfo *di = &ump->discinfo;
|
|
|
|
if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0)
|
|
return;
|
|
|
|
printf("Device/media info :\n");
|
|
printf("\tMMC profile 0x%02x\n", di->mmc_profile);
|
|
printf("\tderived class %d\n", di->mmc_class);
|
|
printf("\tsector size %d\n", di->sector_size);
|
|
printf("\tdisc state %d\n", di->disc_state);
|
|
printf("\tlast ses state %d\n", di->last_session_state);
|
|
printf("\tbg format state %d\n", di->bg_format_state);
|
|
printf("\tfrst track %d\n", di->first_track);
|
|
printf("\tfst on last ses %d\n", di->first_track_last_session);
|
|
printf("\tlst on last ses %d\n", di->last_track_last_session);
|
|
printf("\tlink block penalty %d\n", di->link_block_penalty);
|
|
bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits,
|
|
sizeof(bits));
|
|
printf("\tdisc flags %s\n", bits);
|
|
printf("\tdisc id %x\n", di->disc_id);
|
|
printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode);
|
|
|
|
printf("\tnum sessions %d\n", di->num_sessions);
|
|
printf("\tnum tracks %d\n", di->num_tracks);
|
|
|
|
bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits));
|
|
printf("\tcapabilities cur %s\n", bits);
|
|
bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits));
|
|
printf("\tcapabilities cap %s\n", bits);
|
|
}
|
|
#else
|
|
#define udf_dump_discinfo(a);
|
|
#endif
|
|
|
|
/* not called often */
|
|
int
|
|
udf_update_discinfo(struct udf_mount *ump)
|
|
{
|
|
struct vnode *devvp = ump->devvp;
|
|
struct partinfo dpart;
|
|
struct mmc_discinfo *di;
|
|
int error;
|
|
|
|
DPRINTF(VOLUMES, ("read/update disc info\n"));
|
|
di = &ump->discinfo;
|
|
memset(di, 0, sizeof(struct mmc_discinfo));
|
|
|
|
/* check if we're on a MMC capable device, i.e. CD/DVD */
|
|
error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL);
|
|
if (error == 0) {
|
|
udf_dump_discinfo(ump);
|
|
return 0;
|
|
}
|
|
|
|
/* disc partition support */
|
|
error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL);
|
|
if (error)
|
|
return ENODEV;
|
|
|
|
/* set up a disc info profile for partitions */
|
|
di->mmc_profile = 0x01; /* disc type */
|
|
di->mmc_class = MMC_CLASS_DISC;
|
|
di->disc_state = MMC_STATE_CLOSED;
|
|
di->last_session_state = MMC_STATE_CLOSED;
|
|
di->bg_format_state = MMC_BGFSTATE_COMPLETED;
|
|
di->link_block_penalty = 0;
|
|
|
|
di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE |
|
|
MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE;
|
|
di->mmc_cap = di->mmc_cur;
|
|
di->disc_flags = MMC_DFLAGS_UNRESTRICTED;
|
|
|
|
/* TODO problem with last_possible_lba on resizable VND; request */
|
|
di->last_possible_lba = dpart.part->p_size;
|
|
di->sector_size = dpart.disklab->d_secsize;
|
|
di->blockingnr = 1;
|
|
|
|
di->num_sessions = 1;
|
|
di->num_tracks = 1;
|
|
|
|
di->first_track = 1;
|
|
di->first_track_last_session = di->last_track_last_session = 1;
|
|
|
|
udf_dump_discinfo(ump);
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti)
|
|
{
|
|
struct vnode *devvp = ump->devvp;
|
|
struct mmc_discinfo *di = &ump->discinfo;
|
|
int error, class;
|
|
|
|
DPRINTF(VOLUMES, ("read track info\n"));
|
|
|
|
class = di->mmc_class;
|
|
if (class != MMC_CLASS_DISC) {
|
|
/* tracknr specified in struct ti */
|
|
error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL,
|
|
NOCRED, NULL);
|
|
return error;
|
|
}
|
|
|
|
/* disc partition support */
|
|
if (ti->tracknr != 1)
|
|
return EIO;
|
|
|
|
/* create fake ti (TODO check for resized vnds) */
|
|
ti->sessionnr = 1;
|
|
|
|
ti->track_mode = 0; /* XXX */
|
|
ti->data_mode = 0; /* XXX */
|
|
ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID;
|
|
|
|
ti->track_start = 0;
|
|
ti->packet_size = 1;
|
|
|
|
/* TODO support for resizable vnd */
|
|
ti->track_size = di->last_possible_lba;
|
|
ti->next_writable = di->last_possible_lba;
|
|
ti->last_recorded = ti->next_writable;
|
|
ti->free_blocks = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* track/session searching for mounting */
|
|
|
|
static int
|
|
udf_search_tracks(struct udf_mount *ump, struct udf_args *args,
|
|
int *first_tracknr, int *last_tracknr)
|
|
{
|
|
struct mmc_trackinfo trackinfo;
|
|
uint32_t tracknr, start_track, num_tracks;
|
|
int error;
|
|
|
|
/* if negative, sessionnr is relative to last session */
|
|
if (args->sessionnr < 0) {
|
|
args->sessionnr += ump->discinfo.num_sessions;
|
|
/* sanity */
|
|
if (args->sessionnr < 0)
|
|
args->sessionnr = 0;
|
|
}
|
|
|
|
/* sanity */
|
|
if (args->sessionnr > ump->discinfo.num_sessions)
|
|
args->sessionnr = ump->discinfo.num_sessions;
|
|
|
|
/* search the tracks for this session, zero session nr indicates last */
|
|
if (args->sessionnr == 0) {
|
|
args->sessionnr = ump->discinfo.num_sessions;
|
|
if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) {
|
|
args->sessionnr--;
|
|
}
|
|
}
|
|
|
|
/* search the first and last track of the specified session */
|
|
num_tracks = ump->discinfo.num_tracks;
|
|
start_track = ump->discinfo.first_track;
|
|
|
|
/* search for first track of this session */
|
|
for (tracknr = start_track; tracknr <= num_tracks; tracknr++) {
|
|
/* get track info */
|
|
trackinfo.tracknr = tracknr;
|
|
error = udf_update_trackinfo(ump, &trackinfo);
|
|
if (error)
|
|
return error;
|
|
|
|
if (trackinfo.sessionnr == args->sessionnr)
|
|
break;
|
|
}
|
|
*first_tracknr = tracknr;
|
|
|
|
/* search for last track of this session */
|
|
for (;tracknr <= num_tracks; tracknr++) {
|
|
/* get track info */
|
|
trackinfo.tracknr = tracknr;
|
|
error = udf_update_trackinfo(ump, &trackinfo);
|
|
if (error || (trackinfo.sessionnr != args->sessionnr)) {
|
|
tracknr--;
|
|
break;
|
|
}
|
|
}
|
|
if (tracknr > num_tracks)
|
|
tracknr--;
|
|
|
|
*last_tracknr = tracknr;
|
|
|
|
assert(*last_tracknr >= *first_tracknr);
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst)
|
|
{
|
|
int error;
|
|
|
|
error = udf_read_descriptor(ump, sector, M_UDFVOLD,
|
|
(union dscrptr **) dst);
|
|
if (!error) {
|
|
/* blank terminator blocks are not allowed here */
|
|
if (*dst == NULL)
|
|
return ENOENT;
|
|
if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) {
|
|
error = ENOENT;
|
|
free(*dst, M_UDFVOLD);
|
|
*dst = NULL;
|
|
DPRINTF(VOLUMES, ("Not an anchor\n"));
|
|
}
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
int
|
|
udf_read_anchors(struct udf_mount *ump, struct udf_args *args)
|
|
{
|
|
struct mmc_trackinfo first_track;
|
|
struct mmc_trackinfo last_track;
|
|
struct anchor_vdp **anchorsp;
|
|
uint32_t track_start;
|
|
uint32_t track_end;
|
|
uint32_t positions[4];
|
|
int first_tracknr, last_tracknr;
|
|
int error, anch, ok, first_anchor;
|
|
|
|
/* search the first and last track of the specified session */
|
|
error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr);
|
|
if (!error) {
|
|
first_track.tracknr = first_tracknr;
|
|
error = udf_update_trackinfo(ump, &first_track);
|
|
}
|
|
if (!error) {
|
|
last_track.tracknr = last_tracknr;
|
|
error = udf_update_trackinfo(ump, &last_track);
|
|
}
|
|
if (error) {
|
|
printf("UDF mount: reading disc geometry failed\n");
|
|
return 0;
|
|
}
|
|
|
|
track_start = first_track.track_start;
|
|
|
|
/* `end' is not as straitforward as start. */
|
|
track_end = last_track.track_start
|
|
+ last_track.track_size - last_track.free_blocks - 1;
|
|
|
|
if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) {
|
|
/* end of track is not straitforward here */
|
|
if (last_track.flags & MMC_TRACKINFO_LRA_VALID)
|
|
track_end = last_track.last_recorded;
|
|
else if (last_track.flags & MMC_TRACKINFO_NWA_VALID)
|
|
track_end = last_track.next_writable
|
|
- ump->discinfo.link_block_penalty;
|
|
}
|
|
|
|
/* its no use reading a blank track */
|
|
first_anchor = 0;
|
|
if (first_track.flags & MMC_TRACKINFO_BLANK)
|
|
first_anchor = 1;
|
|
|
|
/* read anchors start+256, start+512, end-256, end */
|
|
positions[0] = track_start+256;
|
|
positions[1] = track_end-256;
|
|
positions[2] = track_end;
|
|
positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */
|
|
/* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */
|
|
|
|
ok = 0;
|
|
anchorsp = ump->anchors;
|
|
for (anch = first_anchor; anch < 4; anch++) {
|
|
DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch,
|
|
positions[anch]));
|
|
error = udf_read_anchor(ump, positions[anch], anchorsp);
|
|
if (!error) {
|
|
anchorsp++;
|
|
ok++;
|
|
}
|
|
}
|
|
|
|
/* VATs are only recorded on sequential media, but initialise */
|
|
ump->first_possible_vat_location = track_start + 256 + 1;
|
|
ump->last_possible_vat_location = track_end
|
|
+ ump->discinfo.blockingnr;
|
|
|
|
return ok;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* we dont try to be smart; we just record the parts */
|
|
#define UDF_UPDATE_DSCR(name, dscr) \
|
|
if (name) \
|
|
free(name, M_UDFVOLD); \
|
|
name = dscr;
|
|
|
|
static int
|
|
udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr)
|
|
{
|
|
struct part_desc *part;
|
|
uint16_t phys_part, raw_phys_part;
|
|
|
|
DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n",
|
|
udf_rw16(dscr->tag.id)));
|
|
switch (udf_rw16(dscr->tag.id)) {
|
|
case TAGID_PRI_VOL : /* primary partition */
|
|
UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd);
|
|
break;
|
|
case TAGID_LOGVOL : /* logical volume */
|
|
UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd);
|
|
break;
|
|
case TAGID_UNALLOC_SPACE : /* unallocated space */
|
|
UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd);
|
|
break;
|
|
case TAGID_IMP_VOL : /* implementation */
|
|
/* XXX do we care about multiple impl. descr ? */
|
|
UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd);
|
|
break;
|
|
case TAGID_PARTITION : /* physical partition */
|
|
/* not much use if its not allocated */
|
|
if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) {
|
|
free(dscr, M_UDFVOLD);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* BUGALERT: some rogue implementations use random physical
|
|
* partion numbers to break other implementations so lookup
|
|
* the number.
|
|
*/
|
|
raw_phys_part = udf_rw16(dscr->pd.part_num);
|
|
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
|
|
part = ump->partitions[phys_part];
|
|
if (part == NULL)
|
|
break;
|
|
if (udf_rw16(part->part_num) == raw_phys_part)
|
|
break;
|
|
}
|
|
if (phys_part == UDF_PARTITIONS) {
|
|
free(dscr, M_UDFVOLD);
|
|
return EINVAL;
|
|
}
|
|
|
|
UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd);
|
|
break;
|
|
case TAGID_VOL : /* volume space extender; rare */
|
|
DPRINTF(VOLUMES, ("VDS extender ignored\n"));
|
|
free(dscr, M_UDFVOLD);
|
|
break;
|
|
default :
|
|
DPRINTF(VOLUMES, ("Unhandled VDS type %d\n",
|
|
udf_rw16(dscr->tag.id)));
|
|
free(dscr, M_UDFVOLD);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
#undef UDF_UPDATE_DSCR
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len)
|
|
{
|
|
union dscrptr *dscr;
|
|
uint32_t sector_size, dscr_size;
|
|
int error;
|
|
|
|
sector_size = ump->discinfo.sector_size;
|
|
|
|
/* loc is sectornr, len is in bytes */
|
|
error = EIO;
|
|
while (len) {
|
|
error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr);
|
|
if (error)
|
|
return error;
|
|
|
|
/* blank block is a terminator */
|
|
if (dscr == NULL)
|
|
return 0;
|
|
|
|
/* TERM descriptor is a terminator */
|
|
if (udf_rw16(dscr->tag.id) == TAGID_TERM) {
|
|
free(dscr, M_UDFVOLD);
|
|
return 0;
|
|
}
|
|
|
|
/* process all others */
|
|
dscr_size = udf_tagsize(dscr, sector_size);
|
|
error = udf_process_vds_descriptor(ump, dscr);
|
|
if (error) {
|
|
free(dscr, M_UDFVOLD);
|
|
break;
|
|
}
|
|
assert((dscr_size % sector_size) == 0);
|
|
|
|
len -= dscr_size;
|
|
loc += dscr_size / sector_size;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
|
|
int
|
|
udf_read_vds_space(struct udf_mount *ump)
|
|
{
|
|
struct anchor_vdp *anchor, *anchor2;
|
|
size_t size;
|
|
uint32_t main_loc, main_len;
|
|
uint32_t reserve_loc, reserve_len;
|
|
int error;
|
|
|
|
/*
|
|
* read in VDS space provided by the anchors; if one descriptor read
|
|
* fails, try the mirror sector.
|
|
*
|
|
* check if 2nd anchor is different from 1st; if so, go for 2nd. This
|
|
* avoids the `compatibility features' of DirectCD that may confuse
|
|
* stuff completely.
|
|
*/
|
|
|
|
anchor = ump->anchors[0];
|
|
anchor2 = ump->anchors[1];
|
|
assert(anchor);
|
|
|
|
if (anchor2) {
|
|
size = sizeof(struct extent_ad);
|
|
if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size))
|
|
anchor = anchor2;
|
|
/* reserve is specified to be a literal copy of main */
|
|
}
|
|
|
|
main_loc = udf_rw32(anchor->main_vds_ex.loc);
|
|
main_len = udf_rw32(anchor->main_vds_ex.len);
|
|
|
|
reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc);
|
|
reserve_len = udf_rw32(anchor->reserve_vds_ex.len);
|
|
|
|
error = udf_read_vds_extent(ump, main_loc, main_len);
|
|
if (error) {
|
|
printf("UDF mount: reading in reserve VDS extent\n");
|
|
error = udf_read_vds_extent(ump, reserve_loc, reserve_len);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Read in the logical volume integrity sequence pointed to by our logical
|
|
* volume descriptor. Its a sequence that can be extended using fields in the
|
|
* integrity descriptor itself. On sequential media only one is found, on
|
|
* rewritable media a sequence of descriptors can be found as a form of
|
|
* history keeping and on non sequential write-once media the chain is vital
|
|
* to allow more and more descriptors to be written. The last descriptor
|
|
* written in an extent needs to claim space for a new extent.
|
|
*/
|
|
|
|
static int
|
|
udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp)
|
|
{
|
|
union dscrptr *dscr;
|
|
struct logvol_int_desc *lvint;
|
|
uint32_t sector_size, sector, len;
|
|
int dscr_type, error;
|
|
|
|
sector_size = ump->discinfo.sector_size;
|
|
len = udf_rw32(ump->logical_vol->integrity_seq_loc.len);
|
|
sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc);
|
|
|
|
lvint = NULL;
|
|
dscr = NULL;
|
|
error = 0;
|
|
while (len) {
|
|
/* read in our integrity descriptor */
|
|
error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr);
|
|
if (!error) {
|
|
if (dscr == NULL)
|
|
break; /* empty terminates */
|
|
dscr_type = udf_rw16(dscr->tag.id);
|
|
if (dscr_type == TAGID_TERM) {
|
|
break; /* clean terminator */
|
|
}
|
|
if (dscr_type != TAGID_LOGVOL_INTEGRITY) {
|
|
/* fatal... corrupt disc */
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
if (lvint)
|
|
free(lvint, M_UDFVOLD);
|
|
lvint = &dscr->lvid;
|
|
dscr = NULL;
|
|
} /* else hope for the best... maybe the next is ok */
|
|
|
|
DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n",
|
|
udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN"));
|
|
|
|
/* proceed sequential */
|
|
sector += 1;
|
|
len -= sector_size;
|
|
|
|
/* are we linking to a new piece? */
|
|
if (lvint->next_extent.len) {
|
|
len = udf_rw32(lvint->next_extent.len);
|
|
sector = udf_rw32(lvint->next_extent.loc);
|
|
}
|
|
}
|
|
|
|
/* clean up the mess, esp. when there is an error */
|
|
if (dscr)
|
|
free(dscr, M_UDFVOLD);
|
|
|
|
if (error && lvint) {
|
|
free(lvint, M_UDFVOLD);
|
|
lvint = NULL;
|
|
}
|
|
|
|
if (!lvint)
|
|
error = ENOENT;
|
|
|
|
*lvintp = lvint;
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Checks if ump's vds information is correct and complete
|
|
*/
|
|
|
|
int
|
|
udf_process_vds(struct udf_mount *ump, struct udf_args *args)
|
|
{
|
|
union udf_pmap *mapping;
|
|
struct logvol_int_desc *lvint;
|
|
struct udf_logvol_info *lvinfo;
|
|
struct part_desc *part;
|
|
uint32_t n_pm, mt_l;
|
|
uint8_t *pmap_pos;
|
|
char *domain_name, *map_name;
|
|
const char *check_name;
|
|
int pmap_stype, pmap_size;
|
|
int pmap_type, log_part, phys_part, raw_phys_part;
|
|
int n_phys, n_virt, n_spar, n_meta;
|
|
int len, error;
|
|
|
|
if (ump == NULL)
|
|
return ENOENT;
|
|
|
|
/* we need at least an anchor (trivial, but for safety) */
|
|
if (ump->anchors[0] == NULL)
|
|
return EINVAL;
|
|
|
|
/* we need at least one primary and one logical volume descriptor */
|
|
if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL)
|
|
return EINVAL;
|
|
|
|
/* we need at least one partition descriptor */
|
|
if (ump->partitions[0] == NULL)
|
|
return EINVAL;
|
|
|
|
/* check logical volume sector size verses device sector size */
|
|
if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) {
|
|
printf("UDF mount: format violation, lb_size != sector size\n");
|
|
return EINVAL;
|
|
}
|
|
|
|
domain_name = ump->logical_vol->domain_id.id;
|
|
if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) {
|
|
printf("mount_udf: disc not OSTA UDF Compliant, aborting\n");
|
|
return EINVAL;
|
|
}
|
|
|
|
/* retrieve logical volume integrity sequence */
|
|
error = udf_retrieve_lvint(ump, &ump->logvol_integrity);
|
|
|
|
/*
|
|
* We need at least one logvol integrity descriptor recorded. Note
|
|
* that its OK to have an open logical volume integrity here. The VAT
|
|
* will close/update the integrity.
|
|
*/
|
|
if (ump->logvol_integrity == NULL)
|
|
return EINVAL;
|
|
|
|
/* process derived structures */
|
|
n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
|
|
lvint = ump->logvol_integrity;
|
|
lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]);
|
|
ump->logvol_info = lvinfo;
|
|
|
|
/* TODO check udf versions? */
|
|
|
|
/*
|
|
* check logvol mappings: effective virt->log partmap translation
|
|
* check and recording of the mapping results. Saves expensive
|
|
* strncmp() in tight places.
|
|
*/
|
|
DPRINTF(VOLUMES, ("checking logvol mappings\n"));
|
|
n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
|
|
mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
|
|
pmap_pos = ump->logical_vol->maps;
|
|
|
|
if (n_pm > UDF_PMAPS) {
|
|
printf("UDF mount: too many mappings\n");
|
|
return EINVAL;
|
|
}
|
|
|
|
n_phys = n_virt = n_spar = n_meta = 0;
|
|
for (log_part = 0; log_part < n_pm; log_part++) {
|
|
mapping = (union udf_pmap *) pmap_pos;
|
|
pmap_stype = pmap_pos[0];
|
|
pmap_size = pmap_pos[1];
|
|
switch (pmap_stype) {
|
|
case 1: /* physical mapping */
|
|
/* volseq = udf_rw16(mapping->pm1.vol_seq_num); */
|
|
raw_phys_part = udf_rw16(mapping->pm1.part_num);
|
|
pmap_type = UDF_VTOP_TYPE_PHYS;
|
|
n_phys++;
|
|
break;
|
|
case 2: /* virtual/sparable/meta mapping */
|
|
map_name = mapping->pm2.part_id.id;
|
|
/* volseq = udf_rw16(mapping->pm2.vol_seq_num); */
|
|
raw_phys_part = udf_rw16(mapping->pm2.part_num);
|
|
pmap_type = UDF_VTOP_TYPE_UNKNOWN;
|
|
len = UDF_REGID_ID_SIZE;
|
|
|
|
check_name = "*UDF Virtual Partition";
|
|
if (strncmp(map_name, check_name, len) == 0) {
|
|
pmap_type = UDF_VTOP_TYPE_VIRT;
|
|
n_virt++;
|
|
break;
|
|
}
|
|
check_name = "*UDF Sparable Partition";
|
|
if (strncmp(map_name, check_name, len) == 0) {
|
|
pmap_type = UDF_VTOP_TYPE_SPARABLE;
|
|
n_spar++;
|
|
break;
|
|
}
|
|
check_name = "*UDF Metadata Partition";
|
|
if (strncmp(map_name, check_name, len) == 0) {
|
|
pmap_type = UDF_VTOP_TYPE_META;
|
|
n_meta++;
|
|
break;
|
|
}
|
|
break;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
|
|
/*
|
|
* BUGALERT: some rogue implementations use random physical
|
|
* partion numbers to break other implementations so lookup
|
|
* the number.
|
|
*/
|
|
for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) {
|
|
part = ump->partitions[phys_part];
|
|
if (part == NULL)
|
|
continue;
|
|
if (udf_rw16(part->part_num) == raw_phys_part)
|
|
break;
|
|
}
|
|
|
|
DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part,
|
|
raw_phys_part, phys_part, pmap_type));
|
|
|
|
if (phys_part == UDF_PARTITIONS)
|
|
return EINVAL;
|
|
if (pmap_type == UDF_VTOP_TYPE_UNKNOWN)
|
|
return EINVAL;
|
|
|
|
ump->vtop [log_part] = phys_part;
|
|
ump->vtop_tp[log_part] = pmap_type;
|
|
|
|
pmap_pos += pmap_size;
|
|
}
|
|
/* not winning the beauty contest */
|
|
ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW;
|
|
|
|
/* test some basic UDF assertions/requirements */
|
|
if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1))
|
|
return EINVAL;
|
|
|
|
if (n_virt) {
|
|
if ((n_phys == 0) || n_spar || n_meta)
|
|
return EINVAL;
|
|
}
|
|
if (n_spar + n_phys == 0)
|
|
return EINVAL;
|
|
|
|
/* vat's can only be on a sequential media */
|
|
ump->data_alloc = UDF_ALLOC_SPACEMAP;
|
|
if (n_virt)
|
|
ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
|
|
|
|
ump->meta_alloc = UDF_ALLOC_SPACEMAP;
|
|
if (n_virt)
|
|
ump->meta_alloc = UDF_ALLOC_VAT;
|
|
if (n_meta)
|
|
ump->meta_alloc = UDF_ALLOC_METABITMAP;
|
|
|
|
/* special cases for pseudo-overwrite */
|
|
if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) {
|
|
ump->data_alloc = UDF_ALLOC_SEQUENTIAL;
|
|
if (n_meta) {
|
|
ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL;
|
|
} else {
|
|
ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL;
|
|
}
|
|
}
|
|
|
|
DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n",
|
|
ump->data_alloc, ump->meta_alloc));
|
|
/* TODO determine partitions to write data and metadata ? */
|
|
|
|
/* signal its OK for now */
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Read in complete VAT file and check if its indeed a VAT file descriptor
|
|
*/
|
|
|
|
static int
|
|
udf_check_for_vat(struct udf_node *vat_node)
|
|
{
|
|
struct udf_mount *ump;
|
|
struct icb_tag *icbtag;
|
|
struct timestamp *mtime;
|
|
struct regid *regid;
|
|
struct udf_vat *vat;
|
|
struct udf_logvol_info *lvinfo;
|
|
uint32_t vat_length, alloc_length;
|
|
uint32_t vat_offset, vat_entries;
|
|
uint32_t sector_size;
|
|
uint32_t sectors;
|
|
uint32_t *raw_vat;
|
|
char *regid_name;
|
|
int filetype;
|
|
int error;
|
|
|
|
/* vat_length is really 64 bits though impossible */
|
|
|
|
DPRINTF(VOLUMES, ("Checking for VAT\n"));
|
|
if (!vat_node)
|
|
return ENOENT;
|
|
|
|
/* get mount info */
|
|
ump = vat_node->ump;
|
|
|
|
/* check assertions */
|
|
assert(vat_node->fe || vat_node->efe);
|
|
assert(ump->logvol_integrity);
|
|
|
|
/* get information from fe/efe */
|
|
if (vat_node->fe) {
|
|
vat_length = udf_rw64(vat_node->fe->inf_len);
|
|
icbtag = &vat_node->fe->icbtag;
|
|
mtime = &vat_node->fe->mtime;
|
|
} else {
|
|
vat_length = udf_rw64(vat_node->efe->inf_len);
|
|
icbtag = &vat_node->efe->icbtag;
|
|
mtime = &vat_node->efe->mtime;
|
|
}
|
|
|
|
/* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */
|
|
filetype = icbtag->file_type;
|
|
if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT))
|
|
return ENOENT;
|
|
|
|
DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length));
|
|
/* place a sanity check on the length; currently 1Mb in size */
|
|
if (vat_length > 1*1024*1024)
|
|
return ENOENT;
|
|
|
|
/* get sector size */
|
|
sector_size = vat_node->ump->discinfo.sector_size;
|
|
|
|
/* calculate how many sectors to read in and how much to allocate */
|
|
sectors = (vat_length + sector_size -1) / sector_size;
|
|
alloc_length = (sectors + 2) * sector_size;
|
|
|
|
/* try to allocate the space */
|
|
ump->vat_table_alloc_length = alloc_length;
|
|
ump->vat_table = malloc(alloc_length, M_UDFVOLD, M_CANFAIL | M_WAITOK);
|
|
if (!ump->vat_table)
|
|
return ENOMEM; /* impossible to allocate */
|
|
DPRINTF(VOLUMES, ("\talloced fine\n"));
|
|
|
|
/* read it in! */
|
|
raw_vat = (uint32_t *) ump->vat_table;
|
|
error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat);
|
|
if (error) {
|
|
DPRINTF(VOLUMES, ("\tread failed : %d\n", error));
|
|
/* not completely readable... :( bomb out */
|
|
free(ump->vat_table, M_UDFVOLD);
|
|
ump->vat_table = NULL;
|
|
return error;
|
|
}
|
|
DPRINTF(VOLUMES, ("VAT read in fine!\n"));
|
|
|
|
/*
|
|
* check contents of the file if its the old 1.50 VAT table format.
|
|
* Its notoriously broken and allthough some implementations support an
|
|
* extention as defined in the UDF 1.50 errata document, its doubtfull
|
|
* to be useable since a lot of implementations don't maintain it.
|
|
*/
|
|
lvinfo = ump->logvol_info;
|
|
|
|
if (filetype == 0) {
|
|
/* definition */
|
|
vat_offset = 0;
|
|
vat_entries = (vat_length-36)/4;
|
|
|
|
/* check 1.50 VAT */
|
|
regid = (struct regid *) (raw_vat + vat_entries);
|
|
regid_name = (char *) regid->id;
|
|
error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22);
|
|
if (error) {
|
|
DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n"));
|
|
free(ump->vat_table, M_UDFVOLD);
|
|
ump->vat_table = NULL;
|
|
return ENOENT;
|
|
}
|
|
/* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */
|
|
} else {
|
|
vat = (struct udf_vat *) raw_vat;
|
|
|
|
/* definition */
|
|
vat_offset = vat->header_len;
|
|
vat_entries = (vat_length - vat_offset)/4;
|
|
|
|
assert(lvinfo);
|
|
lvinfo->num_files = vat->num_files;
|
|
lvinfo->num_directories = vat->num_directories;
|
|
lvinfo->min_udf_readver = vat->min_udf_readver;
|
|
lvinfo->min_udf_writever = vat->min_udf_writever;
|
|
lvinfo->max_udf_writever = vat->max_udf_writever;
|
|
}
|
|
|
|
ump->vat_offset = vat_offset;
|
|
ump->vat_entries = vat_entries;
|
|
|
|
DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n"));
|
|
ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED);
|
|
ump->logvol_integrity->time = *mtime;
|
|
|
|
return 0; /* success! */
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping)
|
|
{
|
|
struct udf_node *vat_node;
|
|
struct long_ad icb_loc;
|
|
uint32_t early_vat_loc, late_vat_loc, vat_loc;
|
|
int error;
|
|
|
|
/* mapping info not needed */
|
|
mapping = mapping;
|
|
|
|
vat_loc = ump->last_possible_vat_location;
|
|
early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr;
|
|
early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location);
|
|
late_vat_loc = vat_loc + 1024;
|
|
|
|
/* TODO first search last sector? */
|
|
do {
|
|
DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc));
|
|
icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART);
|
|
icb_loc.loc.lb_num = udf_rw32(vat_loc);
|
|
|
|
error = udf_get_node(ump, &icb_loc, &vat_node);
|
|
if (!error) error = udf_check_for_vat(vat_node);
|
|
if (!error) break;
|
|
if (vat_node) {
|
|
vput(vat_node->vnode);
|
|
udf_dispose_node(vat_node);
|
|
}
|
|
vat_loc--; /* walk backwards */
|
|
} while (vat_loc >= early_vat_loc);
|
|
|
|
/* we don't need our VAT node anymore */
|
|
if (vat_node) {
|
|
vput(vat_node->vnode);
|
|
udf_dispose_node(vat_node);
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static int
|
|
udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping)
|
|
{
|
|
union dscrptr *dscr;
|
|
struct part_map_spare *pms = &mapping->pms;
|
|
uint32_t lb_num;
|
|
int spar, error;
|
|
|
|
/*
|
|
* The partition mapping passed on to us specifies the information we
|
|
* need to locate and initialise the sparable partition mapping
|
|
* information we need.
|
|
*/
|
|
|
|
DPRINTF(VOLUMES, ("Read sparable table\n"));
|
|
ump->sparable_packet_len = udf_rw16(pms->packet_len);
|
|
for (spar = 0; spar < pms->n_st; spar++) {
|
|
lb_num = pms->st_loc[spar];
|
|
DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num));
|
|
error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
|
|
if (!error && dscr) {
|
|
if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) {
|
|
if (ump->sparing_table)
|
|
free(ump->sparing_table, M_UDFVOLD);
|
|
ump->sparing_table = &dscr->spt;
|
|
dscr = NULL;
|
|
DPRINTF(VOLUMES,
|
|
("Sparing table accepted (%d entries)\n",
|
|
udf_rw16(ump->sparing_table->rt_l)));
|
|
break; /* we're done */
|
|
}
|
|
}
|
|
if (dscr)
|
|
free(dscr, M_UDFVOLD);
|
|
}
|
|
|
|
if (ump->sparing_table)
|
|
return 0;
|
|
|
|
return ENOENT;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
#define UDF_SET_SYSTEMFILE(vp) \
|
|
simple_lock(&(vp)->v_interlock); \
|
|
(vp)->v_flag |= VSYSTEM; \
|
|
simple_unlock(&(vp)->v_interlock);\
|
|
vref(vp); \
|
|
vput(vp); \
|
|
|
|
static int
|
|
udf_read_metadata_files(struct udf_mount *ump, union udf_pmap *mapping)
|
|
{
|
|
struct part_map_meta *pmm = &mapping->pmm;
|
|
struct long_ad icb_loc;
|
|
struct vnode *vp;
|
|
int error;
|
|
|
|
DPRINTF(VOLUMES, ("Reading in Metadata files\n"));
|
|
icb_loc.loc.part_num = pmm->part_num;
|
|
icb_loc.loc.lb_num = pmm->meta_file_lbn;
|
|
DPRINTF(VOLUMES, ("Metadata file\n"));
|
|
error = udf_get_node(ump, &icb_loc, &ump->metadata_file);
|
|
if (ump->metadata_file) {
|
|
vp = ump->metadata_file->vnode;
|
|
UDF_SET_SYSTEMFILE(vp);
|
|
}
|
|
|
|
icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn;
|
|
if (icb_loc.loc.lb_num != -1) {
|
|
DPRINTF(VOLUMES, ("Metadata copy file\n"));
|
|
error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_file);
|
|
if (ump->metadatamirror_file) {
|
|
vp = ump->metadatamirror_file->vnode;
|
|
UDF_SET_SYSTEMFILE(vp);
|
|
}
|
|
}
|
|
|
|
icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn;
|
|
if (icb_loc.loc.lb_num != -1) {
|
|
DPRINTF(VOLUMES, ("Metadata bitmap file\n"));
|
|
error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_file);
|
|
if (ump->metadatabitmap_file) {
|
|
vp = ump->metadatabitmap_file->vnode;
|
|
UDF_SET_SYSTEMFILE(vp);
|
|
}
|
|
}
|
|
|
|
/* if we're mounting read-only we relax the requirements */
|
|
if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) {
|
|
error = EFAULT;
|
|
if (ump->metadata_file)
|
|
error = 0;
|
|
if ((ump->metadata_file == NULL) && (ump->metadatamirror_file)) {
|
|
printf( "udf mount: Metadata file not readable, "
|
|
"substituting Metadata copy file\n");
|
|
ump->metadata_file = ump->metadatamirror_file;
|
|
ump->metadatamirror_file = NULL;
|
|
error = 0;
|
|
}
|
|
} else {
|
|
/* mounting read/write */
|
|
DPRINTF(VOLUMES, ("udf mount: read only file system\n"));
|
|
error = EROFS;
|
|
}
|
|
DPRINTFIF(VOLUMES, error, ("udf mount: failed to read "
|
|
"metadata files\n"));
|
|
return error;
|
|
}
|
|
#undef UDF_SET_SYSTEMFILE
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args)
|
|
{
|
|
union udf_pmap *mapping;
|
|
uint32_t n_pm, mt_l;
|
|
uint32_t log_part;
|
|
uint8_t *pmap_pos;
|
|
int pmap_size;
|
|
int error;
|
|
|
|
/* We have to iterate again over the part mappings for locations */
|
|
n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */
|
|
mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */
|
|
pmap_pos = ump->logical_vol->maps;
|
|
|
|
for (log_part = 0; log_part < n_pm; log_part++) {
|
|
mapping = (union udf_pmap *) pmap_pos;
|
|
switch (ump->vtop_tp[log_part]) {
|
|
case UDF_VTOP_TYPE_PHYS :
|
|
/* nothing */
|
|
break;
|
|
case UDF_VTOP_TYPE_VIRT :
|
|
/* search and load VAT */
|
|
error = udf_search_vat(ump, mapping);
|
|
if (error)
|
|
return ENOENT;
|
|
break;
|
|
case UDF_VTOP_TYPE_SPARABLE :
|
|
/* load one of the sparable tables */
|
|
error = udf_read_sparables(ump, mapping);
|
|
if (error)
|
|
return ENOENT;
|
|
break;
|
|
case UDF_VTOP_TYPE_META :
|
|
/* load the associated file descriptors */
|
|
error = udf_read_metadata_files(ump, mapping);
|
|
if (error)
|
|
return ENOENT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
pmap_size = pmap_pos[1];
|
|
pmap_pos += pmap_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args)
|
|
{
|
|
struct udf_node *rootdir_node, *streamdir_node;
|
|
union dscrptr *dscr;
|
|
struct long_ad fsd_loc, *dir_loc;
|
|
uint32_t lb_num, dummy;
|
|
uint32_t fsd_len;
|
|
int dscr_type;
|
|
int error;
|
|
|
|
/* TODO implement FSD reading in separate function like integrity? */
|
|
/* get fileset descriptor sequence */
|
|
fsd_loc = ump->logical_vol->lv_fsd_loc;
|
|
fsd_len = udf_rw32(fsd_loc.len);
|
|
|
|
dscr = NULL;
|
|
error = 0;
|
|
while (fsd_len || error) {
|
|
DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len));
|
|
/* translate fsd_loc to lb_num */
|
|
error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy);
|
|
if (error)
|
|
break;
|
|
DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num));
|
|
error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr);
|
|
/* end markers */
|
|
if (error || (dscr == NULL))
|
|
break;
|
|
|
|
/* analyse */
|
|
dscr_type = udf_rw16(dscr->tag.id);
|
|
if (dscr_type == TAGID_TERM)
|
|
break;
|
|
if (dscr_type != TAGID_FSD) {
|
|
free(dscr, M_UDFVOLD);
|
|
return ENOENT;
|
|
}
|
|
|
|
/*
|
|
* TODO check for multiple fileset descriptors; its only
|
|
* picking the last now. Also check for FSD
|
|
* correctness/interpretability
|
|
*/
|
|
|
|
/* update */
|
|
if (ump->fileset_desc) {
|
|
free(ump->fileset_desc, M_UDFVOLD);
|
|
}
|
|
ump->fileset_desc = &dscr->fsd;
|
|
dscr = NULL;
|
|
|
|
/* continue to the next fsd */
|
|
fsd_len -= ump->discinfo.sector_size;
|
|
fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1);
|
|
|
|
/* follow up to fsd->next_ex (long_ad) if its not null */
|
|
if (udf_rw32(ump->fileset_desc->next_ex.len)) {
|
|
DPRINTF(VOLUMES, ("follow up FSD extent\n"));
|
|
fsd_loc = ump->fileset_desc->next_ex;
|
|
fsd_len = udf_rw32(ump->fileset_desc->next_ex.len);
|
|
}
|
|
}
|
|
if (dscr)
|
|
free(dscr, M_UDFVOLD);
|
|
|
|
/* there has to be one */
|
|
if (ump->fileset_desc == NULL)
|
|
return ENOENT;
|
|
|
|
DPRINTF(VOLUMES, ("FSD read in fine\n"));
|
|
|
|
/*
|
|
* Now the FSD is known, read in the rootdirectory and if one exists,
|
|
* the system stream dir. Some files in the system streamdir are not
|
|
* wanted in this implementation since they are not maintained. If
|
|
* writing is enabled we'll delete these files if they exist.
|
|
*/
|
|
|
|
rootdir_node = streamdir_node = NULL;
|
|
dir_loc = NULL;
|
|
|
|
/* try to read in the rootdir */
|
|
dir_loc = &ump->fileset_desc->rootdir_icb;
|
|
error = udf_get_node(ump, dir_loc, &rootdir_node);
|
|
if (error)
|
|
return ENOENT;
|
|
|
|
/* aparently it read in fine */
|
|
|
|
/*
|
|
* Try the system stream directory; not very likely in the ones we
|
|
* test, but for completeness.
|
|
*/
|
|
dir_loc = &ump->fileset_desc->streamdir_icb;
|
|
if (udf_rw32(dir_loc->len)) {
|
|
error = udf_get_node(ump, dir_loc, &streamdir_node);
|
|
if (error)
|
|
printf("udf mount: streamdir defined but ignored\n");
|
|
if (!error) {
|
|
/*
|
|
* TODO process streamdir `baddies' i.e. files we dont
|
|
* want if R/W
|
|
*/
|
|
}
|
|
}
|
|
|
|
DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n"));
|
|
|
|
/* release the vnodes again; they'll be auto-recycled later */
|
|
if (streamdir_node) {
|
|
vput(streamdir_node->vnode);
|
|
}
|
|
if (rootdir_node) {
|
|
vput(rootdir_node->vnode);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc,
|
|
uint32_t *lb_numres, uint32_t *extres)
|
|
{
|
|
struct part_desc *pdesc;
|
|
struct spare_map_entry *sme;
|
|
struct file_entry *fe;
|
|
struct extfile_entry *efe;
|
|
struct short_ad *s_ad;
|
|
struct long_ad *l_ad;
|
|
uint64_t cur_offset;
|
|
uint32_t *trans;
|
|
uint32_t lb_num, plb_num, lb_rel, lb_packet;
|
|
uint32_t sector_size, len, alloclen;
|
|
uint8_t *pos;
|
|
int rel, vpart, part, addr_type, icblen, icbflags, flags;
|
|
|
|
assert(ump && icb_loc && lb_numres);
|
|
|
|
vpart = udf_rw16(icb_loc->loc.part_num);
|
|
lb_num = udf_rw32(icb_loc->loc.lb_num);
|
|
if (vpart < 0 || vpart > UDF_VTOP_RAWPART)
|
|
return EINVAL;
|
|
|
|
part = ump->vtop[vpart];
|
|
pdesc = ump->partitions[part];
|
|
|
|
switch (ump->vtop_tp[vpart]) {
|
|
case UDF_VTOP_TYPE_RAW :
|
|
/* 1:1 to the end of the device */
|
|
*lb_numres = lb_num;
|
|
*extres = INT_MAX;
|
|
return 0;
|
|
case UDF_VTOP_TYPE_PHYS :
|
|
/* transform into its disc logical block */
|
|
if (lb_num > udf_rw32(pdesc->part_len))
|
|
return EINVAL;
|
|
*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
|
|
|
|
/* extent from here to the end of the partition */
|
|
*extres = udf_rw32(pdesc->part_len) - lb_num;
|
|
return 0;
|
|
case UDF_VTOP_TYPE_VIRT :
|
|
/* only maps one sector, lookup in VAT */
|
|
if (lb_num >= ump->vat_entries) /* XXX > or >= ? */
|
|
return EINVAL;
|
|
|
|
/* lookup in virtual allocation table */
|
|
trans = (uint32_t *) (ump->vat_table + ump->vat_offset);
|
|
lb_num = udf_rw32(trans[lb_num]);
|
|
|
|
/* transform into its disc logical block */
|
|
if (lb_num > udf_rw32(pdesc->part_len))
|
|
return EINVAL;
|
|
*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
|
|
|
|
/* just one logical block */
|
|
*extres = 1;
|
|
return 0;
|
|
case UDF_VTOP_TYPE_SPARABLE :
|
|
/* check if the packet containing the lb_num is remapped */
|
|
lb_packet = lb_num / ump->sparable_packet_len;
|
|
lb_rel = lb_num % ump->sparable_packet_len;
|
|
|
|
for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) {
|
|
sme = &ump->sparing_table->entries[rel];
|
|
if (lb_packet == udf_rw32(sme->org)) {
|
|
/* NOTE maps to absolute disc logical block! */
|
|
*lb_numres = udf_rw32(sme->map) + lb_rel;
|
|
*extres = ump->sparable_packet_len - lb_rel;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* transform into its disc logical block */
|
|
if (lb_num > udf_rw32(pdesc->part_len))
|
|
return EINVAL;
|
|
*lb_numres = lb_num + udf_rw32(pdesc->start_loc);
|
|
|
|
/* rest of block */
|
|
*extres = ump->sparable_packet_len - lb_rel;
|
|
return 0;
|
|
case UDF_VTOP_TYPE_META :
|
|
/* we have to look into the file's allocation descriptors */
|
|
/* free after udf_translate_file_extent() */
|
|
/* XXX sector size or lb_size? */
|
|
sector_size = ump->discinfo.sector_size;
|
|
/* XXX should we claim exclusive access to the metafile ? */
|
|
fe = ump->metadata_file->fe;
|
|
efe = ump->metadata_file->efe;
|
|
if (fe) {
|
|
alloclen = udf_rw32(fe->l_ad);
|
|
pos = &fe->data[0] + udf_rw32(fe->l_ea);
|
|
icbflags = udf_rw16(fe->icbtag.flags);
|
|
} else {
|
|
assert(efe);
|
|
alloclen = udf_rw32(efe->l_ad);
|
|
pos = &efe->data[0] + udf_rw32(efe->l_ea);
|
|
icbflags = udf_rw16(efe->icbtag.flags);
|
|
}
|
|
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
|
|
|
|
cur_offset = 0;
|
|
while (alloclen) {
|
|
if (addr_type == UDF_ICB_SHORT_ALLOC) {
|
|
icblen = sizeof(struct short_ad);
|
|
s_ad = (struct short_ad *) pos;
|
|
len = udf_rw32(s_ad->len);
|
|
plb_num = udf_rw32(s_ad->lb_num);
|
|
} else {
|
|
/* should not be present, but why not */
|
|
icblen = sizeof(struct long_ad);
|
|
l_ad = (struct long_ad *) pos;
|
|
len = udf_rw32(l_ad->len);
|
|
plb_num = udf_rw32(l_ad->loc.lb_num);
|
|
/* pvpart_num = udf_rw16(l_ad->loc.part_num); */
|
|
}
|
|
/* process extent */
|
|
flags = UDF_EXT_FLAGS(len);
|
|
len = UDF_EXT_LEN(len);
|
|
|
|
if (cur_offset + len > lb_num * sector_size) {
|
|
if (flags != UDF_EXT_ALLOCATED)
|
|
return EINVAL;
|
|
lb_rel = lb_num - cur_offset / sector_size;
|
|
/* remainder of this extent */
|
|
*lb_numres = plb_num + lb_rel +
|
|
udf_rw32(pdesc->start_loc);
|
|
*extres = (len / sector_size) - lb_rel;
|
|
return 0;
|
|
}
|
|
cur_offset += len;
|
|
pos += icblen;
|
|
alloclen -= icblen;
|
|
}
|
|
/* not found */
|
|
DPRINTF(TRANSLATE, ("Metadata partition translation failed\n"));
|
|
return EINVAL;
|
|
default:
|
|
printf("UDF vtop translation scheme %d unimplemented yet\n",
|
|
ump->vtop_tp[vpart]);
|
|
}
|
|
|
|
return EINVAL;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* To make absolutely sure we are NOT returning zero, add one :) */
|
|
|
|
long
|
|
udf_calchash(struct long_ad *icbptr)
|
|
{
|
|
/* ought to be enough since each mountpoint has its own chain */
|
|
return udf_rw32(icbptr->loc.lb_num) + 1;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static struct udf_node *
|
|
udf_hashget(struct udf_mount *ump, struct long_ad *icbptr)
|
|
{
|
|
struct udf_node *unp;
|
|
struct vnode *vp;
|
|
uint32_t hashline;
|
|
|
|
loop:
|
|
simple_lock(&ump->ihash_slock);
|
|
|
|
hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK;
|
|
LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) {
|
|
assert(unp);
|
|
if (unp->loc.loc.lb_num == icbptr->loc.lb_num &&
|
|
unp->loc.loc.part_num == icbptr->loc.part_num) {
|
|
vp = unp->vnode;
|
|
assert(vp);
|
|
simple_lock(&vp->v_interlock);
|
|
simple_unlock(&ump->ihash_slock);
|
|
if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK))
|
|
goto loop;
|
|
return unp;
|
|
}
|
|
}
|
|
simple_unlock(&ump->ihash_slock);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static void
|
|
udf_hashins(struct udf_node *unp)
|
|
{
|
|
struct udf_mount *ump;
|
|
uint32_t hashline;
|
|
|
|
ump = unp->ump;
|
|
simple_lock(&ump->ihash_slock);
|
|
|
|
hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK;
|
|
LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain);
|
|
|
|
simple_unlock(&ump->ihash_slock);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static void
|
|
udf_hashrem(struct udf_node *unp)
|
|
{
|
|
struct udf_mount *ump;
|
|
|
|
ump = unp->ump;
|
|
simple_lock(&ump->ihash_slock);
|
|
|
|
LIST_REMOVE(unp, hashchain);
|
|
|
|
simple_unlock(&ump->ihash_slock);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_dispose_locked_node(struct udf_node *node)
|
|
{
|
|
if (!node)
|
|
return 0;
|
|
if (node->vnode)
|
|
VOP_UNLOCK(node->vnode, 0);
|
|
return udf_dispose_node(node);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
int
|
|
udf_dispose_node(struct udf_node *node)
|
|
{
|
|
struct vnode *vp;
|
|
|
|
DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node));
|
|
if (!node) {
|
|
DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n"));
|
|
return 0;
|
|
}
|
|
|
|
vp = node->vnode;
|
|
|
|
/* TODO extended attributes and streamdir */
|
|
|
|
/* remove from our hash lookup table */
|
|
udf_hashrem(node);
|
|
|
|
/* destroy genfs structures */
|
|
genfs_node_destroy(vp);
|
|
|
|
/* dissociate our udf_node from the vnode */
|
|
vp->v_data = NULL;
|
|
|
|
/* free associated memory and the node itself */
|
|
if (node->fe)
|
|
pool_put(node->ump->desc_pool, node->fe);
|
|
if (node->efe)
|
|
pool_put(node->ump->desc_pool, node->efe);
|
|
pool_put(&udf_node_pool, node);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Genfs interfacing
|
|
*
|
|
* static const struct genfs_ops udffs_genfsops = {
|
|
* .gop_size = genfs_size,
|
|
* size of transfers
|
|
* .gop_alloc = udf_gop_alloc,
|
|
* unknown
|
|
* .gop_write = genfs_gop_write,
|
|
* putpages interface code
|
|
* .gop_markupdate = udf_gop_markupdate,
|
|
* set update/modify flags etc.
|
|
* }
|
|
*/
|
|
|
|
/*
|
|
* Genfs interface. These four functions are the only ones defined though not
|
|
* documented... great.... why is chosen for the `.' initialisers i dont know
|
|
* but other filingsystems seem to use it this way.
|
|
*/
|
|
|
|
static int
|
|
udf_gop_alloc(struct vnode *vp, off_t off,
|
|
off_t len, int flags, kauth_cred_t cred)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
|
|
static void
|
|
udf_gop_markupdate(struct vnode *vp, int flags)
|
|
{
|
|
struct udf_node *udf_node = VTOI(vp);
|
|
u_long mask;
|
|
|
|
udf_node = udf_node; /* shut up gcc */
|
|
|
|
mask = 0;
|
|
#ifdef notyet
|
|
if ((flags & GOP_UPDATE_ACCESSED) != 0) {
|
|
mask = UDF_SET_ACCESS;
|
|
}
|
|
if ((flags & GOP_UPDATE_MODIFIED) != 0) {
|
|
mask |= UDF_SET_UPDATE;
|
|
}
|
|
if (mask) {
|
|
udf_node->update_flag |= mask;
|
|
}
|
|
#endif
|
|
/* msdosfs doesn't do it, but shouldn't we update the times here? */
|
|
}
|
|
|
|
|
|
static const struct genfs_ops udf_genfsops = {
|
|
.gop_size = genfs_size,
|
|
.gop_alloc = udf_gop_alloc,
|
|
.gop_write = genfs_gop_write,
|
|
.gop_markupdate = udf_gop_markupdate,
|
|
};
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Each node can have an attached streamdir node though not
|
|
* recursively. These are otherwise known as named substreams/named
|
|
* extended attributes that have no size limitations.
|
|
*
|
|
* `Normal' extended attributes are indicated with a number and are recorded
|
|
* in either the fe/efe descriptor itself for small descriptors or recorded in
|
|
* the attached extended attribute file. Since this file can get fragmented,
|
|
* care ought to be taken.
|
|
*/
|
|
|
|
int
|
|
udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc,
|
|
struct udf_node **noderes)
|
|
{
|
|
union dscrptr *dscr, *tmpdscr;
|
|
struct udf_node *node;
|
|
struct vnode *nvp;
|
|
struct long_ad icb_loc;
|
|
extern int (**udf_vnodeop_p)(void *);
|
|
uint64_t file_size;
|
|
uint32_t lb_size, sector, dummy;
|
|
int udf_file_type, dscr_type, strat, strat4096, needs_indirect;
|
|
int error;
|
|
|
|
DPRINTF(NODE, ("udf_get_node called\n"));
|
|
*noderes = node = NULL;
|
|
|
|
/* lock to disallow simultanious creation of same node */
|
|
lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL);
|
|
|
|
DPRINTF(NODE, ("\tlookup in hash table\n"));
|
|
/* lookup in hash table */
|
|
assert(ump);
|
|
assert(node_icb_loc);
|
|
node = udf_hashget(ump, node_icb_loc);
|
|
if (node) {
|
|
DPRINTF(NODE, ("\tgot it from the hash!\n"));
|
|
/* vnode is returned locked */
|
|
*noderes = node;
|
|
lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
|
|
return 0;
|
|
}
|
|
|
|
/* garbage check: translate node_icb_loc to sectornr */
|
|
error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy);
|
|
if (error) {
|
|
/* no use, this will fail anyway */
|
|
lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
|
|
return EINVAL;
|
|
}
|
|
|
|
/* build node (do initialise!) */
|
|
node = pool_get(&udf_node_pool, PR_WAITOK);
|
|
memset(node, 0, sizeof(struct udf_node));
|
|
|
|
DPRINTF(NODE, ("\tget new vnode\n"));
|
|
/* give it a vnode */
|
|
error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp);
|
|
if (error) {
|
|
pool_put(&udf_node_pool, node);
|
|
lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
|
|
return error;
|
|
}
|
|
|
|
/* always return locked vnode */
|
|
if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) {
|
|
/* recycle vnode and unlock; simultanious will fail too */
|
|
ungetnewvnode(nvp);
|
|
lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
|
|
return error;
|
|
}
|
|
|
|
/* initialise crosslinks, note location of fe/efe for hashing */
|
|
node->ump = ump;
|
|
node->vnode = nvp;
|
|
nvp->v_data = node;
|
|
node->loc = *node_icb_loc;
|
|
node->lockf = 0;
|
|
|
|
/* insert into the hash lookup */
|
|
udf_hashins(node);
|
|
|
|
/* safe to unlock, the entry is in the hash table, vnode is locked */
|
|
lockmgr(&ump->get_node_lock, LK_RELEASE, NULL);
|
|
|
|
icb_loc = *node_icb_loc;
|
|
needs_indirect = 0;
|
|
strat4096 = 0;
|
|
udf_file_type = UDF_ICB_FILETYPE_UNKNOWN;
|
|
file_size = 0;
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
|
|
do {
|
|
error = udf_translate_vtop(ump, &icb_loc, §or, &dummy);
|
|
if (error)
|
|
break;
|
|
|
|
/* try to read in fe/efe */
|
|
error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr);
|
|
|
|
/* blank sector marks end of sequence, check this */
|
|
if ((tmpdscr == NULL) && (!strat4096))
|
|
error = ENOENT;
|
|
|
|
/* break if read error or blank sector */
|
|
if (error || (tmpdscr == NULL))
|
|
break;
|
|
|
|
/* process descriptor based on the descriptor type */
|
|
dscr_type = udf_rw16(tmpdscr->tag.id);
|
|
|
|
/* if dealing with an indirect entry, follow the link */
|
|
if (dscr_type == TAGID_INDIRECT_ENTRY) {
|
|
needs_indirect = 0;
|
|
icb_loc = tmpdscr->inde.indirect_icb;
|
|
free(tmpdscr, M_UDFTEMP);
|
|
continue;
|
|
}
|
|
|
|
/* only file entries and extended file entries allowed here */
|
|
if ((dscr_type != TAGID_FENTRY) &&
|
|
(dscr_type != TAGID_EXTFENTRY)) {
|
|
free(tmpdscr, M_UDFTEMP);
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
|
|
/* get descriptor space from our pool */
|
|
KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size);
|
|
|
|
dscr = pool_get(ump->desc_pool, PR_WAITOK);
|
|
memcpy(dscr, tmpdscr, lb_size);
|
|
free(tmpdscr, M_UDFTEMP);
|
|
|
|
/* record and process/update (ext)fentry */
|
|
if (dscr_type == TAGID_FENTRY) {
|
|
if (node->fe)
|
|
pool_put(ump->desc_pool, node->fe);
|
|
node->fe = &dscr->fe;
|
|
strat = udf_rw16(node->fe->icbtag.strat_type);
|
|
udf_file_type = node->fe->icbtag.file_type;
|
|
file_size = udf_rw64(node->fe->inf_len);
|
|
} else {
|
|
if (node->efe)
|
|
pool_put(ump->desc_pool, node->efe);
|
|
node->efe = &dscr->efe;
|
|
strat = udf_rw16(node->efe->icbtag.strat_type);
|
|
udf_file_type = node->efe->icbtag.file_type;
|
|
file_size = udf_rw64(node->efe->inf_len);
|
|
}
|
|
|
|
/* check recording strategy (structure) */
|
|
|
|
/*
|
|
* Strategy 4096 is a daisy linked chain terminating with an
|
|
* unrecorded sector or a TERM descriptor. The next
|
|
* descriptor is to be found in the sector that follows the
|
|
* current sector.
|
|
*/
|
|
if (strat == 4096) {
|
|
strat4096 = 1;
|
|
needs_indirect = 1;
|
|
|
|
icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1;
|
|
}
|
|
|
|
/*
|
|
* Strategy 4 is the normal strategy and terminates, but if
|
|
* we're in strategy 4096, we can't have strategy 4 mixed in
|
|
*/
|
|
|
|
if (strat == 4) {
|
|
if (strat4096) {
|
|
error = EINVAL;
|
|
break;
|
|
}
|
|
break; /* done */
|
|
}
|
|
} while (!error);
|
|
|
|
if (error) {
|
|
/* recycle udf_node */
|
|
udf_dispose_node(node);
|
|
|
|
/* recycle vnode */
|
|
nvp->v_data = NULL;
|
|
ungetnewvnode(nvp);
|
|
|
|
return EINVAL; /* error code ok? */
|
|
}
|
|
|
|
/* post process and initialise node */
|
|
|
|
/* assert no references to dscr anymore beyong this point */
|
|
assert((node->fe) || (node->efe));
|
|
dscr = NULL;
|
|
|
|
/*
|
|
* Record where to record an updated version of the descriptor. If
|
|
* there is a sequence of indirect entries, icb_loc will have been
|
|
* updated. Its the write disipline to allocate new space and to make
|
|
* sure the chain is maintained.
|
|
*
|
|
* `needs_indirect' flags if the next location is to be filled with
|
|
* with an indirect entry.
|
|
*/
|
|
node->next_loc = icb_loc;
|
|
node->needs_indirect = needs_indirect;
|
|
|
|
/*
|
|
* Translate UDF filetypes into vnode types.
|
|
*
|
|
* Systemfiles like the meta main and mirror files are not treated as
|
|
* normal files, so we type them as having no type. UDF dictates that
|
|
* they are not allowed to be visible.
|
|
*/
|
|
|
|
/* TODO specfs, fifofs etc etc. vnops setting */
|
|
switch (udf_file_type) {
|
|
case UDF_ICB_FILETYPE_DIRECTORY :
|
|
case UDF_ICB_FILETYPE_STREAMDIR :
|
|
nvp->v_type = VDIR;
|
|
break;
|
|
case UDF_ICB_FILETYPE_BLOCKDEVICE :
|
|
nvp->v_type = VBLK;
|
|
break;
|
|
case UDF_ICB_FILETYPE_CHARDEVICE :
|
|
nvp->v_type = VCHR;
|
|
break;
|
|
case UDF_ICB_FILETYPE_SYMLINK :
|
|
nvp->v_type = VLNK;
|
|
break;
|
|
case UDF_ICB_FILETYPE_VAT :
|
|
case UDF_ICB_FILETYPE_META_MAIN :
|
|
case UDF_ICB_FILETYPE_META_MIRROR :
|
|
nvp->v_type = VNON;
|
|
break;
|
|
case UDF_ICB_FILETYPE_RANDOMACCESS :
|
|
case UDF_ICB_FILETYPE_REALTIME :
|
|
nvp->v_type = VREG;
|
|
break;
|
|
default:
|
|
/* YIKES, either a block/char device, fifo or something else */
|
|
nvp->v_type = VNON;
|
|
}
|
|
|
|
/* initialise genfs */
|
|
genfs_node_init(nvp, &udf_genfsops);
|
|
|
|
/* don't forget to set vnode's v_size */
|
|
uvm_vnp_setsize(nvp, file_size);
|
|
|
|
/* TODO ext attr and streamdir nodes */
|
|
|
|
*noderes = node;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* UDF<->unix converters */
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static mode_t
|
|
udf_perm_to_unix_mode(uint32_t perm)
|
|
{
|
|
mode_t mode;
|
|
|
|
mode = ((perm & UDF_FENTRY_PERM_USER_MASK) );
|
|
mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2);
|
|
mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4);
|
|
|
|
return mode;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
#ifdef notyet
|
|
static uint32_t
|
|
unix_mode_to_udf_perm(mode_t mode)
|
|
{
|
|
uint32_t perm;
|
|
|
|
perm = ((mode & S_IRWXO) );
|
|
perm |= ((mode & S_IRWXG) << 2);
|
|
perm |= ((mode & S_IRWXU) << 4);
|
|
perm |= ((mode & S_IWOTH) << 3);
|
|
perm |= ((mode & S_IWGRP) << 5);
|
|
perm |= ((mode & S_IWUSR) << 7);
|
|
|
|
return perm;
|
|
}
|
|
#endif
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static uint32_t
|
|
udf_icb_to_unix_filetype(uint32_t icbftype)
|
|
{
|
|
switch (icbftype) {
|
|
case UDF_ICB_FILETYPE_DIRECTORY :
|
|
case UDF_ICB_FILETYPE_STREAMDIR :
|
|
return S_IFDIR;
|
|
case UDF_ICB_FILETYPE_FIFO :
|
|
return S_IFIFO;
|
|
case UDF_ICB_FILETYPE_CHARDEVICE :
|
|
return S_IFCHR;
|
|
case UDF_ICB_FILETYPE_BLOCKDEVICE :
|
|
return S_IFBLK;
|
|
case UDF_ICB_FILETYPE_RANDOMACCESS :
|
|
case UDF_ICB_FILETYPE_REALTIME :
|
|
return S_IFREG;
|
|
case UDF_ICB_FILETYPE_SYMLINK :
|
|
return S_IFLNK;
|
|
case UDF_ICB_FILETYPE_SOCKET :
|
|
return S_IFSOCK;
|
|
}
|
|
/* no idea what this is */
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* TODO KNF-ify */
|
|
|
|
void
|
|
udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp)
|
|
{
|
|
uint16_t *raw_name, *unix_name;
|
|
uint16_t *inchp, ch;
|
|
uint8_t *outchp;
|
|
int ucode_chars, nice_uchars;
|
|
|
|
raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK);
|
|
unix_name = raw_name + 1024; /* split space in half */
|
|
assert(sizeof(char) == sizeof(uint8_t));
|
|
outchp = (uint8_t *) result;
|
|
if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) {
|
|
*raw_name = *unix_name = 0;
|
|
ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name);
|
|
ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name));
|
|
nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars);
|
|
for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) {
|
|
ch = *inchp;
|
|
/* XXX sloppy unicode -> latin */
|
|
*outchp++ = ch & 255;
|
|
if (!ch) break;
|
|
}
|
|
*outchp++ = 0;
|
|
} else {
|
|
/* assume 8bit char length byte latin-1 */
|
|
assert(*id == 8);
|
|
strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1)));
|
|
}
|
|
free(raw_name, M_UDFTEMP);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* TODO KNF-ify */
|
|
|
|
void
|
|
unix_to_udf_name(char *result, char *name,
|
|
uint8_t *result_len, struct charspec *chsp)
|
|
{
|
|
uint16_t *raw_name;
|
|
int udf_chars, name_len;
|
|
char *inchp;
|
|
uint16_t *outchp;
|
|
|
|
raw_name = malloc(1024, M_UDFTEMP, M_WAITOK);
|
|
/* convert latin-1 or whatever to unicode-16 */
|
|
*raw_name = 0;
|
|
name_len = 0;
|
|
inchp = name;
|
|
outchp = raw_name;
|
|
while (*inchp) {
|
|
*outchp++ = (uint16_t) (*inchp++);
|
|
name_len++;
|
|
}
|
|
|
|
if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) {
|
|
udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result);
|
|
} else {
|
|
/* XXX assume 8bit char length byte latin-1 */
|
|
*result++ = 8; udf_chars = 1;
|
|
strncpy(result, name + 1, strlen(name+1));
|
|
udf_chars += strlen(name);
|
|
}
|
|
*result_len = udf_chars;
|
|
free(raw_name, M_UDFTEMP);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
void
|
|
udf_timestamp_to_timespec(struct udf_mount *ump,
|
|
struct timestamp *timestamp,
|
|
struct timespec *timespec)
|
|
{
|
|
struct clock_ymdhms ymdhms;
|
|
uint32_t usecs, secs, nsecs;
|
|
uint16_t tz;
|
|
|
|
/* fill in ymdhms structure from timestamp */
|
|
memset(&ymdhms, 0, sizeof(ymdhms));
|
|
ymdhms.dt_year = udf_rw16(timestamp->year);
|
|
ymdhms.dt_mon = timestamp->month;
|
|
ymdhms.dt_day = timestamp->day;
|
|
ymdhms.dt_wday = 0; /* ? */
|
|
ymdhms.dt_hour = timestamp->hour;
|
|
ymdhms.dt_min = timestamp->minute;
|
|
ymdhms.dt_sec = timestamp->second;
|
|
|
|
secs = clock_ymdhms_to_secs(&ymdhms);
|
|
usecs = timestamp->usec +
|
|
100*timestamp->hund_usec + 10000*timestamp->centisec;
|
|
nsecs = usecs * 1000;
|
|
|
|
/*
|
|
* Calculate the time zone. The timezone is 12 bit signed 2's
|
|
* compliment, so we gotta do some extra magic to handle it right.
|
|
*/
|
|
tz = udf_rw16(timestamp->type_tz);
|
|
tz &= 0x0fff; /* only lower 12 bits are significant */
|
|
if (tz & 0x0800) /* sign extention */
|
|
tz |= 0xf000;
|
|
|
|
/* TODO check timezone conversion */
|
|
/* check if we are specified a timezone to convert */
|
|
if (udf_rw16(timestamp->type_tz) & 0x1000) {
|
|
if ((int16_t) tz != -2047)
|
|
secs -= (int16_t) tz * 60;
|
|
} else {
|
|
secs -= ump->mount_args.gmtoff;
|
|
}
|
|
|
|
timespec->tv_sec = secs;
|
|
timespec->tv_nsec = nsecs;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Attribute and filetypes converters with get/set pairs
|
|
*/
|
|
|
|
uint32_t
|
|
udf_getaccessmode(struct udf_node *udf_node)
|
|
{
|
|
struct file_entry *fe;
|
|
struct extfile_entry *efe;
|
|
uint32_t udf_perm, icbftype;
|
|
uint32_t mode, ftype;
|
|
uint16_t icbflags;
|
|
|
|
if (udf_node->fe) {
|
|
fe = udf_node->fe;
|
|
udf_perm = udf_rw32(fe->perm);
|
|
icbftype = fe->icbtag.file_type;
|
|
icbflags = udf_rw16(fe->icbtag.flags);
|
|
} else {
|
|
assert(udf_node->efe);
|
|
efe = udf_node->efe;
|
|
udf_perm = udf_rw32(efe->perm);
|
|
icbftype = efe->icbtag.file_type;
|
|
icbflags = udf_rw16(efe->icbtag.flags);
|
|
}
|
|
|
|
mode = udf_perm_to_unix_mode(udf_perm);
|
|
ftype = udf_icb_to_unix_filetype(icbftype);
|
|
|
|
/* set suid, sgid, sticky from flags in fe/efe */
|
|
if (icbflags & UDF_ICB_TAG_FLAGS_SETUID)
|
|
mode |= S_ISUID;
|
|
if (icbflags & UDF_ICB_TAG_FLAGS_SETGID)
|
|
mode |= S_ISGID;
|
|
if (icbflags & UDF_ICB_TAG_FLAGS_STICKY)
|
|
mode |= S_ISVTX;
|
|
|
|
return mode | ftype;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Directory read and manipulation functions
|
|
*/
|
|
|
|
int
|
|
udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen,
|
|
struct long_ad *icb_loc)
|
|
{
|
|
struct udf_node *dir_node = VTOI(vp);
|
|
struct file_entry *fe;
|
|
struct extfile_entry *efe;
|
|
struct fileid_desc *fid;
|
|
struct dirent *dirent;
|
|
uint64_t file_size, diroffset;
|
|
uint32_t lb_size;
|
|
int found, error;
|
|
|
|
/* get directory filesize */
|
|
if (dir_node->fe) {
|
|
fe = dir_node->fe;
|
|
file_size = udf_rw64(fe->inf_len);
|
|
} else {
|
|
assert(dir_node->efe);
|
|
efe = dir_node->efe;
|
|
file_size = udf_rw64(efe->inf_len);
|
|
}
|
|
|
|
/* allocate temporary space for fid */
|
|
lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size);
|
|
fid = malloc(lb_size, M_UDFTEMP, M_WAITOK);
|
|
|
|
found = 0;
|
|
diroffset = dir_node->last_diroffset;
|
|
|
|
/*
|
|
* if the directory is trunced or if we have never visited it yet,
|
|
* start at the end.
|
|
*/
|
|
if ((diroffset >= file_size) || (diroffset == 0)) {
|
|
diroffset = dir_node->last_diroffset = file_size;
|
|
}
|
|
|
|
dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK);
|
|
|
|
while (!found) {
|
|
/* if at the end, go trough zero */
|
|
if (diroffset >= file_size)
|
|
diroffset = 0;
|
|
|
|
/* transfer a new fid/dirent */
|
|
error = udf_read_fid_stream(vp, &diroffset, fid, dirent);
|
|
if (error)
|
|
break;
|
|
|
|
/* skip deleted entries */
|
|
if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) {
|
|
if ((strlen(dirent->d_name) == namelen) &&
|
|
(strncmp(dirent->d_name, name, namelen) == 0)) {
|
|
found = 1;
|
|
*icb_loc = fid->icb;
|
|
}
|
|
}
|
|
|
|
if (diroffset == dir_node->last_diroffset) {
|
|
/* we have cycled */
|
|
break;
|
|
}
|
|
}
|
|
free(fid, M_UDFTEMP);
|
|
free(dirent, M_UDFTEMP);
|
|
dir_node->last_diroffset = diroffset;
|
|
|
|
return found;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Read one fid and process it into a dirent and advance to the next (*fid)
|
|
* has to be allocated a logical block in size, (*dirent) struct dirent length
|
|
*/
|
|
|
|
int
|
|
udf_read_fid_stream(struct vnode *vp, uint64_t *offset,
|
|
struct fileid_desc *fid, struct dirent *dirent)
|
|
{
|
|
struct udf_node *dir_node = VTOI(vp);
|
|
struct udf_mount *ump = dir_node->ump;
|
|
struct file_entry *fe;
|
|
struct extfile_entry *efe;
|
|
struct uio dir_uio;
|
|
struct iovec dir_iovec;
|
|
uint32_t entry_length, lb_size;
|
|
uint64_t file_size;
|
|
char *fid_name;
|
|
int enough, error;
|
|
|
|
assert(fid);
|
|
assert(dirent);
|
|
assert(dir_node);
|
|
assert(offset);
|
|
assert(*offset != 1);
|
|
|
|
DPRINTF(FIDS, ("read_fid_stream called\n"));
|
|
/* check if we're past the end of the directory */
|
|
if (dir_node->fe) {
|
|
fe = dir_node->fe;
|
|
file_size = udf_rw64(fe->inf_len);
|
|
} else {
|
|
assert(dir_node->efe);
|
|
efe = dir_node->efe;
|
|
file_size = udf_rw64(efe->inf_len);
|
|
}
|
|
if (*offset >= file_size)
|
|
return EINVAL;
|
|
|
|
/* get maximum length of FID descriptor */
|
|
lb_size = udf_rw32(ump->logical_vol->lb_size);
|
|
|
|
/* initialise return values */
|
|
entry_length = 0;
|
|
memset(dirent, 0, sizeof(struct dirent));
|
|
memset(fid, 0, lb_size);
|
|
|
|
/* TODO use vn_rdwr instead of creating our own uio */
|
|
/* read part of the directory */
|
|
memset(&dir_uio, 0, sizeof(struct uio));
|
|
dir_uio.uio_rw = UIO_READ; /* read into this space */
|
|
dir_uio.uio_iovcnt = 1;
|
|
dir_uio.uio_iov = &dir_iovec;
|
|
UIO_SETUP_SYSSPACE(&dir_uio);
|
|
dir_iovec.iov_base = fid;
|
|
dir_iovec.iov_len = lb_size;
|
|
dir_uio.uio_offset = *offset;
|
|
|
|
/* limit length of read in piece */
|
|
dir_uio.uio_resid = MIN(file_size - (*offset), lb_size);
|
|
|
|
/* read the part into the fid space */
|
|
error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED);
|
|
if (error)
|
|
return error;
|
|
|
|
/*
|
|
* Check if we got a whole descriptor.
|
|
* XXX Try to `resync' directory stream when something is very wrong.
|
|
*
|
|
*/
|
|
enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE);
|
|
if (!enough) {
|
|
/* short dir ... */
|
|
return EIO;
|
|
}
|
|
|
|
/* check if our FID header is OK */
|
|
error = udf_check_tag(fid);
|
|
DPRINTFIF(FIDS, error, ("read fids: tag check failed\n"));
|
|
if (!error) {
|
|
if (udf_rw16(fid->tag.id) != TAGID_FID)
|
|
error = ENOENT;
|
|
}
|
|
DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n"));
|
|
|
|
/* check for length */
|
|
if (!error) {
|
|
entry_length = udf_fidsize(fid, lb_size);
|
|
enough = (dir_uio.uio_offset - (*offset) >= entry_length);
|
|
}
|
|
DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n",
|
|
entry_length, enough?"yes":"no"));
|
|
|
|
if (!enough) {
|
|
/* short dir ... bomb out */
|
|
return EIO;
|
|
}
|
|
|
|
/* check FID contents */
|
|
if (!error) {
|
|
error = udf_check_tag_payload((union dscrptr *) fid, lb_size);
|
|
DPRINTF(FIDS, ("\tpayload checked ok\n"));
|
|
}
|
|
if (error) {
|
|
/* note that is sometimes a bit quick to report */
|
|
printf("BROKEN DIRECTORY ENTRY\n");
|
|
/* RESYNC? */
|
|
/* TODO: use udf_resync_fid_stream */
|
|
return EIO;
|
|
}
|
|
DPRINTF(FIDS, ("\tinterpret FID\n"));
|
|
|
|
/* we got a whole and valid descriptor! */
|
|
|
|
/* create resulting dirent structure */
|
|
fid_name = (char *) fid->data + udf_rw16(fid->l_iu);
|
|
udf_to_unix_name(dirent->d_name,
|
|
fid_name, fid->l_fi, &ump->logical_vol->desc_charset);
|
|
|
|
/* '..' has no name, so provide one */
|
|
if (fid->file_char & UDF_FILE_CHAR_PAR)
|
|
strcpy(dirent->d_name, "..");
|
|
|
|
dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */
|
|
dirent->d_namlen = strlen(dirent->d_name);
|
|
dirent->d_reclen = _DIRENT_SIZE(dirent);
|
|
|
|
/*
|
|
* Note that its not worth trying to go for the filetypes now... its
|
|
* too expensive too
|
|
*/
|
|
dirent->d_type = DT_UNKNOWN;
|
|
|
|
/* initial guess for filetype we can make */
|
|
if (fid->file_char & UDF_FILE_CHAR_DIR)
|
|
dirent->d_type = DT_DIR;
|
|
|
|
/* advance */
|
|
*offset += entry_length;
|
|
|
|
return error;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* block based file reading and writing
|
|
*/
|
|
|
|
static int
|
|
udf_read_internal(struct udf_node *node, uint8_t *blob)
|
|
{
|
|
struct udf_mount *ump;
|
|
struct file_entry *fe;
|
|
struct extfile_entry *efe;
|
|
uint64_t inflen;
|
|
uint32_t sector_size;
|
|
uint8_t *pos;
|
|
int icbflags, addr_type;
|
|
|
|
/* shut up gcc */
|
|
inflen = addr_type = icbflags = 0;
|
|
pos = NULL;
|
|
|
|
/* get extent and do some paranoia checks */
|
|
ump = node->ump;
|
|
sector_size = ump->discinfo.sector_size;
|
|
|
|
fe = node->fe;
|
|
efe = node->efe;
|
|
if (fe) {
|
|
inflen = udf_rw64(fe->inf_len);
|
|
pos = &fe->data[0] + udf_rw32(fe->l_ea);
|
|
icbflags = udf_rw16(fe->icbtag.flags);
|
|
}
|
|
if (efe) {
|
|
inflen = udf_rw64(efe->inf_len);
|
|
pos = &efe->data[0] + udf_rw32(efe->l_ea);
|
|
icbflags = udf_rw16(efe->icbtag.flags);
|
|
}
|
|
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
|
|
|
|
assert(addr_type == UDF_ICB_INTERN_ALLOC);
|
|
assert(inflen < sector_size);
|
|
|
|
/* copy out info */
|
|
memset(blob, 0, sector_size);
|
|
memcpy(blob, pos, inflen);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Read file extent reads an extent specified in sectors from the file. It is
|
|
* sector based; i.e. no `fancy' offsets.
|
|
*/
|
|
|
|
int
|
|
udf_read_file_extent(struct udf_node *node,
|
|
uint32_t from, uint32_t sectors,
|
|
uint8_t *blob)
|
|
{
|
|
struct buf buf;
|
|
uint32_t sector_size;
|
|
|
|
BUF_INIT(&buf);
|
|
|
|
sector_size = node->ump->discinfo.sector_size;
|
|
|
|
buf.b_bufsize = sectors * sector_size;
|
|
buf.b_data = blob;
|
|
buf.b_bcount = buf.b_bufsize;
|
|
buf.b_resid = buf.b_bcount;
|
|
buf.b_flags = B_BUSY | B_READ;
|
|
buf.b_vp = node->vnode;
|
|
buf.b_proc = NULL;
|
|
|
|
buf.b_blkno = from;
|
|
buf.b_lblkno = 0;
|
|
BIO_SETPRIO(&buf, BPRIO_TIMELIMITED);
|
|
|
|
udf_read_filebuf(node, &buf);
|
|
return biowait(&buf);
|
|
}
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Read file extent in the buffer.
|
|
*
|
|
* The splitup of the extent into separate request-buffers is to minimise
|
|
* copying around as much as possible.
|
|
*/
|
|
|
|
|
|
/* maximum of 128 translations (!) (64 kb in 512 byte sectors) */
|
|
#define FILEBUFSECT 128
|
|
|
|
void
|
|
udf_read_filebuf(struct udf_node *node, struct buf *buf)
|
|
{
|
|
struct buf *nestbuf;
|
|
uint64_t *mapping;
|
|
uint64_t run_start;
|
|
uint32_t sector_size;
|
|
uint32_t buf_offset, sector, rbuflen, rblk;
|
|
uint8_t *buf_pos;
|
|
int error, run_length;
|
|
|
|
uint32_t from;
|
|
uint32_t sectors;
|
|
|
|
sector_size = node->ump->discinfo.sector_size;
|
|
|
|
from = buf->b_blkno;
|
|
sectors = buf->b_bcount / sector_size;
|
|
|
|
/* assure we have enough translation slots */
|
|
KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT);
|
|
KASSERT(MAXPHYS / sector_size <= FILEBUFSECT);
|
|
|
|
if (sectors > FILEBUFSECT) {
|
|
printf("udf_read_filebuf: implementation limit on bufsize\n");
|
|
buf->b_error = EIO;
|
|
biodone(buf);
|
|
return;
|
|
}
|
|
|
|
mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_UDFTEMP, M_WAITOK);
|
|
|
|
error = 0;
|
|
DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors));
|
|
error = udf_translate_file_extent(node, from, sectors, mapping);
|
|
if (error) {
|
|
buf->b_error = error;
|
|
biodone(buf);
|
|
goto out;
|
|
}
|
|
DPRINTF(READ, ("\ttranslate extent went OK\n"));
|
|
|
|
/* pre-check if internal or parts are zero */
|
|
if (*mapping == UDF_TRANS_INTERN) {
|
|
error = udf_read_internal(node, (uint8_t *) buf->b_data);
|
|
if (error) {
|
|
buf->b_error = error;
|
|
}
|
|
biodone(buf);
|
|
goto out;
|
|
}
|
|
DPRINTF(READ, ("\tnot intern\n"));
|
|
|
|
/* request read-in of data from disc scheduler */
|
|
buf->b_resid = buf->b_bcount;
|
|
for (sector = 0; sector < sectors; sector++) {
|
|
buf_offset = sector * sector_size;
|
|
buf_pos = (uint8_t *) buf->b_data + buf_offset;
|
|
DPRINTF(READ, ("\tprocessing rel sector %d\n", sector));
|
|
|
|
switch (mapping[sector]) {
|
|
case UDF_TRANS_UNMAPPED:
|
|
case UDF_TRANS_ZERO:
|
|
/* copy zero sector */
|
|
memset(buf_pos, 0, sector_size);
|
|
DPRINTF(READ, ("\treturning zero sector\n"));
|
|
nestiobuf_done(buf, sector_size, 0);
|
|
break;
|
|
default :
|
|
DPRINTF(READ, ("\tread sector "
|
|
"%"PRIu64"\n", mapping[sector]));
|
|
|
|
run_start = mapping[sector];
|
|
run_length = 1;
|
|
while (sector < sectors-1) {
|
|
if (mapping[sector+1] != mapping[sector]+1)
|
|
break;
|
|
run_length++;
|
|
sector++;
|
|
}
|
|
|
|
/*
|
|
* nest an iobuf and mark it for async reading. Since
|
|
* we're using nested buffers, they can't be cached by
|
|
* design.
|
|
*/
|
|
rbuflen = run_length * sector_size;
|
|
rblk = run_start * (sector_size/DEV_BSIZE);
|
|
|
|
nestbuf = getiobuf();
|
|
nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen);
|
|
/* nestbuf is B_ASYNC */
|
|
|
|
/* CD schedules on raw blkno */
|
|
nestbuf->b_blkno = rblk;
|
|
nestbuf->b_proc = NULL;
|
|
nestbuf->b_cylinder = 0;
|
|
nestbuf->b_rawblkno = rblk;
|
|
VOP_STRATEGY(node->ump->devvp, nestbuf);
|
|
}
|
|
}
|
|
out:
|
|
DPRINTF(READ, ("\tend of read_filebuf\n"));
|
|
free(mapping, M_UDFTEMP);
|
|
return;
|
|
}
|
|
#undef FILEBUFSECT
|
|
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
* Translate an extent (in sectors) into sector numbers; used for read and
|
|
* write operations. DOESNT't check extents.
|
|
*/
|
|
|
|
int
|
|
udf_translate_file_extent(struct udf_node *node,
|
|
uint32_t from, uint32_t pages,
|
|
uint64_t *map)
|
|
{
|
|
struct udf_mount *ump;
|
|
struct file_entry *fe;
|
|
struct extfile_entry *efe;
|
|
struct short_ad *s_ad;
|
|
struct long_ad *l_ad, t_ad;
|
|
uint64_t transsec;
|
|
uint32_t sector_size, transsec32;
|
|
uint32_t overlap, translen;
|
|
uint32_t vpart_num, lb_num, len, alloclen;
|
|
uint8_t *pos;
|
|
int error, flags, addr_type, icblen, icbflags;
|
|
|
|
if (!node)
|
|
return ENOENT;
|
|
|
|
/* shut up gcc */
|
|
alloclen = addr_type = icbflags = 0;
|
|
pos = NULL;
|
|
|
|
/* do the work */
|
|
ump = node->ump;
|
|
sector_size = ump->discinfo.sector_size;
|
|
fe = node->fe;
|
|
efe = node->efe;
|
|
if (fe) {
|
|
alloclen = udf_rw32(fe->l_ad);
|
|
pos = &fe->data[0] + udf_rw32(fe->l_ea);
|
|
icbflags = udf_rw16(fe->icbtag.flags);
|
|
}
|
|
if (efe) {
|
|
alloclen = udf_rw32(efe->l_ad);
|
|
pos = &efe->data[0] + udf_rw32(efe->l_ea);
|
|
icbflags = udf_rw16(efe->icbtag.flags);
|
|
}
|
|
addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK;
|
|
|
|
DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, "
|
|
"fe %p, efe %p\n", alloclen, addr_type, fe, efe));
|
|
|
|
vpart_num = udf_rw16(node->loc.loc.part_num);
|
|
lb_num = len = icblen = 0; /* shut up gcc */
|
|
while (pages && alloclen) {
|
|
DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type));
|
|
switch (addr_type) {
|
|
case UDF_ICB_INTERN_ALLOC :
|
|
/* TODO check extents? */
|
|
*map = UDF_TRANS_INTERN;
|
|
return 0;
|
|
case UDF_ICB_SHORT_ALLOC :
|
|
icblen = sizeof(struct short_ad);
|
|
s_ad = (struct short_ad *) pos;
|
|
len = udf_rw32(s_ad->len);
|
|
lb_num = udf_rw32(s_ad->lb_num);
|
|
break;
|
|
case UDF_ICB_LONG_ALLOC :
|
|
icblen = sizeof(struct long_ad);
|
|
l_ad = (struct long_ad *) pos;
|
|
len = udf_rw32(l_ad->len);
|
|
lb_num = udf_rw32(l_ad->loc.lb_num);
|
|
vpart_num = udf_rw16(l_ad->loc.part_num);
|
|
DPRINTFIF(TRANSLATE,
|
|
(l_ad->impl.im_used.flags &
|
|
UDF_ADIMP_FLAGS_EXTENT_ERASED),
|
|
("UDF: got an `extent erased' flag in long_ad\n"));
|
|
break;
|
|
default:
|
|
/* can't be here */
|
|
return EINVAL; /* for sure */
|
|
}
|
|
|
|
/* process extent */
|
|
flags = UDF_EXT_FLAGS(len);
|
|
len = UDF_EXT_LEN(len);
|
|
|
|
overlap = (len + sector_size -1) / sector_size;
|
|
if (from) {
|
|
if (from > overlap) {
|
|
from -= overlap;
|
|
overlap = 0;
|
|
} else {
|
|
lb_num += from; /* advance in extent */
|
|
overlap -= from;
|
|
from = 0;
|
|
}
|
|
}
|
|
|
|
overlap = MIN(overlap, pages);
|
|
while (overlap) {
|
|
switch (flags) {
|
|
case UDF_EXT_REDIRECT :
|
|
/* no support for allocation extentions yet */
|
|
/* TODO support for allocation extention */
|
|
return ENOENT;
|
|
case UDF_EXT_FREED :
|
|
case UDF_EXT_FREE :
|
|
transsec = UDF_TRANS_ZERO;
|
|
translen = overlap;
|
|
while (overlap && pages && translen) {
|
|
*map++ = transsec;
|
|
lb_num++;
|
|
overlap--; pages--; translen--;
|
|
}
|
|
break;
|
|
case UDF_EXT_ALLOCATED :
|
|
t_ad.loc.lb_num = udf_rw32(lb_num);
|
|
t_ad.loc.part_num = udf_rw16(vpart_num);
|
|
error = udf_translate_vtop(ump,
|
|
&t_ad, &transsec32, &translen);
|
|
transsec = transsec32;
|
|
if (error)
|
|
return error;
|
|
while (overlap && pages && translen) {
|
|
*map++ = transsec;
|
|
lb_num++; transsec++;
|
|
overlap--; pages--; translen--;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
pos += icblen;
|
|
alloclen -= icblen;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
|