/* $NetBSD: udf_subr.c,v 1.37 2007/09/24 00:42:15 rumble Exp $ */ /* * Copyright (c) 2006 Reinoud Zandijk * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed for the * NetBSD Project. See http://www.NetBSD.org/ for * information about NetBSD. * 4. The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #ifndef lint __RCSID("$NetBSD: udf_subr.c,v 1.37 2007/09/24 00:42:15 rumble Exp $"); #endif /* not lint */ #if defined(_KERNEL_OPT) #include "opt_quota.h" #include "opt_compat_netbsd.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "udf.h" #include "udf_subr.h" #include "udf_bswap.h" #define VTOI(vnode) ((struct udf_node *) vnode->v_data) /* predefines */ #if 0 { int i, j, dlen; uint8_t *blob; blob = (uint8_t *) fid; dlen = file_size - (*offset); printf("blob = %p\n", blob); printf("dump of %d bytes\n", dlen); for (i = 0; i < dlen; i+ = 16) { printf("%04x ", i); for (j = 0; j < 16; j++) { if (i+j < dlen) { printf("%02x ", blob[i+j]); } else { printf(" "); } } for (j = 0; j < 16; j++) { if (i+j < dlen) { if (blob[i+j]>32 && blob[i+j]! = 127) { printf("%c", blob[i+j]); } else { printf("."); } } } printf("\n"); } printf("\n"); } Debugger(); #endif /* --------------------------------------------------------------------- */ /* STUB */ static int udf_bread(struct udf_mount *ump, uint32_t sector, struct buf **bpp) { int sector_size = ump->discinfo.sector_size; int blks = sector_size / DEV_BSIZE; /* NOTE bread() checks if block is in cache or not */ return bread(ump->devvp, sector*blks, sector_size, NOCRED, bpp); } /* --------------------------------------------------------------------- */ /* * Check if the blob starts with a good UDF tag. Tags are protected by a * checksum over the reader except one byte at position 4 that is the checksum * itself. */ int udf_check_tag(void *blob) { struct desc_tag *tag = blob; uint8_t *pos, sum, cnt; /* check TAG header checksum */ pos = (uint8_t *) tag; sum = 0; for(cnt = 0; cnt < 16; cnt++) { if (cnt != 4) sum += *pos; pos++; } if (sum != tag->cksum) { /* bad tag header checksum; this is not a valid tag */ return EINVAL; } return 0; } /* --------------------------------------------------------------------- */ /* * check tag payload will check descriptor CRC as specified. * If the descriptor is too short, it will return EIO otherwise EINVAL. */ int udf_check_tag_payload(void *blob, uint32_t max_length) { struct desc_tag *tag = blob; uint16_t crc, crc_len; crc_len = udf_rw16(tag->desc_crc_len); /* check payload CRC if applicable */ if (crc_len == 0) return 0; if (crc_len > max_length) return EIO; crc = udf_cksum(((uint8_t *) tag) + UDF_DESC_TAG_LENGTH, crc_len); if (crc != udf_rw16(tag->desc_crc)) { /* bad payload CRC; this is a broken tag */ return EINVAL; } return 0; } /* --------------------------------------------------------------------- */ int udf_validate_tag_sum(void *blob) { struct desc_tag *tag = blob; uint8_t *pos, sum, cnt; /* calculate TAG header checksum */ pos = (uint8_t *) tag; sum = 0; for(cnt = 0; cnt < 16; cnt++) { if (cnt != 4) sum += *pos; pos++; } tag->cksum = sum; /* 8 bit */ return 0; } /* --------------------------------------------------------------------- */ /* assumes sector number of descriptor to be saved already present */ int udf_validate_tag_and_crc_sums(void *blob) { struct desc_tag *tag = blob; uint8_t *btag = (uint8_t *) tag; uint16_t crc, crc_len; crc_len = udf_rw16(tag->desc_crc_len); /* check payload CRC if applicable */ if (crc_len > 0) { crc = udf_cksum(btag + UDF_DESC_TAG_LENGTH, crc_len); tag->desc_crc = udf_rw16(crc); } /* calculate TAG header checksum */ return udf_validate_tag_sum(blob); } /* --------------------------------------------------------------------- */ /* * XXX note the different semantics from udfclient: for FIDs it still rounds * up to sectors. Use udf_fidsize() for a correct length. */ int udf_tagsize(union dscrptr *dscr, uint32_t udf_sector_size) { uint32_t size, tag_id, num_secs, elmsz; tag_id = udf_rw16(dscr->tag.id); switch (tag_id) { case TAGID_LOGVOL : size = sizeof(struct logvol_desc) - 1; size += udf_rw32(dscr->lvd.mt_l); break; case TAGID_UNALLOC_SPACE : elmsz = sizeof(struct extent_ad); size = sizeof(struct unalloc_sp_desc) - elmsz; size += udf_rw32(dscr->usd.alloc_desc_num) * elmsz; break; case TAGID_FID : size = UDF_FID_SIZE + dscr->fid.l_fi + udf_rw16(dscr->fid.l_iu); size = (size + 3) & ~3; break; case TAGID_LOGVOL_INTEGRITY : size = sizeof(struct logvol_int_desc) - sizeof(uint32_t); size += udf_rw32(dscr->lvid.l_iu); size += (2 * udf_rw32(dscr->lvid.num_part) * sizeof(uint32_t)); break; case TAGID_SPACE_BITMAP : size = sizeof(struct space_bitmap_desc) - 1; size += udf_rw32(dscr->sbd.num_bytes); break; case TAGID_SPARING_TABLE : elmsz = sizeof(struct spare_map_entry); size = sizeof(struct udf_sparing_table) - elmsz; size += udf_rw16(dscr->spt.rt_l) * elmsz; break; case TAGID_FENTRY : size = sizeof(struct file_entry); size += udf_rw32(dscr->fe.l_ea) + udf_rw32(dscr->fe.l_ad)-1; break; case TAGID_EXTFENTRY : size = sizeof(struct extfile_entry); size += udf_rw32(dscr->efe.l_ea) + udf_rw32(dscr->efe.l_ad)-1; break; case TAGID_FSD : size = sizeof(struct fileset_desc); break; default : size = sizeof(union dscrptr); break; } if ((size == 0) || (udf_sector_size == 0)) return 0; /* round up in sectors */ num_secs = (size + udf_sector_size -1) / udf_sector_size; return num_secs * udf_sector_size; } static int udf_fidsize(struct fileid_desc *fid, uint32_t udf_sector_size) { uint32_t size; if (udf_rw16(fid->tag.id) != TAGID_FID) panic("got udf_fidsize on non FID\n"); size = UDF_FID_SIZE + fid->l_fi + udf_rw16(fid->l_iu); size = (size + 3) & ~3; return size; } /* --------------------------------------------------------------------- */ /* * Problem with read_descriptor are long descriptors spanning more than one * sector. Luckily long descriptors can't be in `logical space'. * * Size of allocated piece is returned in multiple of sector size due to * udf_calc_udf_malloc_size(). */ int udf_read_descriptor(struct udf_mount *ump, uint32_t sector, struct malloc_type *mtype, union dscrptr **dstp) { union dscrptr *src, *dst; struct buf *bp; uint8_t *pos; int blks, blk, dscrlen; int i, error, sector_size; sector_size = ump->discinfo.sector_size; *dstp = dst = NULL; dscrlen = sector_size; /* read initial piece */ error = udf_bread(ump, sector, &bp); DPRINTFIF(DESCRIPTOR, error, ("read error (%d)\n", error)); if (!error) { /* check if its a valid tag */ error = udf_check_tag(bp->b_data); if (error) { /* check if its an empty block */ pos = bp->b_data; for (i = 0; i < sector_size; i++, pos++) { if (*pos) break; } if (i == sector_size) { /* return no error but with no dscrptr */ /* dispose first block */ brelse(bp); return 0; } } } DPRINTFIF(DESCRIPTOR, error, ("bad tag checksum\n")); if (!error) { src = (union dscrptr *) bp->b_data; dscrlen = udf_tagsize(src, sector_size); dst = malloc(dscrlen, mtype, M_WAITOK); memcpy(dst, src, sector_size); } /* dispose first block */ bp->b_flags |= B_AGE; brelse(bp); if (!error && (dscrlen > sector_size)) { DPRINTF(DESCRIPTOR, ("multi block descriptor read\n")); /* * Read the rest of descriptor. Since it is only used at mount * time its overdone to define and use a specific udf_breadn * for this alone. */ blks = (dscrlen + sector_size -1) / sector_size; for (blk = 1; blk < blks; blk++) { error = udf_bread(ump, sector + blk, &bp); if (error) { brelse(bp); break; } pos = (uint8_t *) dst + blk*sector_size; memcpy(pos, bp->b_data, sector_size); /* dispose block */ bp->b_flags |= B_AGE; brelse(bp); } DPRINTFIF(DESCRIPTOR, error, ("read error on multi (%d)\n", error)); } if (!error) { error = udf_check_tag_payload(dst, dscrlen); DPRINTFIF(DESCRIPTOR, error, ("bad payload check sum\n")); } if (error && dst) { free(dst, mtype); dst = NULL; } *dstp = dst; return error; } /* --------------------------------------------------------------------- */ #ifdef DEBUG static void udf_dump_discinfo(struct udf_mount *ump) { char bits[128]; struct mmc_discinfo *di = &ump->discinfo; if ((udf_verbose & UDF_DEBUG_VOLUMES) == 0) return; printf("Device/media info :\n"); printf("\tMMC profile 0x%02x\n", di->mmc_profile); printf("\tderived class %d\n", di->mmc_class); printf("\tsector size %d\n", di->sector_size); printf("\tdisc state %d\n", di->disc_state); printf("\tlast ses state %d\n", di->last_session_state); printf("\tbg format state %d\n", di->bg_format_state); printf("\tfrst track %d\n", di->first_track); printf("\tfst on last ses %d\n", di->first_track_last_session); printf("\tlst on last ses %d\n", di->last_track_last_session); printf("\tlink block penalty %d\n", di->link_block_penalty); bitmask_snprintf(di->disc_flags, MMC_DFLAGS_FLAGBITS, bits, sizeof(bits)); printf("\tdisc flags %s\n", bits); printf("\tdisc id %x\n", di->disc_id); printf("\tdisc barcode %"PRIx64"\n", di->disc_barcode); printf("\tnum sessions %d\n", di->num_sessions); printf("\tnum tracks %d\n", di->num_tracks); bitmask_snprintf(di->mmc_cur, MMC_CAP_FLAGBITS, bits, sizeof(bits)); printf("\tcapabilities cur %s\n", bits); bitmask_snprintf(di->mmc_cap, MMC_CAP_FLAGBITS, bits, sizeof(bits)); printf("\tcapabilities cap %s\n", bits); } #else #define udf_dump_discinfo(a); #endif /* not called often */ int udf_update_discinfo(struct udf_mount *ump) { struct vnode *devvp = ump->devvp; struct partinfo dpart; struct mmc_discinfo *di; int error; DPRINTF(VOLUMES, ("read/update disc info\n")); di = &ump->discinfo; memset(di, 0, sizeof(struct mmc_discinfo)); /* check if we're on a MMC capable device, i.e. CD/DVD */ error = VOP_IOCTL(devvp, MMCGETDISCINFO, di, FKIOCTL, NOCRED, NULL); if (error == 0) { udf_dump_discinfo(ump); return 0; } /* disc partition support */ error = VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, NOCRED, NULL); if (error) return ENODEV; /* set up a disc info profile for partitions */ di->mmc_profile = 0x01; /* disc type */ di->mmc_class = MMC_CLASS_DISC; di->disc_state = MMC_STATE_CLOSED; di->last_session_state = MMC_STATE_CLOSED; di->bg_format_state = MMC_BGFSTATE_COMPLETED; di->link_block_penalty = 0; di->mmc_cur = MMC_CAP_RECORDABLE | MMC_CAP_REWRITABLE | MMC_CAP_ZEROLINKBLK | MMC_CAP_HW_DEFECTFREE; di->mmc_cap = di->mmc_cur; di->disc_flags = MMC_DFLAGS_UNRESTRICTED; /* TODO problem with last_possible_lba on resizable VND; request */ di->last_possible_lba = dpart.part->p_size; di->sector_size = dpart.disklab->d_secsize; di->blockingnr = 1; di->num_sessions = 1; di->num_tracks = 1; di->first_track = 1; di->first_track_last_session = di->last_track_last_session = 1; udf_dump_discinfo(ump); return 0; } /* --------------------------------------------------------------------- */ int udf_update_trackinfo(struct udf_mount *ump, struct mmc_trackinfo *ti) { struct vnode *devvp = ump->devvp; struct mmc_discinfo *di = &ump->discinfo; int error, class; DPRINTF(VOLUMES, ("read track info\n")); class = di->mmc_class; if (class != MMC_CLASS_DISC) { /* tracknr specified in struct ti */ error = VOP_IOCTL(devvp, MMCGETTRACKINFO, ti, FKIOCTL, NOCRED, NULL); return error; } /* disc partition support */ if (ti->tracknr != 1) return EIO; /* create fake ti (TODO check for resized vnds) */ ti->sessionnr = 1; ti->track_mode = 0; /* XXX */ ti->data_mode = 0; /* XXX */ ti->flags = MMC_TRACKINFO_LRA_VALID | MMC_TRACKINFO_NWA_VALID; ti->track_start = 0; ti->packet_size = 1; /* TODO support for resizable vnd */ ti->track_size = di->last_possible_lba; ti->next_writable = di->last_possible_lba; ti->last_recorded = ti->next_writable; ti->free_blocks = 0; return 0; } /* --------------------------------------------------------------------- */ /* track/session searching for mounting */ static int udf_search_tracks(struct udf_mount *ump, struct udf_args *args, int *first_tracknr, int *last_tracknr) { struct mmc_trackinfo trackinfo; uint32_t tracknr, start_track, num_tracks; int error; /* if negative, sessionnr is relative to last session */ if (args->sessionnr < 0) { args->sessionnr += ump->discinfo.num_sessions; /* sanity */ if (args->sessionnr < 0) args->sessionnr = 0; } /* sanity */ if (args->sessionnr > ump->discinfo.num_sessions) args->sessionnr = ump->discinfo.num_sessions; /* search the tracks for this session, zero session nr indicates last */ if (args->sessionnr == 0) { args->sessionnr = ump->discinfo.num_sessions; if (ump->discinfo.last_session_state == MMC_STATE_EMPTY) { args->sessionnr--; } } /* search the first and last track of the specified session */ num_tracks = ump->discinfo.num_tracks; start_track = ump->discinfo.first_track; /* search for first track of this session */ for (tracknr = start_track; tracknr <= num_tracks; tracknr++) { /* get track info */ trackinfo.tracknr = tracknr; error = udf_update_trackinfo(ump, &trackinfo); if (error) return error; if (trackinfo.sessionnr == args->sessionnr) break; } *first_tracknr = tracknr; /* search for last track of this session */ for (;tracknr <= num_tracks; tracknr++) { /* get track info */ trackinfo.tracknr = tracknr; error = udf_update_trackinfo(ump, &trackinfo); if (error || (trackinfo.sessionnr != args->sessionnr)) { tracknr--; break; } } if (tracknr > num_tracks) tracknr--; *last_tracknr = tracknr; assert(*last_tracknr >= *first_tracknr); return 0; } /* --------------------------------------------------------------------- */ static int udf_read_anchor(struct udf_mount *ump, uint32_t sector, struct anchor_vdp **dst) { int error; error = udf_read_descriptor(ump, sector, M_UDFVOLD, (union dscrptr **) dst); if (!error) { /* blank terminator blocks are not allowed here */ if (*dst == NULL) return ENOENT; if (udf_rw16((*dst)->tag.id) != TAGID_ANCHOR) { error = ENOENT; free(*dst, M_UDFVOLD); *dst = NULL; DPRINTF(VOLUMES, ("Not an anchor\n")); } } return error; } int udf_read_anchors(struct udf_mount *ump, struct udf_args *args) { struct mmc_trackinfo first_track; struct mmc_trackinfo last_track; struct anchor_vdp **anchorsp; uint32_t track_start; uint32_t track_end; uint32_t positions[4]; int first_tracknr, last_tracknr; int error, anch, ok, first_anchor; /* search the first and last track of the specified session */ error = udf_search_tracks(ump, args, &first_tracknr, &last_tracknr); if (!error) { first_track.tracknr = first_tracknr; error = udf_update_trackinfo(ump, &first_track); } if (!error) { last_track.tracknr = last_tracknr; error = udf_update_trackinfo(ump, &last_track); } if (error) { printf("UDF mount: reading disc geometry failed\n"); return 0; } track_start = first_track.track_start; /* `end' is not as straitforward as start. */ track_end = last_track.track_start + last_track.track_size - last_track.free_blocks - 1; if (ump->discinfo.mmc_cur & MMC_CAP_SEQUENTIAL) { /* end of track is not straitforward here */ if (last_track.flags & MMC_TRACKINFO_LRA_VALID) track_end = last_track.last_recorded; else if (last_track.flags & MMC_TRACKINFO_NWA_VALID) track_end = last_track.next_writable - ump->discinfo.link_block_penalty; } /* its no use reading a blank track */ first_anchor = 0; if (first_track.flags & MMC_TRACKINFO_BLANK) first_anchor = 1; /* read anchors start+256, start+512, end-256, end */ positions[0] = track_start+256; positions[1] = track_end-256; positions[2] = track_end; positions[3] = track_start+512; /* [UDF 2.60/6.11.2] */ /* XXX shouldn't +512 be prefered above +256 for compat with Roxio CD */ ok = 0; anchorsp = ump->anchors; for (anch = first_anchor; anch < 4; anch++) { DPRINTF(VOLUMES, ("Read anchor %d at sector %d\n", anch, positions[anch])); error = udf_read_anchor(ump, positions[anch], anchorsp); if (!error) { anchorsp++; ok++; } } /* VATs are only recorded on sequential media, but initialise */ ump->first_possible_vat_location = track_start + 256 + 1; ump->last_possible_vat_location = track_end + ump->discinfo.blockingnr; return ok; } /* --------------------------------------------------------------------- */ /* we dont try to be smart; we just record the parts */ #define UDF_UPDATE_DSCR(name, dscr) \ if (name) \ free(name, M_UDFVOLD); \ name = dscr; static int udf_process_vds_descriptor(struct udf_mount *ump, union dscrptr *dscr) { struct part_desc *part; uint16_t phys_part, raw_phys_part; DPRINTF(VOLUMES, ("\tprocessing VDS descr %d\n", udf_rw16(dscr->tag.id))); switch (udf_rw16(dscr->tag.id)) { case TAGID_PRI_VOL : /* primary partition */ UDF_UPDATE_DSCR(ump->primary_vol, &dscr->pvd); break; case TAGID_LOGVOL : /* logical volume */ UDF_UPDATE_DSCR(ump->logical_vol, &dscr->lvd); break; case TAGID_UNALLOC_SPACE : /* unallocated space */ UDF_UPDATE_DSCR(ump->unallocated, &dscr->usd); break; case TAGID_IMP_VOL : /* implementation */ /* XXX do we care about multiple impl. descr ? */ UDF_UPDATE_DSCR(ump->implementation, &dscr->ivd); break; case TAGID_PARTITION : /* physical partition */ /* not much use if its not allocated */ if ((udf_rw16(dscr->pd.flags) & UDF_PART_FLAG_ALLOCATED) == 0) { free(dscr, M_UDFVOLD); break; } /* * BUGALERT: some rogue implementations use random physical * partion numbers to break other implementations so lookup * the number. */ raw_phys_part = udf_rw16(dscr->pd.part_num); for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { part = ump->partitions[phys_part]; if (part == NULL) break; if (udf_rw16(part->part_num) == raw_phys_part) break; } if (phys_part == UDF_PARTITIONS) { free(dscr, M_UDFVOLD); return EINVAL; } UDF_UPDATE_DSCR(ump->partitions[phys_part], &dscr->pd); break; case TAGID_VOL : /* volume space extender; rare */ DPRINTF(VOLUMES, ("VDS extender ignored\n")); free(dscr, M_UDFVOLD); break; default : DPRINTF(VOLUMES, ("Unhandled VDS type %d\n", udf_rw16(dscr->tag.id))); free(dscr, M_UDFVOLD); } return 0; } #undef UDF_UPDATE_DSCR /* --------------------------------------------------------------------- */ static int udf_read_vds_extent(struct udf_mount *ump, uint32_t loc, uint32_t len) { union dscrptr *dscr; uint32_t sector_size, dscr_size; int error; sector_size = ump->discinfo.sector_size; /* loc is sectornr, len is in bytes */ error = EIO; while (len) { error = udf_read_descriptor(ump, loc, M_UDFVOLD, &dscr); if (error) return error; /* blank block is a terminator */ if (dscr == NULL) return 0; /* TERM descriptor is a terminator */ if (udf_rw16(dscr->tag.id) == TAGID_TERM) { free(dscr, M_UDFVOLD); return 0; } /* process all others */ dscr_size = udf_tagsize(dscr, sector_size); error = udf_process_vds_descriptor(ump, dscr); if (error) { free(dscr, M_UDFVOLD); break; } assert((dscr_size % sector_size) == 0); len -= dscr_size; loc += dscr_size / sector_size; } return error; } int udf_read_vds_space(struct udf_mount *ump) { struct anchor_vdp *anchor, *anchor2; size_t size; uint32_t main_loc, main_len; uint32_t reserve_loc, reserve_len; int error; /* * read in VDS space provided by the anchors; if one descriptor read * fails, try the mirror sector. * * check if 2nd anchor is different from 1st; if so, go for 2nd. This * avoids the `compatibility features' of DirectCD that may confuse * stuff completely. */ anchor = ump->anchors[0]; anchor2 = ump->anchors[1]; assert(anchor); if (anchor2) { size = sizeof(struct extent_ad); if (memcmp(&anchor->main_vds_ex, &anchor2->main_vds_ex, size)) anchor = anchor2; /* reserve is specified to be a literal copy of main */ } main_loc = udf_rw32(anchor->main_vds_ex.loc); main_len = udf_rw32(anchor->main_vds_ex.len); reserve_loc = udf_rw32(anchor->reserve_vds_ex.loc); reserve_len = udf_rw32(anchor->reserve_vds_ex.len); error = udf_read_vds_extent(ump, main_loc, main_len); if (error) { printf("UDF mount: reading in reserve VDS extent\n"); error = udf_read_vds_extent(ump, reserve_loc, reserve_len); } return error; } /* --------------------------------------------------------------------- */ /* * Read in the logical volume integrity sequence pointed to by our logical * volume descriptor. Its a sequence that can be extended using fields in the * integrity descriptor itself. On sequential media only one is found, on * rewritable media a sequence of descriptors can be found as a form of * history keeping and on non sequential write-once media the chain is vital * to allow more and more descriptors to be written. The last descriptor * written in an extent needs to claim space for a new extent. */ static int udf_retrieve_lvint(struct udf_mount *ump, struct logvol_int_desc **lvintp) { union dscrptr *dscr; struct logvol_int_desc *lvint; uint32_t sector_size, sector, len; int dscr_type, error; sector_size = ump->discinfo.sector_size; len = udf_rw32(ump->logical_vol->integrity_seq_loc.len); sector = udf_rw32(ump->logical_vol->integrity_seq_loc.loc); lvint = NULL; dscr = NULL; error = 0; while (len) { /* read in our integrity descriptor */ error = udf_read_descriptor(ump, sector, M_UDFVOLD, &dscr); if (!error) { if (dscr == NULL) break; /* empty terminates */ dscr_type = udf_rw16(dscr->tag.id); if (dscr_type == TAGID_TERM) { break; /* clean terminator */ } if (dscr_type != TAGID_LOGVOL_INTEGRITY) { /* fatal... corrupt disc */ error = ENOENT; break; } if (lvint) free(lvint, M_UDFVOLD); lvint = &dscr->lvid; dscr = NULL; } /* else hope for the best... maybe the next is ok */ DPRINTFIF(VOLUMES, lvint, ("logvol integrity read, state %s\n", udf_rw32(lvint->integrity_type) ? "CLOSED" : "OPEN")); /* proceed sequential */ sector += 1; len -= sector_size; /* are we linking to a new piece? */ if (lvint->next_extent.len) { len = udf_rw32(lvint->next_extent.len); sector = udf_rw32(lvint->next_extent.loc); } } /* clean up the mess, esp. when there is an error */ if (dscr) free(dscr, M_UDFVOLD); if (error && lvint) { free(lvint, M_UDFVOLD); lvint = NULL; } if (!lvint) error = ENOENT; *lvintp = lvint; return error; } /* --------------------------------------------------------------------- */ /* * Checks if ump's vds information is correct and complete */ int udf_process_vds(struct udf_mount *ump, struct udf_args *args) { union udf_pmap *mapping; struct logvol_int_desc *lvint; struct udf_logvol_info *lvinfo; struct part_desc *part; uint32_t n_pm, mt_l; uint8_t *pmap_pos; char *domain_name, *map_name; const char *check_name; int pmap_stype, pmap_size; int pmap_type, log_part, phys_part, raw_phys_part; int n_phys, n_virt, n_spar, n_meta; int len, error; if (ump == NULL) return ENOENT; /* we need at least an anchor (trivial, but for safety) */ if (ump->anchors[0] == NULL) return EINVAL; /* we need at least one primary and one logical volume descriptor */ if ((ump->primary_vol == NULL) || (ump->logical_vol) == NULL) return EINVAL; /* we need at least one partition descriptor */ if (ump->partitions[0] == NULL) return EINVAL; /* check logical volume sector size verses device sector size */ if (udf_rw32(ump->logical_vol->lb_size) != ump->discinfo.sector_size) { printf("UDF mount: format violation, lb_size != sector size\n"); return EINVAL; } domain_name = ump->logical_vol->domain_id.id; if (strncmp(domain_name, "*OSTA UDF Compliant", 20)) { printf("mount_udf: disc not OSTA UDF Compliant, aborting\n"); return EINVAL; } /* retrieve logical volume integrity sequence */ error = udf_retrieve_lvint(ump, &ump->logvol_integrity); /* * We need at least one logvol integrity descriptor recorded. Note * that its OK to have an open logical volume integrity here. The VAT * will close/update the integrity. */ if (ump->logvol_integrity == NULL) return EINVAL; /* process derived structures */ n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ lvint = ump->logvol_integrity; lvinfo = (struct udf_logvol_info *) (&lvint->tables[2 * n_pm]); ump->logvol_info = lvinfo; /* TODO check udf versions? */ /* * check logvol mappings: effective virt->log partmap translation * check and recording of the mapping results. Saves expensive * strncmp() in tight places. */ DPRINTF(VOLUMES, ("checking logvol mappings\n")); n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ pmap_pos = ump->logical_vol->maps; if (n_pm > UDF_PMAPS) { printf("UDF mount: too many mappings\n"); return EINVAL; } n_phys = n_virt = n_spar = n_meta = 0; for (log_part = 0; log_part < n_pm; log_part++) { mapping = (union udf_pmap *) pmap_pos; pmap_stype = pmap_pos[0]; pmap_size = pmap_pos[1]; switch (pmap_stype) { case 1: /* physical mapping */ /* volseq = udf_rw16(mapping->pm1.vol_seq_num); */ raw_phys_part = udf_rw16(mapping->pm1.part_num); pmap_type = UDF_VTOP_TYPE_PHYS; n_phys++; break; case 2: /* virtual/sparable/meta mapping */ map_name = mapping->pm2.part_id.id; /* volseq = udf_rw16(mapping->pm2.vol_seq_num); */ raw_phys_part = udf_rw16(mapping->pm2.part_num); pmap_type = UDF_VTOP_TYPE_UNKNOWN; len = UDF_REGID_ID_SIZE; check_name = "*UDF Virtual Partition"; if (strncmp(map_name, check_name, len) == 0) { pmap_type = UDF_VTOP_TYPE_VIRT; n_virt++; break; } check_name = "*UDF Sparable Partition"; if (strncmp(map_name, check_name, len) == 0) { pmap_type = UDF_VTOP_TYPE_SPARABLE; n_spar++; break; } check_name = "*UDF Metadata Partition"; if (strncmp(map_name, check_name, len) == 0) { pmap_type = UDF_VTOP_TYPE_META; n_meta++; break; } break; default: return EINVAL; } /* * BUGALERT: some rogue implementations use random physical * partion numbers to break other implementations so lookup * the number. */ for (phys_part = 0; phys_part < UDF_PARTITIONS; phys_part++) { part = ump->partitions[phys_part]; if (part == NULL) continue; if (udf_rw16(part->part_num) == raw_phys_part) break; } DPRINTF(VOLUMES, ("\t%d -> %d(%d) type %d\n", log_part, raw_phys_part, phys_part, pmap_type)); if (phys_part == UDF_PARTITIONS) return EINVAL; if (pmap_type == UDF_VTOP_TYPE_UNKNOWN) return EINVAL; ump->vtop [log_part] = phys_part; ump->vtop_tp[log_part] = pmap_type; pmap_pos += pmap_size; } /* not winning the beauty contest */ ump->vtop_tp[UDF_VTOP_RAWPART] = UDF_VTOP_TYPE_RAW; /* test some basic UDF assertions/requirements */ if ((n_virt > 1) || (n_spar > 1) || (n_meta > 1)) return EINVAL; if (n_virt) { if ((n_phys == 0) || n_spar || n_meta) return EINVAL; } if (n_spar + n_phys == 0) return EINVAL; /* vat's can only be on a sequential media */ ump->data_alloc = UDF_ALLOC_SPACEMAP; if (n_virt) ump->data_alloc = UDF_ALLOC_SEQUENTIAL; ump->meta_alloc = UDF_ALLOC_SPACEMAP; if (n_virt) ump->meta_alloc = UDF_ALLOC_VAT; if (n_meta) ump->meta_alloc = UDF_ALLOC_METABITMAP; /* special cases for pseudo-overwrite */ if (ump->discinfo.mmc_cur & MMC_CAP_PSEUDOOVERWRITE) { ump->data_alloc = UDF_ALLOC_SEQUENTIAL; if (n_meta) { ump->meta_alloc = UDF_ALLOC_METASEQUENTIAL; } else { ump->meta_alloc = UDF_ALLOC_RELAXEDSEQUENTIAL; } } DPRINTF(VOLUMES, ("\tdata alloc scheme %d, meta alloc scheme %d\n", ump->data_alloc, ump->meta_alloc)); /* TODO determine partitions to write data and metadata ? */ /* signal its OK for now */ return 0; } /* --------------------------------------------------------------------- */ /* * Read in complete VAT file and check if its indeed a VAT file descriptor */ static int udf_check_for_vat(struct udf_node *vat_node) { struct udf_mount *ump; struct icb_tag *icbtag; struct timestamp *mtime; struct regid *regid; struct udf_vat *vat; struct udf_logvol_info *lvinfo; uint32_t vat_length, alloc_length; uint32_t vat_offset, vat_entries; uint32_t sector_size; uint32_t sectors; uint32_t *raw_vat; char *regid_name; int filetype; int error; /* vat_length is really 64 bits though impossible */ DPRINTF(VOLUMES, ("Checking for VAT\n")); if (!vat_node) return ENOENT; /* get mount info */ ump = vat_node->ump; /* check assertions */ assert(vat_node->fe || vat_node->efe); assert(ump->logvol_integrity); /* get information from fe/efe */ if (vat_node->fe) { vat_length = udf_rw64(vat_node->fe->inf_len); icbtag = &vat_node->fe->icbtag; mtime = &vat_node->fe->mtime; } else { vat_length = udf_rw64(vat_node->efe->inf_len); icbtag = &vat_node->efe->icbtag; mtime = &vat_node->efe->mtime; } /* Check icb filetype! it has to be 0 or UDF_ICB_FILETYPE_VAT */ filetype = icbtag->file_type; if ((filetype != 0) && (filetype != UDF_ICB_FILETYPE_VAT)) return ENOENT; DPRINTF(VOLUMES, ("\tPossible VAT length %d\n", vat_length)); /* place a sanity check on the length; currently 1Mb in size */ if (vat_length > 1*1024*1024) return ENOENT; /* get sector size */ sector_size = vat_node->ump->discinfo.sector_size; /* calculate how many sectors to read in and how much to allocate */ sectors = (vat_length + sector_size -1) / sector_size; alloc_length = (sectors + 2) * sector_size; /* try to allocate the space */ ump->vat_table_alloc_length = alloc_length; ump->vat_table = malloc(alloc_length, M_UDFVOLD, M_CANFAIL | M_WAITOK); if (!ump->vat_table) return ENOMEM; /* impossible to allocate */ DPRINTF(VOLUMES, ("\talloced fine\n")); /* read it in! */ raw_vat = (uint32_t *) ump->vat_table; error = udf_read_file_extent(vat_node, 0, sectors, (uint8_t *) raw_vat); if (error) { DPRINTF(VOLUMES, ("\tread failed : %d\n", error)); /* not completely readable... :( bomb out */ free(ump->vat_table, M_UDFVOLD); ump->vat_table = NULL; return error; } DPRINTF(VOLUMES, ("VAT read in fine!\n")); /* * check contents of the file if its the old 1.50 VAT table format. * Its notoriously broken and allthough some implementations support an * extention as defined in the UDF 1.50 errata document, its doubtfull * to be useable since a lot of implementations don't maintain it. */ lvinfo = ump->logvol_info; if (filetype == 0) { /* definition */ vat_offset = 0; vat_entries = (vat_length-36)/4; /* check 1.50 VAT */ regid = (struct regid *) (raw_vat + vat_entries); regid_name = (char *) regid->id; error = strncmp(regid_name, "*UDF Virtual Alloc Tbl", 22); if (error) { DPRINTF(VOLUMES, ("VAT format 1.50 rejected\n")); free(ump->vat_table, M_UDFVOLD); ump->vat_table = NULL; return ENOENT; } /* TODO update LVID from "*UDF VAT LVExtension" ext. attr. */ } else { vat = (struct udf_vat *) raw_vat; /* definition */ vat_offset = vat->header_len; vat_entries = (vat_length - vat_offset)/4; assert(lvinfo); lvinfo->num_files = vat->num_files; lvinfo->num_directories = vat->num_directories; lvinfo->min_udf_readver = vat->min_udf_readver; lvinfo->min_udf_writever = vat->min_udf_writever; lvinfo->max_udf_writever = vat->max_udf_writever; } ump->vat_offset = vat_offset; ump->vat_entries = vat_entries; DPRINTF(VOLUMES, ("VAT format accepted, marking it closed\n")); ump->logvol_integrity->integrity_type = udf_rw32(UDF_INTEGRITY_CLOSED); ump->logvol_integrity->time = *mtime; return 0; /* success! */ } /* --------------------------------------------------------------------- */ static int udf_search_vat(struct udf_mount *ump, union udf_pmap *mapping) { struct udf_node *vat_node; struct long_ad icb_loc; uint32_t early_vat_loc, late_vat_loc, vat_loc; int error; /* mapping info not needed */ mapping = mapping; vat_loc = ump->last_possible_vat_location; early_vat_loc = vat_loc - 2 * ump->discinfo.blockingnr; early_vat_loc = MAX(early_vat_loc, ump->first_possible_vat_location); late_vat_loc = vat_loc + 1024; /* TODO first search last sector? */ do { DPRINTF(VOLUMES, ("Checking for VAT at sector %d\n", vat_loc)); icb_loc.loc.part_num = udf_rw16(UDF_VTOP_RAWPART); icb_loc.loc.lb_num = udf_rw32(vat_loc); error = udf_get_node(ump, &icb_loc, &vat_node); if (!error) error = udf_check_for_vat(vat_node); if (!error) break; if (vat_node) { vput(vat_node->vnode); udf_dispose_node(vat_node); } vat_loc--; /* walk backwards */ } while (vat_loc >= early_vat_loc); /* we don't need our VAT node anymore */ if (vat_node) { vput(vat_node->vnode); udf_dispose_node(vat_node); } return error; } /* --------------------------------------------------------------------- */ static int udf_read_sparables(struct udf_mount *ump, union udf_pmap *mapping) { union dscrptr *dscr; struct part_map_spare *pms = &mapping->pms; uint32_t lb_num; int spar, error; /* * The partition mapping passed on to us specifies the information we * need to locate and initialise the sparable partition mapping * information we need. */ DPRINTF(VOLUMES, ("Read sparable table\n")); ump->sparable_packet_len = udf_rw16(pms->packet_len); for (spar = 0; spar < pms->n_st; spar++) { lb_num = pms->st_loc[spar]; DPRINTF(VOLUMES, ("Checking for sparing table %d\n", lb_num)); error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr); if (!error && dscr) { if (udf_rw16(dscr->tag.id) == TAGID_SPARING_TABLE) { if (ump->sparing_table) free(ump->sparing_table, M_UDFVOLD); ump->sparing_table = &dscr->spt; dscr = NULL; DPRINTF(VOLUMES, ("Sparing table accepted (%d entries)\n", udf_rw16(ump->sparing_table->rt_l))); break; /* we're done */ } } if (dscr) free(dscr, M_UDFVOLD); } if (ump->sparing_table) return 0; return ENOENT; } /* --------------------------------------------------------------------- */ #define UDF_SET_SYSTEMFILE(vp) \ simple_lock(&(vp)->v_interlock); \ (vp)->v_flag |= VSYSTEM; \ simple_unlock(&(vp)->v_interlock);\ vref(vp); \ vput(vp); \ static int udf_read_metadata_files(struct udf_mount *ump, union udf_pmap *mapping) { struct part_map_meta *pmm = &mapping->pmm; struct long_ad icb_loc; struct vnode *vp; int error; DPRINTF(VOLUMES, ("Reading in Metadata files\n")); icb_loc.loc.part_num = pmm->part_num; icb_loc.loc.lb_num = pmm->meta_file_lbn; DPRINTF(VOLUMES, ("Metadata file\n")); error = udf_get_node(ump, &icb_loc, &ump->metadata_file); if (ump->metadata_file) { vp = ump->metadata_file->vnode; UDF_SET_SYSTEMFILE(vp); } icb_loc.loc.lb_num = pmm->meta_mirror_file_lbn; if (icb_loc.loc.lb_num != -1) { DPRINTF(VOLUMES, ("Metadata copy file\n")); error = udf_get_node(ump, &icb_loc, &ump->metadatamirror_file); if (ump->metadatamirror_file) { vp = ump->metadatamirror_file->vnode; UDF_SET_SYSTEMFILE(vp); } } icb_loc.loc.lb_num = pmm->meta_bitmap_file_lbn; if (icb_loc.loc.lb_num != -1) { DPRINTF(VOLUMES, ("Metadata bitmap file\n")); error = udf_get_node(ump, &icb_loc, &ump->metadatabitmap_file); if (ump->metadatabitmap_file) { vp = ump->metadatabitmap_file->vnode; UDF_SET_SYSTEMFILE(vp); } } /* if we're mounting read-only we relax the requirements */ if (ump->vfs_mountp->mnt_flag & MNT_RDONLY) { error = EFAULT; if (ump->metadata_file) error = 0; if ((ump->metadata_file == NULL) && (ump->metadatamirror_file)) { printf( "udf mount: Metadata file not readable, " "substituting Metadata copy file\n"); ump->metadata_file = ump->metadatamirror_file; ump->metadatamirror_file = NULL; error = 0; } } else { /* mounting read/write */ DPRINTF(VOLUMES, ("udf mount: read only file system\n")); error = EROFS; } DPRINTFIF(VOLUMES, error, ("udf mount: failed to read " "metadata files\n")); return error; } #undef UDF_SET_SYSTEMFILE /* --------------------------------------------------------------------- */ int udf_read_vds_tables(struct udf_mount *ump, struct udf_args *args) { union udf_pmap *mapping; uint32_t n_pm, mt_l; uint32_t log_part; uint8_t *pmap_pos; int pmap_size; int error; /* We have to iterate again over the part mappings for locations */ n_pm = udf_rw32(ump->logical_vol->n_pm); /* num partmaps */ mt_l = udf_rw32(ump->logical_vol->mt_l); /* partmaps data length */ pmap_pos = ump->logical_vol->maps; for (log_part = 0; log_part < n_pm; log_part++) { mapping = (union udf_pmap *) pmap_pos; switch (ump->vtop_tp[log_part]) { case UDF_VTOP_TYPE_PHYS : /* nothing */ break; case UDF_VTOP_TYPE_VIRT : /* search and load VAT */ error = udf_search_vat(ump, mapping); if (error) return ENOENT; break; case UDF_VTOP_TYPE_SPARABLE : /* load one of the sparable tables */ error = udf_read_sparables(ump, mapping); if (error) return ENOENT; break; case UDF_VTOP_TYPE_META : /* load the associated file descriptors */ error = udf_read_metadata_files(ump, mapping); if (error) return ENOENT; break; default: break; } pmap_size = pmap_pos[1]; pmap_pos += pmap_size; } return 0; } /* --------------------------------------------------------------------- */ int udf_read_rootdirs(struct udf_mount *ump, struct udf_args *args) { struct udf_node *rootdir_node, *streamdir_node; union dscrptr *dscr; struct long_ad fsd_loc, *dir_loc; uint32_t lb_num, dummy; uint32_t fsd_len; int dscr_type; int error; /* TODO implement FSD reading in separate function like integrity? */ /* get fileset descriptor sequence */ fsd_loc = ump->logical_vol->lv_fsd_loc; fsd_len = udf_rw32(fsd_loc.len); dscr = NULL; error = 0; while (fsd_len || error) { DPRINTF(VOLUMES, ("fsd_len = %d\n", fsd_len)); /* translate fsd_loc to lb_num */ error = udf_translate_vtop(ump, &fsd_loc, &lb_num, &dummy); if (error) break; DPRINTF(VOLUMES, ("Reading FSD at lb %d\n", lb_num)); error = udf_read_descriptor(ump, lb_num, M_UDFVOLD, &dscr); /* end markers */ if (error || (dscr == NULL)) break; /* analyse */ dscr_type = udf_rw16(dscr->tag.id); if (dscr_type == TAGID_TERM) break; if (dscr_type != TAGID_FSD) { free(dscr, M_UDFVOLD); return ENOENT; } /* * TODO check for multiple fileset descriptors; its only * picking the last now. Also check for FSD * correctness/interpretability */ /* update */ if (ump->fileset_desc) { free(ump->fileset_desc, M_UDFVOLD); } ump->fileset_desc = &dscr->fsd; dscr = NULL; /* continue to the next fsd */ fsd_len -= ump->discinfo.sector_size; fsd_loc.loc.lb_num = udf_rw32(udf_rw32(fsd_loc.loc.lb_num)+1); /* follow up to fsd->next_ex (long_ad) if its not null */ if (udf_rw32(ump->fileset_desc->next_ex.len)) { DPRINTF(VOLUMES, ("follow up FSD extent\n")); fsd_loc = ump->fileset_desc->next_ex; fsd_len = udf_rw32(ump->fileset_desc->next_ex.len); } } if (dscr) free(dscr, M_UDFVOLD); /* there has to be one */ if (ump->fileset_desc == NULL) return ENOENT; DPRINTF(VOLUMES, ("FSD read in fine\n")); /* * Now the FSD is known, read in the rootdirectory and if one exists, * the system stream dir. Some files in the system streamdir are not * wanted in this implementation since they are not maintained. If * writing is enabled we'll delete these files if they exist. */ rootdir_node = streamdir_node = NULL; dir_loc = NULL; /* try to read in the rootdir */ dir_loc = &ump->fileset_desc->rootdir_icb; error = udf_get_node(ump, dir_loc, &rootdir_node); if (error) return ENOENT; /* aparently it read in fine */ /* * Try the system stream directory; not very likely in the ones we * test, but for completeness. */ dir_loc = &ump->fileset_desc->streamdir_icb; if (udf_rw32(dir_loc->len)) { error = udf_get_node(ump, dir_loc, &streamdir_node); if (error) printf("udf mount: streamdir defined but ignored\n"); if (!error) { /* * TODO process streamdir `baddies' i.e. files we dont * want if R/W */ } } DPRINTF(VOLUMES, ("Rootdir(s) read in fine\n")); /* release the vnodes again; they'll be auto-recycled later */ if (streamdir_node) { vput(streamdir_node->vnode); } if (rootdir_node) { vput(rootdir_node->vnode); } return 0; } /* --------------------------------------------------------------------- */ int udf_translate_vtop(struct udf_mount *ump, struct long_ad *icb_loc, uint32_t *lb_numres, uint32_t *extres) { struct part_desc *pdesc; struct spare_map_entry *sme; struct file_entry *fe; struct extfile_entry *efe; struct short_ad *s_ad; struct long_ad *l_ad; uint64_t cur_offset; uint32_t *trans; uint32_t lb_num, plb_num, lb_rel, lb_packet; uint32_t sector_size, len, alloclen; uint8_t *pos; int rel, vpart, part, addr_type, icblen, icbflags, flags; assert(ump && icb_loc && lb_numres); vpart = udf_rw16(icb_loc->loc.part_num); lb_num = udf_rw32(icb_loc->loc.lb_num); if (vpart < 0 || vpart > UDF_VTOP_RAWPART) return EINVAL; part = ump->vtop[vpart]; pdesc = ump->partitions[part]; switch (ump->vtop_tp[vpart]) { case UDF_VTOP_TYPE_RAW : /* 1:1 to the end of the device */ *lb_numres = lb_num; *extres = INT_MAX; return 0; case UDF_VTOP_TYPE_PHYS : /* transform into its disc logical block */ if (lb_num > udf_rw32(pdesc->part_len)) return EINVAL; *lb_numres = lb_num + udf_rw32(pdesc->start_loc); /* extent from here to the end of the partition */ *extres = udf_rw32(pdesc->part_len) - lb_num; return 0; case UDF_VTOP_TYPE_VIRT : /* only maps one sector, lookup in VAT */ if (lb_num >= ump->vat_entries) /* XXX > or >= ? */ return EINVAL; /* lookup in virtual allocation table */ trans = (uint32_t *) (ump->vat_table + ump->vat_offset); lb_num = udf_rw32(trans[lb_num]); /* transform into its disc logical block */ if (lb_num > udf_rw32(pdesc->part_len)) return EINVAL; *lb_numres = lb_num + udf_rw32(pdesc->start_loc); /* just one logical block */ *extres = 1; return 0; case UDF_VTOP_TYPE_SPARABLE : /* check if the packet containing the lb_num is remapped */ lb_packet = lb_num / ump->sparable_packet_len; lb_rel = lb_num % ump->sparable_packet_len; for (rel = 0; rel < udf_rw16(ump->sparing_table->rt_l); rel++) { sme = &ump->sparing_table->entries[rel]; if (lb_packet == udf_rw32(sme->org)) { /* NOTE maps to absolute disc logical block! */ *lb_numres = udf_rw32(sme->map) + lb_rel; *extres = ump->sparable_packet_len - lb_rel; return 0; } } /* transform into its disc logical block */ if (lb_num > udf_rw32(pdesc->part_len)) return EINVAL; *lb_numres = lb_num + udf_rw32(pdesc->start_loc); /* rest of block */ *extres = ump->sparable_packet_len - lb_rel; return 0; case UDF_VTOP_TYPE_META : /* we have to look into the file's allocation descriptors */ /* free after udf_translate_file_extent() */ /* XXX sector size or lb_size? */ sector_size = ump->discinfo.sector_size; /* XXX should we claim exclusive access to the metafile ? */ fe = ump->metadata_file->fe; efe = ump->metadata_file->efe; if (fe) { alloclen = udf_rw32(fe->l_ad); pos = &fe->data[0] + udf_rw32(fe->l_ea); icbflags = udf_rw16(fe->icbtag.flags); } else { assert(efe); alloclen = udf_rw32(efe->l_ad); pos = &efe->data[0] + udf_rw32(efe->l_ea); icbflags = udf_rw16(efe->icbtag.flags); } addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; cur_offset = 0; while (alloclen) { if (addr_type == UDF_ICB_SHORT_ALLOC) { icblen = sizeof(struct short_ad); s_ad = (struct short_ad *) pos; len = udf_rw32(s_ad->len); plb_num = udf_rw32(s_ad->lb_num); } else { /* should not be present, but why not */ icblen = sizeof(struct long_ad); l_ad = (struct long_ad *) pos; len = udf_rw32(l_ad->len); plb_num = udf_rw32(l_ad->loc.lb_num); /* pvpart_num = udf_rw16(l_ad->loc.part_num); */ } /* process extent */ flags = UDF_EXT_FLAGS(len); len = UDF_EXT_LEN(len); if (cur_offset + len > lb_num * sector_size) { if (flags != UDF_EXT_ALLOCATED) return EINVAL; lb_rel = lb_num - cur_offset / sector_size; /* remainder of this extent */ *lb_numres = plb_num + lb_rel + udf_rw32(pdesc->start_loc); *extres = (len / sector_size) - lb_rel; return 0; } cur_offset += len; pos += icblen; alloclen -= icblen; } /* not found */ DPRINTF(TRANSLATE, ("Metadata partition translation failed\n")); return EINVAL; default: printf("UDF vtop translation scheme %d unimplemented yet\n", ump->vtop_tp[vpart]); } return EINVAL; } /* --------------------------------------------------------------------- */ /* To make absolutely sure we are NOT returning zero, add one :) */ long udf_calchash(struct long_ad *icbptr) { /* ought to be enough since each mountpoint has its own chain */ return udf_rw32(icbptr->loc.lb_num) + 1; } /* --------------------------------------------------------------------- */ static struct udf_node * udf_hashget(struct udf_mount *ump, struct long_ad *icbptr) { struct udf_node *unp; struct vnode *vp; uint32_t hashline; loop: simple_lock(&ump->ihash_slock); hashline = udf_calchash(icbptr) & UDF_INODE_HASHMASK; LIST_FOREACH(unp, &ump->udf_nodes[hashline], hashchain) { assert(unp); if (unp->loc.loc.lb_num == icbptr->loc.lb_num && unp->loc.loc.part_num == icbptr->loc.part_num) { vp = unp->vnode; assert(vp); simple_lock(&vp->v_interlock); simple_unlock(&ump->ihash_slock); if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK)) goto loop; return unp; } } simple_unlock(&ump->ihash_slock); return NULL; } /* --------------------------------------------------------------------- */ static void udf_hashins(struct udf_node *unp) { struct udf_mount *ump; uint32_t hashline; ump = unp->ump; simple_lock(&ump->ihash_slock); hashline = udf_calchash(&unp->loc) & UDF_INODE_HASHMASK; LIST_INSERT_HEAD(&ump->udf_nodes[hashline], unp, hashchain); simple_unlock(&ump->ihash_slock); } /* --------------------------------------------------------------------- */ static void udf_hashrem(struct udf_node *unp) { struct udf_mount *ump; ump = unp->ump; simple_lock(&ump->ihash_slock); LIST_REMOVE(unp, hashchain); simple_unlock(&ump->ihash_slock); } /* --------------------------------------------------------------------- */ int udf_dispose_locked_node(struct udf_node *node) { if (!node) return 0; if (node->vnode) VOP_UNLOCK(node->vnode, 0); return udf_dispose_node(node); } /* --------------------------------------------------------------------- */ int udf_dispose_node(struct udf_node *node) { struct vnode *vp; DPRINTF(NODE, ("udf_dispose_node called on node %p\n", node)); if (!node) { DPRINTF(NODE, ("UDF: Dispose node on node NULL, ignoring\n")); return 0; } vp = node->vnode; /* TODO extended attributes and streamdir */ /* remove from our hash lookup table */ udf_hashrem(node); /* destroy genfs structures */ genfs_node_destroy(vp); /* dissociate our udf_node from the vnode */ vp->v_data = NULL; /* free associated memory and the node itself */ if (node->fe) pool_put(node->ump->desc_pool, node->fe); if (node->efe) pool_put(node->ump->desc_pool, node->efe); pool_put(&udf_node_pool, node); return 0; } /* --------------------------------------------------------------------- */ /* * Genfs interfacing * * static const struct genfs_ops udffs_genfsops = { * .gop_size = genfs_size, * size of transfers * .gop_alloc = udf_gop_alloc, * unknown * .gop_write = genfs_gop_write, * putpages interface code * .gop_markupdate = udf_gop_markupdate, * set update/modify flags etc. * } */ /* * Genfs interface. These four functions are the only ones defined though not * documented... great.... why is chosen for the `.' initialisers i dont know * but other filingsystems seem to use it this way. */ static int udf_gop_alloc(struct vnode *vp, off_t off, off_t len, int flags, kauth_cred_t cred) { return 0; } static void udf_gop_markupdate(struct vnode *vp, int flags) { struct udf_node *udf_node = VTOI(vp); u_long mask; udf_node = udf_node; /* shut up gcc */ mask = 0; #ifdef notyet if ((flags & GOP_UPDATE_ACCESSED) != 0) { mask = UDF_SET_ACCESS; } if ((flags & GOP_UPDATE_MODIFIED) != 0) { mask |= UDF_SET_UPDATE; } if (mask) { udf_node->update_flag |= mask; } #endif /* msdosfs doesn't do it, but shouldn't we update the times here? */ } static const struct genfs_ops udf_genfsops = { .gop_size = genfs_size, .gop_alloc = udf_gop_alloc, .gop_write = genfs_gop_write, .gop_markupdate = udf_gop_markupdate, }; /* --------------------------------------------------------------------- */ /* * Each node can have an attached streamdir node though not * recursively. These are otherwise known as named substreams/named * extended attributes that have no size limitations. * * `Normal' extended attributes are indicated with a number and are recorded * in either the fe/efe descriptor itself for small descriptors or recorded in * the attached extended attribute file. Since this file can get fragmented, * care ought to be taken. */ int udf_get_node(struct udf_mount *ump, struct long_ad *node_icb_loc, struct udf_node **noderes) { union dscrptr *dscr, *tmpdscr; struct udf_node *node; struct vnode *nvp; struct long_ad icb_loc; extern int (**udf_vnodeop_p)(void *); uint64_t file_size; uint32_t lb_size, sector, dummy; int udf_file_type, dscr_type, strat, strat4096, needs_indirect; int error; DPRINTF(NODE, ("udf_get_node called\n")); *noderes = node = NULL; /* lock to disallow simultanious creation of same node */ lockmgr(&ump->get_node_lock, LK_EXCLUSIVE, NULL); DPRINTF(NODE, ("\tlookup in hash table\n")); /* lookup in hash table */ assert(ump); assert(node_icb_loc); node = udf_hashget(ump, node_icb_loc); if (node) { DPRINTF(NODE, ("\tgot it from the hash!\n")); /* vnode is returned locked */ *noderes = node; lockmgr(&ump->get_node_lock, LK_RELEASE, NULL); return 0; } /* garbage check: translate node_icb_loc to sectornr */ error = udf_translate_vtop(ump, node_icb_loc, §or, &dummy); if (error) { /* no use, this will fail anyway */ lockmgr(&ump->get_node_lock, LK_RELEASE, NULL); return EINVAL; } /* build node (do initialise!) */ node = pool_get(&udf_node_pool, PR_WAITOK); memset(node, 0, sizeof(struct udf_node)); DPRINTF(NODE, ("\tget new vnode\n")); /* give it a vnode */ error = getnewvnode(VT_UDF, ump->vfs_mountp, udf_vnodeop_p, &nvp); if (error) { pool_put(&udf_node_pool, node); lockmgr(&ump->get_node_lock, LK_RELEASE, NULL); return error; } /* always return locked vnode */ if ((error = vn_lock(nvp, LK_EXCLUSIVE | LK_RETRY))) { /* recycle vnode and unlock; simultanious will fail too */ ungetnewvnode(nvp); lockmgr(&ump->get_node_lock, LK_RELEASE, NULL); return error; } /* initialise crosslinks, note location of fe/efe for hashing */ node->ump = ump; node->vnode = nvp; nvp->v_data = node; node->loc = *node_icb_loc; node->lockf = 0; /* insert into the hash lookup */ udf_hashins(node); /* safe to unlock, the entry is in the hash table, vnode is locked */ lockmgr(&ump->get_node_lock, LK_RELEASE, NULL); icb_loc = *node_icb_loc; needs_indirect = 0; strat4096 = 0; udf_file_type = UDF_ICB_FILETYPE_UNKNOWN; file_size = 0; lb_size = udf_rw32(ump->logical_vol->lb_size); do { error = udf_translate_vtop(ump, &icb_loc, §or, &dummy); if (error) break; /* try to read in fe/efe */ error = udf_read_descriptor(ump, sector, M_UDFTEMP, &tmpdscr); /* blank sector marks end of sequence, check this */ if ((tmpdscr == NULL) && (!strat4096)) error = ENOENT; /* break if read error or blank sector */ if (error || (tmpdscr == NULL)) break; /* process descriptor based on the descriptor type */ dscr_type = udf_rw16(tmpdscr->tag.id); /* if dealing with an indirect entry, follow the link */ if (dscr_type == TAGID_INDIRECT_ENTRY) { needs_indirect = 0; icb_loc = tmpdscr->inde.indirect_icb; free(tmpdscr, M_UDFTEMP); continue; } /* only file entries and extended file entries allowed here */ if ((dscr_type != TAGID_FENTRY) && (dscr_type != TAGID_EXTFENTRY)) { free(tmpdscr, M_UDFTEMP); error = ENOENT; break; } /* get descriptor space from our pool */ KASSERT(udf_tagsize(tmpdscr, lb_size) == lb_size); dscr = pool_get(ump->desc_pool, PR_WAITOK); memcpy(dscr, tmpdscr, lb_size); free(tmpdscr, M_UDFTEMP); /* record and process/update (ext)fentry */ if (dscr_type == TAGID_FENTRY) { if (node->fe) pool_put(ump->desc_pool, node->fe); node->fe = &dscr->fe; strat = udf_rw16(node->fe->icbtag.strat_type); udf_file_type = node->fe->icbtag.file_type; file_size = udf_rw64(node->fe->inf_len); } else { if (node->efe) pool_put(ump->desc_pool, node->efe); node->efe = &dscr->efe; strat = udf_rw16(node->efe->icbtag.strat_type); udf_file_type = node->efe->icbtag.file_type; file_size = udf_rw64(node->efe->inf_len); } /* check recording strategy (structure) */ /* * Strategy 4096 is a daisy linked chain terminating with an * unrecorded sector or a TERM descriptor. The next * descriptor is to be found in the sector that follows the * current sector. */ if (strat == 4096) { strat4096 = 1; needs_indirect = 1; icb_loc.loc.lb_num = udf_rw32(icb_loc.loc.lb_num) + 1; } /* * Strategy 4 is the normal strategy and terminates, but if * we're in strategy 4096, we can't have strategy 4 mixed in */ if (strat == 4) { if (strat4096) { error = EINVAL; break; } break; /* done */ } } while (!error); if (error) { /* recycle udf_node */ udf_dispose_node(node); /* recycle vnode */ nvp->v_data = NULL; ungetnewvnode(nvp); return EINVAL; /* error code ok? */ } /* post process and initialise node */ /* assert no references to dscr anymore beyong this point */ assert((node->fe) || (node->efe)); dscr = NULL; /* * Record where to record an updated version of the descriptor. If * there is a sequence of indirect entries, icb_loc will have been * updated. Its the write disipline to allocate new space and to make * sure the chain is maintained. * * `needs_indirect' flags if the next location is to be filled with * with an indirect entry. */ node->next_loc = icb_loc; node->needs_indirect = needs_indirect; /* * Translate UDF filetypes into vnode types. * * Systemfiles like the meta main and mirror files are not treated as * normal files, so we type them as having no type. UDF dictates that * they are not allowed to be visible. */ /* TODO specfs, fifofs etc etc. vnops setting */ switch (udf_file_type) { case UDF_ICB_FILETYPE_DIRECTORY : case UDF_ICB_FILETYPE_STREAMDIR : nvp->v_type = VDIR; break; case UDF_ICB_FILETYPE_BLOCKDEVICE : nvp->v_type = VBLK; break; case UDF_ICB_FILETYPE_CHARDEVICE : nvp->v_type = VCHR; break; case UDF_ICB_FILETYPE_SYMLINK : nvp->v_type = VLNK; break; case UDF_ICB_FILETYPE_VAT : case UDF_ICB_FILETYPE_META_MAIN : case UDF_ICB_FILETYPE_META_MIRROR : nvp->v_type = VNON; break; case UDF_ICB_FILETYPE_RANDOMACCESS : case UDF_ICB_FILETYPE_REALTIME : nvp->v_type = VREG; break; default: /* YIKES, either a block/char device, fifo or something else */ nvp->v_type = VNON; } /* initialise genfs */ genfs_node_init(nvp, &udf_genfsops); /* don't forget to set vnode's v_size */ uvm_vnp_setsize(nvp, file_size); /* TODO ext attr and streamdir nodes */ *noderes = node; return 0; } /* --------------------------------------------------------------------- */ /* UDF<->unix converters */ /* --------------------------------------------------------------------- */ static mode_t udf_perm_to_unix_mode(uint32_t perm) { mode_t mode; mode = ((perm & UDF_FENTRY_PERM_USER_MASK) ); mode |= ((perm & UDF_FENTRY_PERM_GRP_MASK ) >> 2); mode |= ((perm & UDF_FENTRY_PERM_OWNER_MASK) >> 4); return mode; } /* --------------------------------------------------------------------- */ #ifdef notyet static uint32_t unix_mode_to_udf_perm(mode_t mode) { uint32_t perm; perm = ((mode & S_IRWXO) ); perm |= ((mode & S_IRWXG) << 2); perm |= ((mode & S_IRWXU) << 4); perm |= ((mode & S_IWOTH) << 3); perm |= ((mode & S_IWGRP) << 5); perm |= ((mode & S_IWUSR) << 7); return perm; } #endif /* --------------------------------------------------------------------- */ static uint32_t udf_icb_to_unix_filetype(uint32_t icbftype) { switch (icbftype) { case UDF_ICB_FILETYPE_DIRECTORY : case UDF_ICB_FILETYPE_STREAMDIR : return S_IFDIR; case UDF_ICB_FILETYPE_FIFO : return S_IFIFO; case UDF_ICB_FILETYPE_CHARDEVICE : return S_IFCHR; case UDF_ICB_FILETYPE_BLOCKDEVICE : return S_IFBLK; case UDF_ICB_FILETYPE_RANDOMACCESS : case UDF_ICB_FILETYPE_REALTIME : return S_IFREG; case UDF_ICB_FILETYPE_SYMLINK : return S_IFLNK; case UDF_ICB_FILETYPE_SOCKET : return S_IFSOCK; } /* no idea what this is */ return 0; } /* --------------------------------------------------------------------- */ /* TODO KNF-ify */ void udf_to_unix_name(char *result, char *id, int len, struct charspec *chsp) { uint16_t *raw_name, *unix_name; uint16_t *inchp, ch; uint8_t *outchp; int ucode_chars, nice_uchars; raw_name = malloc(2048 * sizeof(uint16_t), M_UDFTEMP, M_WAITOK); unix_name = raw_name + 1024; /* split space in half */ assert(sizeof(char) == sizeof(uint8_t)); outchp = (uint8_t *) result; if ((chsp->type == 0) && (strcmp((char*) chsp->inf, "OSTA Compressed Unicode") == 0)) { *raw_name = *unix_name = 0; ucode_chars = udf_UncompressUnicode(len, (uint8_t *) id, raw_name); ucode_chars = MIN(ucode_chars, UnicodeLength((unicode_t *) raw_name)); nice_uchars = UDFTransName(unix_name, raw_name, ucode_chars); for (inchp = unix_name; nice_uchars>0; inchp++, nice_uchars--) { ch = *inchp; /* XXX sloppy unicode -> latin */ *outchp++ = ch & 255; if (!ch) break; } *outchp++ = 0; } else { /* assume 8bit char length byte latin-1 */ assert(*id == 8); strncpy((char *) result, (char *) (id+1), strlen((char *) (id+1))); } free(raw_name, M_UDFTEMP); } /* --------------------------------------------------------------------- */ /* TODO KNF-ify */ void unix_to_udf_name(char *result, char *name, uint8_t *result_len, struct charspec *chsp) { uint16_t *raw_name; int udf_chars, name_len; char *inchp; uint16_t *outchp; raw_name = malloc(1024, M_UDFTEMP, M_WAITOK); /* convert latin-1 or whatever to unicode-16 */ *raw_name = 0; name_len = 0; inchp = name; outchp = raw_name; while (*inchp) { *outchp++ = (uint16_t) (*inchp++); name_len++; } if ((chsp->type == 0) && (strcmp((char *) chsp->inf, "OSTA Compressed Unicode") == 0)) { udf_chars = udf_CompressUnicode(name_len, 8, (unicode_t *) raw_name, (byte *) result); } else { /* XXX assume 8bit char length byte latin-1 */ *result++ = 8; udf_chars = 1; strncpy(result, name + 1, strlen(name+1)); udf_chars += strlen(name); } *result_len = udf_chars; free(raw_name, M_UDFTEMP); } /* --------------------------------------------------------------------- */ void udf_timestamp_to_timespec(struct udf_mount *ump, struct timestamp *timestamp, struct timespec *timespec) { struct clock_ymdhms ymdhms; uint32_t usecs, secs, nsecs; uint16_t tz; /* fill in ymdhms structure from timestamp */ memset(&ymdhms, 0, sizeof(ymdhms)); ymdhms.dt_year = udf_rw16(timestamp->year); ymdhms.dt_mon = timestamp->month; ymdhms.dt_day = timestamp->day; ymdhms.dt_wday = 0; /* ? */ ymdhms.dt_hour = timestamp->hour; ymdhms.dt_min = timestamp->minute; ymdhms.dt_sec = timestamp->second; secs = clock_ymdhms_to_secs(&ymdhms); usecs = timestamp->usec + 100*timestamp->hund_usec + 10000*timestamp->centisec; nsecs = usecs * 1000; /* * Calculate the time zone. The timezone is 12 bit signed 2's * compliment, so we gotta do some extra magic to handle it right. */ tz = udf_rw16(timestamp->type_tz); tz &= 0x0fff; /* only lower 12 bits are significant */ if (tz & 0x0800) /* sign extention */ tz |= 0xf000; /* TODO check timezone conversion */ /* check if we are specified a timezone to convert */ if (udf_rw16(timestamp->type_tz) & 0x1000) { if ((int16_t) tz != -2047) secs -= (int16_t) tz * 60; } else { secs -= ump->mount_args.gmtoff; } timespec->tv_sec = secs; timespec->tv_nsec = nsecs; } /* --------------------------------------------------------------------- */ /* * Attribute and filetypes converters with get/set pairs */ uint32_t udf_getaccessmode(struct udf_node *udf_node) { struct file_entry *fe; struct extfile_entry *efe; uint32_t udf_perm, icbftype; uint32_t mode, ftype; uint16_t icbflags; if (udf_node->fe) { fe = udf_node->fe; udf_perm = udf_rw32(fe->perm); icbftype = fe->icbtag.file_type; icbflags = udf_rw16(fe->icbtag.flags); } else { assert(udf_node->efe); efe = udf_node->efe; udf_perm = udf_rw32(efe->perm); icbftype = efe->icbtag.file_type; icbflags = udf_rw16(efe->icbtag.flags); } mode = udf_perm_to_unix_mode(udf_perm); ftype = udf_icb_to_unix_filetype(icbftype); /* set suid, sgid, sticky from flags in fe/efe */ if (icbflags & UDF_ICB_TAG_FLAGS_SETUID) mode |= S_ISUID; if (icbflags & UDF_ICB_TAG_FLAGS_SETGID) mode |= S_ISGID; if (icbflags & UDF_ICB_TAG_FLAGS_STICKY) mode |= S_ISVTX; return mode | ftype; } /* --------------------------------------------------------------------- */ /* * Directory read and manipulation functions */ int udf_lookup_name_in_dir(struct vnode *vp, const char *name, int namelen, struct long_ad *icb_loc) { struct udf_node *dir_node = VTOI(vp); struct file_entry *fe; struct extfile_entry *efe; struct fileid_desc *fid; struct dirent *dirent; uint64_t file_size, diroffset; uint32_t lb_size; int found, error; /* get directory filesize */ if (dir_node->fe) { fe = dir_node->fe; file_size = udf_rw64(fe->inf_len); } else { assert(dir_node->efe); efe = dir_node->efe; file_size = udf_rw64(efe->inf_len); } /* allocate temporary space for fid */ lb_size = udf_rw32(dir_node->ump->logical_vol->lb_size); fid = malloc(lb_size, M_UDFTEMP, M_WAITOK); found = 0; diroffset = dir_node->last_diroffset; /* * if the directory is trunced or if we have never visited it yet, * start at the end. */ if ((diroffset >= file_size) || (diroffset == 0)) { diroffset = dir_node->last_diroffset = file_size; } dirent = malloc(sizeof(struct dirent), M_UDFTEMP, M_WAITOK); while (!found) { /* if at the end, go trough zero */ if (diroffset >= file_size) diroffset = 0; /* transfer a new fid/dirent */ error = udf_read_fid_stream(vp, &diroffset, fid, dirent); if (error) break; /* skip deleted entries */ if ((fid->file_char & UDF_FILE_CHAR_DEL) == 0) { if ((strlen(dirent->d_name) == namelen) && (strncmp(dirent->d_name, name, namelen) == 0)) { found = 1; *icb_loc = fid->icb; } } if (diroffset == dir_node->last_diroffset) { /* we have cycled */ break; } } free(fid, M_UDFTEMP); free(dirent, M_UDFTEMP); dir_node->last_diroffset = diroffset; return found; } /* --------------------------------------------------------------------- */ /* * Read one fid and process it into a dirent and advance to the next (*fid) * has to be allocated a logical block in size, (*dirent) struct dirent length */ int udf_read_fid_stream(struct vnode *vp, uint64_t *offset, struct fileid_desc *fid, struct dirent *dirent) { struct udf_node *dir_node = VTOI(vp); struct udf_mount *ump = dir_node->ump; struct file_entry *fe; struct extfile_entry *efe; struct uio dir_uio; struct iovec dir_iovec; uint32_t entry_length, lb_size; uint64_t file_size; char *fid_name; int enough, error; assert(fid); assert(dirent); assert(dir_node); assert(offset); assert(*offset != 1); DPRINTF(FIDS, ("read_fid_stream called\n")); /* check if we're past the end of the directory */ if (dir_node->fe) { fe = dir_node->fe; file_size = udf_rw64(fe->inf_len); } else { assert(dir_node->efe); efe = dir_node->efe; file_size = udf_rw64(efe->inf_len); } if (*offset >= file_size) return EINVAL; /* get maximum length of FID descriptor */ lb_size = udf_rw32(ump->logical_vol->lb_size); /* initialise return values */ entry_length = 0; memset(dirent, 0, sizeof(struct dirent)); memset(fid, 0, lb_size); /* TODO use vn_rdwr instead of creating our own uio */ /* read part of the directory */ memset(&dir_uio, 0, sizeof(struct uio)); dir_uio.uio_rw = UIO_READ; /* read into this space */ dir_uio.uio_iovcnt = 1; dir_uio.uio_iov = &dir_iovec; UIO_SETUP_SYSSPACE(&dir_uio); dir_iovec.iov_base = fid; dir_iovec.iov_len = lb_size; dir_uio.uio_offset = *offset; /* limit length of read in piece */ dir_uio.uio_resid = MIN(file_size - (*offset), lb_size); /* read the part into the fid space */ error = VOP_READ(vp, &dir_uio, IO_ALTSEMANTICS, NOCRED); if (error) return error; /* * Check if we got a whole descriptor. * XXX Try to `resync' directory stream when something is very wrong. * */ enough = (dir_uio.uio_offset - (*offset) >= UDF_FID_SIZE); if (!enough) { /* short dir ... */ return EIO; } /* check if our FID header is OK */ error = udf_check_tag(fid); DPRINTFIF(FIDS, error, ("read fids: tag check failed\n")); if (!error) { if (udf_rw16(fid->tag.id) != TAGID_FID) error = ENOENT; } DPRINTFIF(FIDS, !error, ("\ttag checked ok: got TAGID_FID\n")); /* check for length */ if (!error) { entry_length = udf_fidsize(fid, lb_size); enough = (dir_uio.uio_offset - (*offset) >= entry_length); } DPRINTFIF(FIDS, !error, ("\tentry_length = %d, enough = %s\n", entry_length, enough?"yes":"no")); if (!enough) { /* short dir ... bomb out */ return EIO; } /* check FID contents */ if (!error) { error = udf_check_tag_payload((union dscrptr *) fid, lb_size); DPRINTF(FIDS, ("\tpayload checked ok\n")); } if (error) { /* note that is sometimes a bit quick to report */ printf("BROKEN DIRECTORY ENTRY\n"); /* RESYNC? */ /* TODO: use udf_resync_fid_stream */ return EIO; } DPRINTF(FIDS, ("\tinterpret FID\n")); /* we got a whole and valid descriptor! */ /* create resulting dirent structure */ fid_name = (char *) fid->data + udf_rw16(fid->l_iu); udf_to_unix_name(dirent->d_name, fid_name, fid->l_fi, &ump->logical_vol->desc_charset); /* '..' has no name, so provide one */ if (fid->file_char & UDF_FILE_CHAR_PAR) strcpy(dirent->d_name, ".."); dirent->d_fileno = udf_calchash(&fid->icb); /* inode hash XXX */ dirent->d_namlen = strlen(dirent->d_name); dirent->d_reclen = _DIRENT_SIZE(dirent); /* * Note that its not worth trying to go for the filetypes now... its * too expensive too */ dirent->d_type = DT_UNKNOWN; /* initial guess for filetype we can make */ if (fid->file_char & UDF_FILE_CHAR_DIR) dirent->d_type = DT_DIR; /* advance */ *offset += entry_length; return error; } /* --------------------------------------------------------------------- */ /* * block based file reading and writing */ static int udf_read_internal(struct udf_node *node, uint8_t *blob) { struct udf_mount *ump; struct file_entry *fe; struct extfile_entry *efe; uint64_t inflen; uint32_t sector_size; uint8_t *pos; int icbflags, addr_type; /* shut up gcc */ inflen = addr_type = icbflags = 0; pos = NULL; /* get extent and do some paranoia checks */ ump = node->ump; sector_size = ump->discinfo.sector_size; fe = node->fe; efe = node->efe; if (fe) { inflen = udf_rw64(fe->inf_len); pos = &fe->data[0] + udf_rw32(fe->l_ea); icbflags = udf_rw16(fe->icbtag.flags); } if (efe) { inflen = udf_rw64(efe->inf_len); pos = &efe->data[0] + udf_rw32(efe->l_ea); icbflags = udf_rw16(efe->icbtag.flags); } addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; assert(addr_type == UDF_ICB_INTERN_ALLOC); assert(inflen < sector_size); /* copy out info */ memset(blob, 0, sector_size); memcpy(blob, pos, inflen); return 0; } /* --------------------------------------------------------------------- */ /* * Read file extent reads an extent specified in sectors from the file. It is * sector based; i.e. no `fancy' offsets. */ int udf_read_file_extent(struct udf_node *node, uint32_t from, uint32_t sectors, uint8_t *blob) { struct buf buf; uint32_t sector_size; BUF_INIT(&buf); sector_size = node->ump->discinfo.sector_size; buf.b_bufsize = sectors * sector_size; buf.b_data = blob; buf.b_bcount = buf.b_bufsize; buf.b_resid = buf.b_bcount; buf.b_flags = B_BUSY | B_READ; buf.b_vp = node->vnode; buf.b_proc = NULL; buf.b_blkno = from; buf.b_lblkno = 0; BIO_SETPRIO(&buf, BPRIO_TIMELIMITED); udf_read_filebuf(node, &buf); return biowait(&buf); } /* --------------------------------------------------------------------- */ /* * Read file extent in the buffer. * * The splitup of the extent into separate request-buffers is to minimise * copying around as much as possible. */ /* maximum of 128 translations (!) (64 kb in 512 byte sectors) */ #define FILEBUFSECT 128 void udf_read_filebuf(struct udf_node *node, struct buf *buf) { struct buf *nestbuf; uint64_t *mapping; uint64_t run_start; uint32_t sector_size; uint32_t buf_offset, sector, rbuflen, rblk; uint8_t *buf_pos; int error, run_length; uint32_t from; uint32_t sectors; sector_size = node->ump->discinfo.sector_size; from = buf->b_blkno; sectors = buf->b_bcount / sector_size; /* assure we have enough translation slots */ KASSERT(buf->b_bcount / sector_size <= FILEBUFSECT); KASSERT(MAXPHYS / sector_size <= FILEBUFSECT); if (sectors > FILEBUFSECT) { printf("udf_read_filebuf: implementation limit on bufsize\n"); buf->b_error = EIO; biodone(buf); return; } mapping = malloc(sizeof(*mapping) * FILEBUFSECT, M_UDFTEMP, M_WAITOK); error = 0; DPRINTF(READ, ("\ttranslate %d-%d\n", from, sectors)); error = udf_translate_file_extent(node, from, sectors, mapping); if (error) { buf->b_error = error; biodone(buf); goto out; } DPRINTF(READ, ("\ttranslate extent went OK\n")); /* pre-check if internal or parts are zero */ if (*mapping == UDF_TRANS_INTERN) { error = udf_read_internal(node, (uint8_t *) buf->b_data); if (error) { buf->b_error = error; } biodone(buf); goto out; } DPRINTF(READ, ("\tnot intern\n")); /* request read-in of data from disc scheduler */ buf->b_resid = buf->b_bcount; for (sector = 0; sector < sectors; sector++) { buf_offset = sector * sector_size; buf_pos = (uint8_t *) buf->b_data + buf_offset; DPRINTF(READ, ("\tprocessing rel sector %d\n", sector)); switch (mapping[sector]) { case UDF_TRANS_UNMAPPED: case UDF_TRANS_ZERO: /* copy zero sector */ memset(buf_pos, 0, sector_size); DPRINTF(READ, ("\treturning zero sector\n")); nestiobuf_done(buf, sector_size, 0); break; default : DPRINTF(READ, ("\tread sector " "%"PRIu64"\n", mapping[sector])); run_start = mapping[sector]; run_length = 1; while (sector < sectors-1) { if (mapping[sector+1] != mapping[sector]+1) break; run_length++; sector++; } /* * nest an iobuf and mark it for async reading. Since * we're using nested buffers, they can't be cached by * design. */ rbuflen = run_length * sector_size; rblk = run_start * (sector_size/DEV_BSIZE); nestbuf = getiobuf(); nestiobuf_setup(buf, nestbuf, buf_offset, rbuflen); /* nestbuf is B_ASYNC */ /* CD schedules on raw blkno */ nestbuf->b_blkno = rblk; nestbuf->b_proc = NULL; nestbuf->b_cylinder = 0; nestbuf->b_rawblkno = rblk; VOP_STRATEGY(node->ump->devvp, nestbuf); } } out: DPRINTF(READ, ("\tend of read_filebuf\n")); free(mapping, M_UDFTEMP); return; } #undef FILEBUFSECT /* --------------------------------------------------------------------- */ /* * Translate an extent (in sectors) into sector numbers; used for read and * write operations. DOESNT't check extents. */ int udf_translate_file_extent(struct udf_node *node, uint32_t from, uint32_t pages, uint64_t *map) { struct udf_mount *ump; struct file_entry *fe; struct extfile_entry *efe; struct short_ad *s_ad; struct long_ad *l_ad, t_ad; uint64_t transsec; uint32_t sector_size, transsec32; uint32_t overlap, translen; uint32_t vpart_num, lb_num, len, alloclen; uint8_t *pos; int error, flags, addr_type, icblen, icbflags; if (!node) return ENOENT; /* shut up gcc */ alloclen = addr_type = icbflags = 0; pos = NULL; /* do the work */ ump = node->ump; sector_size = ump->discinfo.sector_size; fe = node->fe; efe = node->efe; if (fe) { alloclen = udf_rw32(fe->l_ad); pos = &fe->data[0] + udf_rw32(fe->l_ea); icbflags = udf_rw16(fe->icbtag.flags); } if (efe) { alloclen = udf_rw32(efe->l_ad); pos = &efe->data[0] + udf_rw32(efe->l_ea); icbflags = udf_rw16(efe->icbtag.flags); } addr_type = icbflags & UDF_ICB_TAG_FLAGS_ALLOC_MASK; DPRINTF(TRANSLATE, ("udf trans: alloc_len = %d, addr_type %d, " "fe %p, efe %p\n", alloclen, addr_type, fe, efe)); vpart_num = udf_rw16(node->loc.loc.part_num); lb_num = len = icblen = 0; /* shut up gcc */ while (pages && alloclen) { DPRINTF(TRANSLATE, ("\taddr_type %d\n", addr_type)); switch (addr_type) { case UDF_ICB_INTERN_ALLOC : /* TODO check extents? */ *map = UDF_TRANS_INTERN; return 0; case UDF_ICB_SHORT_ALLOC : icblen = sizeof(struct short_ad); s_ad = (struct short_ad *) pos; len = udf_rw32(s_ad->len); lb_num = udf_rw32(s_ad->lb_num); break; case UDF_ICB_LONG_ALLOC : icblen = sizeof(struct long_ad); l_ad = (struct long_ad *) pos; len = udf_rw32(l_ad->len); lb_num = udf_rw32(l_ad->loc.lb_num); vpart_num = udf_rw16(l_ad->loc.part_num); DPRINTFIF(TRANSLATE, (l_ad->impl.im_used.flags & UDF_ADIMP_FLAGS_EXTENT_ERASED), ("UDF: got an `extent erased' flag in long_ad\n")); break; default: /* can't be here */ return EINVAL; /* for sure */ } /* process extent */ flags = UDF_EXT_FLAGS(len); len = UDF_EXT_LEN(len); overlap = (len + sector_size -1) / sector_size; if (from) { if (from > overlap) { from -= overlap; overlap = 0; } else { lb_num += from; /* advance in extent */ overlap -= from; from = 0; } } overlap = MIN(overlap, pages); while (overlap) { switch (flags) { case UDF_EXT_REDIRECT : /* no support for allocation extentions yet */ /* TODO support for allocation extention */ return ENOENT; case UDF_EXT_FREED : case UDF_EXT_FREE : transsec = UDF_TRANS_ZERO; translen = overlap; while (overlap && pages && translen) { *map++ = transsec; lb_num++; overlap--; pages--; translen--; } break; case UDF_EXT_ALLOCATED : t_ad.loc.lb_num = udf_rw32(lb_num); t_ad.loc.part_num = udf_rw16(vpart_num); error = udf_translate_vtop(ump, &t_ad, &transsec32, &translen); transsec = transsec32; if (error) return error; while (overlap && pages && translen) { *map++ = transsec; lb_num++; transsec++; overlap--; pages--; translen--; } break; } } pos += icblen; alloclen -= icblen; } return 0; } /* --------------------------------------------------------------------- */