NetBSD/sys/dev/pci/if_iwm.c

8319 lines
223 KiB
C

/* $NetBSD: if_iwm.c,v 1.71 2017/03/14 23:59:26 nonaka Exp $ */
/* OpenBSD: if_iwm.c,v 1.148 2016/11/19 21:07:08 stsp Exp */
#define IEEE80211_NO_HT
/*
* Copyright (c) 2014, 2016 genua gmbh <info@genua.de>
* Author: Stefan Sperling <stsp@openbsd.org>
* Copyright (c) 2014 Fixup Software Ltd.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*-
* Based on BSD-licensed source modules in the Linux iwlwifi driver,
* which were used as the reference documentation for this implementation.
*
***********************************************************************
*
* This file is provided under a dual BSD/GPLv2 license. When using or
* redistributing this file, you may do so under either license.
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2016 Intel Deutschland GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called COPYING.
*
* Contact Information:
* Intel Linux Wireless <linuxwifi@intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
* BSD LICENSE
*
* Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2016 Intel Deutschland GmbH
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2007-2010 Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_iwm.c,v 1.71 2017/03/14 23:59:26 nonaka Exp $");
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/cpu.h>
#include <sys/bus.h>
#include <sys/workqueue.h>
#include <machine/endian.h>
#include <sys/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/firmload.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#define DEVNAME(_s) device_xname((_s)->sc_dev)
#define IC2IFP(_ic_) ((_ic_)->ic_ifp)
#define le16_to_cpup(_a_) (le16toh(*(const uint16_t *)(_a_)))
#define le32_to_cpup(_a_) (le32toh(*(const uint32_t *)(_a_)))
#ifdef IWM_DEBUG
#define DPRINTF(x) do { if (iwm_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (iwm_debug >= (n)) printf x; } while (0)
int iwm_debug = 0;
#else
#define DPRINTF(x) do { ; } while (0)
#define DPRINTFN(n, x) do { ; } while (0)
#endif
#include <dev/pci/if_iwmreg.h>
#include <dev/pci/if_iwmvar.h>
static const uint8_t iwm_nvm_channels[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64,
100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165
};
static const uint8_t iwm_nvm_channels_8000[] = {
/* 2.4 GHz */
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
/* 5 GHz */
36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
149, 153, 157, 161, 165, 169, 173, 177, 181
};
#define IWM_NUM_2GHZ_CHANNELS 14
static const struct iwm_rate {
uint8_t rate;
uint8_t plcp;
uint8_t ht_plcp;
} iwm_rates[] = {
/* Legacy */ /* HT */
{ 2, IWM_RATE_1M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
{ 4, IWM_RATE_2M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
{ 11, IWM_RATE_5M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
{ 22, IWM_RATE_11M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
{ 12, IWM_RATE_6M_PLCP, IWM_RATE_HT_SISO_MCS_0_PLCP },
{ 18, IWM_RATE_9M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP },
{ 24, IWM_RATE_12M_PLCP, IWM_RATE_HT_SISO_MCS_1_PLCP },
{ 36, IWM_RATE_18M_PLCP, IWM_RATE_HT_SISO_MCS_2_PLCP },
{ 48, IWM_RATE_24M_PLCP, IWM_RATE_HT_SISO_MCS_3_PLCP },
{ 72, IWM_RATE_36M_PLCP, IWM_RATE_HT_SISO_MCS_4_PLCP },
{ 96, IWM_RATE_48M_PLCP, IWM_RATE_HT_SISO_MCS_5_PLCP },
{ 108, IWM_RATE_54M_PLCP, IWM_RATE_HT_SISO_MCS_6_PLCP },
{ 128, IWM_RATE_INVM_PLCP, IWM_RATE_HT_SISO_MCS_7_PLCP },
};
#define IWM_RIDX_CCK 0
#define IWM_RIDX_OFDM 4
#define IWM_RIDX_MAX (__arraycount(iwm_rates)-1)
#define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM)
#define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM)
#ifndef IEEE80211_NO_HT
/* Convert an MCS index into an iwm_rates[] index. */
static const int iwm_mcs2ridx[] = {
IWM_RATE_MCS_0_INDEX,
IWM_RATE_MCS_1_INDEX,
IWM_RATE_MCS_2_INDEX,
IWM_RATE_MCS_3_INDEX,
IWM_RATE_MCS_4_INDEX,
IWM_RATE_MCS_5_INDEX,
IWM_RATE_MCS_6_INDEX,
IWM_RATE_MCS_7_INDEX,
};
#endif
struct iwm_nvm_section {
uint16_t length;
uint8_t *data;
};
struct iwm_newstate_state {
struct work ns_wk;
enum ieee80211_state ns_nstate;
int ns_arg;
int ns_generation;
};
static int iwm_store_cscheme(struct iwm_softc *, uint8_t *, size_t);
static int iwm_firmware_store_section(struct iwm_softc *,
enum iwm_ucode_type, uint8_t *, size_t);
static int iwm_set_default_calib(struct iwm_softc *, const void *);
static int iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type);
static uint32_t iwm_read_prph(struct iwm_softc *, uint32_t);
static void iwm_write_prph(struct iwm_softc *, uint32_t, uint32_t);
#ifdef IWM_DEBUG
static int iwm_read_mem(struct iwm_softc *, uint32_t, void *, int);
#endif
static int iwm_write_mem(struct iwm_softc *, uint32_t, const void *, int);
static int iwm_write_mem32(struct iwm_softc *, uint32_t, uint32_t);
static int iwm_poll_bit(struct iwm_softc *, int, uint32_t, uint32_t, int);
static int iwm_nic_lock(struct iwm_softc *);
static void iwm_nic_unlock(struct iwm_softc *);
static void iwm_set_bits_mask_prph(struct iwm_softc *, uint32_t, uint32_t,
uint32_t);
static void iwm_set_bits_prph(struct iwm_softc *, uint32_t, uint32_t);
static void iwm_clear_bits_prph(struct iwm_softc *, uint32_t, uint32_t);
static int iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *,
bus_size_t, bus_size_t);
static void iwm_dma_contig_free(struct iwm_dma_info *);
static int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
static void iwm_disable_rx_dma(struct iwm_softc *);
static void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
static void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *);
static int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *,
int);
static void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
static void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *);
static void iwm_enable_rfkill_int(struct iwm_softc *);
static int iwm_check_rfkill(struct iwm_softc *);
static void iwm_enable_interrupts(struct iwm_softc *);
static void iwm_restore_interrupts(struct iwm_softc *);
static void iwm_disable_interrupts(struct iwm_softc *);
static void iwm_ict_reset(struct iwm_softc *);
static int iwm_set_hw_ready(struct iwm_softc *);
static int iwm_prepare_card_hw(struct iwm_softc *);
static void iwm_apm_config(struct iwm_softc *);
static int iwm_apm_init(struct iwm_softc *);
static void iwm_apm_stop(struct iwm_softc *);
static int iwm_allow_mcast(struct iwm_softc *);
static int iwm_start_hw(struct iwm_softc *);
static void iwm_stop_device(struct iwm_softc *);
static void iwm_nic_config(struct iwm_softc *);
static int iwm_nic_rx_init(struct iwm_softc *);
static int iwm_nic_tx_init(struct iwm_softc *);
static int iwm_nic_init(struct iwm_softc *);
static int iwm_enable_txq(struct iwm_softc *, int, int, int);
static int iwm_post_alive(struct iwm_softc *);
static struct iwm_phy_db_entry *
iwm_phy_db_get_section(struct iwm_softc *,
enum iwm_phy_db_section_type, uint16_t);
static int iwm_phy_db_set_section(struct iwm_softc *,
struct iwm_calib_res_notif_phy_db *, uint16_t);
static int iwm_is_valid_channel(uint16_t);
static uint8_t iwm_ch_id_to_ch_index(uint16_t);
static uint16_t iwm_channel_id_to_papd(uint16_t);
static uint16_t iwm_channel_id_to_txp(struct iwm_softc *, uint16_t);
static int iwm_phy_db_get_section_data(struct iwm_softc *, uint32_t,
uint8_t **, uint16_t *, uint16_t);
static int iwm_send_phy_db_cmd(struct iwm_softc *, uint16_t, uint16_t,
void *);
static int iwm_phy_db_send_all_channel_groups(struct iwm_softc *,
enum iwm_phy_db_section_type, uint8_t);
static int iwm_send_phy_db_data(struct iwm_softc *);
static void iwm_te_v2_to_v1(const struct iwm_time_event_cmd_v2 *,
struct iwm_time_event_cmd_v1 *);
static int iwm_send_time_event_cmd(struct iwm_softc *,
const struct iwm_time_event_cmd_v2 *);
static void iwm_protect_session(struct iwm_softc *, struct iwm_node *,
uint32_t, uint32_t);
static int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t,
uint16_t, uint8_t *, uint16_t *);
static int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *,
uint16_t *, size_t);
static void iwm_init_channel_map(struct iwm_softc *, const uint16_t * const,
const uint8_t *, size_t);
#ifndef IEEE80211_NO_HT
static void iwm_setup_ht_rates(struct iwm_softc *);
static void iwm_htprot_task(void *);
static void iwm_update_htprot(struct ieee80211com *,
struct ieee80211_node *);
static int iwm_ampdu_rx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwm_ampdu_rx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwm_sta_rx_agg(struct iwm_softc *, struct ieee80211_node *,
uint8_t, uint16_t, int);
#ifdef notyet
static int iwm_ampdu_tx_start(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
static void iwm_ampdu_tx_stop(struct ieee80211com *,
struct ieee80211_node *, uint8_t);
#endif
static void iwm_ba_task(void *);
#endif
static int iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *,
const uint16_t *, const uint16_t *, const uint16_t *,
const uint16_t *, const uint16_t *);
static void iwm_set_hw_address_8000(struct iwm_softc *,
struct iwm_nvm_data *, const uint16_t *, const uint16_t *);
static int iwm_parse_nvm_sections(struct iwm_softc *,
struct iwm_nvm_section *);
static int iwm_nvm_init(struct iwm_softc *);
static int iwm_firmware_load_sect(struct iwm_softc *, uint32_t,
const uint8_t *, uint32_t);
static int iwm_firmware_load_chunk(struct iwm_softc *, uint32_t,
const uint8_t *, uint32_t);
static int iwm_load_cpu_sections_7000(struct iwm_softc *,
struct iwm_fw_sects *, int , int *);
static int iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type);
static int iwm_load_cpu_sections_8000(struct iwm_softc *,
struct iwm_fw_sects *, int , int *);
static int iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type);
static int iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type);
static int iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type);
static int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t);
static int iwm_send_phy_cfg_cmd(struct iwm_softc *);
static int iwm_load_ucode_wait_alive(struct iwm_softc *,
enum iwm_ucode_type);
static int iwm_run_init_mvm_ucode(struct iwm_softc *, int);
static int iwm_rx_addbuf(struct iwm_softc *, int, int);
static int iwm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *);
static int iwm_get_signal_strength(struct iwm_softc *,
struct iwm_rx_phy_info *);
static void iwm_rx_rx_phy_cmd(struct iwm_softc *,
struct iwm_rx_packet *, struct iwm_rx_data *);
static int iwm_get_noise(const struct iwm_statistics_rx_non_phy *);
static void iwm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *,
struct iwm_rx_data *);
static void iwm_rx_tx_cmd_single(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_node *);
static void iwm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *,
struct iwm_rx_data *);
static int iwm_binding_cmd(struct iwm_softc *, struct iwm_node *,
uint32_t);
#if 0
static int iwm_binding_update(struct iwm_softc *, struct iwm_node *, int);
static int iwm_binding_add_vif(struct iwm_softc *, struct iwm_node *);
#endif
static void iwm_phy_ctxt_cmd_hdr(struct iwm_softc *, struct iwm_phy_ctxt *,
struct iwm_phy_context_cmd *, uint32_t, uint32_t);
static void iwm_phy_ctxt_cmd_data(struct iwm_softc *,
struct iwm_phy_context_cmd *, struct ieee80211_channel *,
uint8_t, uint8_t);
static int iwm_phy_ctxt_cmd(struct iwm_softc *, struct iwm_phy_ctxt *,
uint8_t, uint8_t, uint32_t, uint32_t);
static int iwm_send_cmd(struct iwm_softc *, struct iwm_host_cmd *);
static int iwm_send_cmd_pdu(struct iwm_softc *, uint32_t, uint32_t,
uint16_t, const void *);
static int iwm_send_cmd_status(struct iwm_softc *, struct iwm_host_cmd *,
uint32_t *);
static int iwm_send_cmd_pdu_status(struct iwm_softc *, uint32_t, uint16_t,
const void *, uint32_t *);
static void iwm_free_resp(struct iwm_softc *, struct iwm_host_cmd *);
static void iwm_cmd_done(struct iwm_softc *, int qid, int idx);
#if 0
static void iwm_update_sched(struct iwm_softc *, int, int, uint8_t,
uint16_t);
#endif
static const struct iwm_rate *
iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *,
struct ieee80211_frame *, struct iwm_tx_cmd *);
static int iwm_tx(struct iwm_softc *, struct mbuf *,
struct ieee80211_node *, int);
static void iwm_led_enable(struct iwm_softc *);
static void iwm_led_disable(struct iwm_softc *);
static int iwm_led_is_enabled(struct iwm_softc *);
static void iwm_led_blink_timeout(void *);
static void iwm_led_blink_start(struct iwm_softc *);
static void iwm_led_blink_stop(struct iwm_softc *);
static int iwm_beacon_filter_send_cmd(struct iwm_softc *,
struct iwm_beacon_filter_cmd *);
static void iwm_beacon_filter_set_cqm_params(struct iwm_softc *,
struct iwm_node *, struct iwm_beacon_filter_cmd *);
static int iwm_update_beacon_abort(struct iwm_softc *, struct iwm_node *,
int);
static void iwm_power_build_cmd(struct iwm_softc *, struct iwm_node *,
struct iwm_mac_power_cmd *);
static int iwm_power_mac_update_mode(struct iwm_softc *,
struct iwm_node *);
static int iwm_power_update_device(struct iwm_softc *);
#ifdef notyet
static int iwm_enable_beacon_filter(struct iwm_softc *, struct iwm_node *);
#endif
static int iwm_disable_beacon_filter(struct iwm_softc *);
static int iwm_add_sta_cmd(struct iwm_softc *, struct iwm_node *, int);
static int iwm_add_aux_sta(struct iwm_softc *);
static uint16_t iwm_scan_rx_chain(struct iwm_softc *);
static uint32_t iwm_scan_rate_n_flags(struct iwm_softc *, int, int);
#ifdef notyet
static uint16_t iwm_get_active_dwell(struct iwm_softc *, int, int);
static uint16_t iwm_get_passive_dwell(struct iwm_softc *, int);
#endif
static uint8_t iwm_lmac_scan_fill_channels(struct iwm_softc *,
struct iwm_scan_channel_cfg_lmac *, int);
static int iwm_fill_probe_req(struct iwm_softc *,
struct iwm_scan_probe_req *);
static int iwm_lmac_scan(struct iwm_softc *);
static int iwm_config_umac_scan(struct iwm_softc *);
static int iwm_umac_scan(struct iwm_softc *);
static uint8_t iwm_ridx2rate(struct ieee80211_rateset *, int);
static void iwm_ack_rates(struct iwm_softc *, struct iwm_node *, int *,
int *);
static void iwm_mac_ctxt_cmd_common(struct iwm_softc *, struct iwm_node *,
struct iwm_mac_ctx_cmd *, uint32_t, int);
static void iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *, struct iwm_node *,
struct iwm_mac_data_sta *, int);
static int iwm_mac_ctxt_cmd(struct iwm_softc *, struct iwm_node *,
uint32_t, int);
static int iwm_update_quotas(struct iwm_softc *, struct iwm_node *);
static int iwm_auth(struct iwm_softc *);
static int iwm_assoc(struct iwm_softc *);
static void iwm_calib_timeout(void *);
#ifndef IEEE80211_NO_HT
static void iwm_setrates_task(void *);
static int iwm_setrates(struct iwm_node *);
#endif
static int iwm_media_change(struct ifnet *);
static int iwm_do_newstate(struct ieee80211com *, enum ieee80211_state,
int);
static void iwm_newstate_cb(struct work *, void *);
static int iwm_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void iwm_endscan(struct iwm_softc *);
static void iwm_fill_sf_command(struct iwm_softc *, struct iwm_sf_cfg_cmd *,
struct ieee80211_node *);
static int iwm_sf_config(struct iwm_softc *, int);
static int iwm_send_bt_init_conf(struct iwm_softc *);
static int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *);
static void iwm_tt_tx_backoff(struct iwm_softc *, uint32_t);
static int iwm_init_hw(struct iwm_softc *);
static int iwm_init(struct ifnet *);
static void iwm_start(struct ifnet *);
static void iwm_stop(struct ifnet *, int);
static void iwm_watchdog(struct ifnet *);
static int iwm_ioctl(struct ifnet *, u_long, void *);
#ifdef IWM_DEBUG
static const char *iwm_desc_lookup(uint32_t);
static void iwm_nic_error(struct iwm_softc *);
static void iwm_nic_umac_error(struct iwm_softc *);
#endif
static void iwm_notif_intr(struct iwm_softc *);
static int iwm_intr(void *);
static void iwm_softintr(void *);
static int iwm_preinit(struct iwm_softc *);
static void iwm_attach_hook(device_t);
static void iwm_attach(device_t, device_t, void *);
#if 0
static void iwm_init_task(void *);
static int iwm_activate(device_t, enum devact);
static void iwm_wakeup(struct iwm_softc *);
#endif
static void iwm_radiotap_attach(struct iwm_softc *);
static int iwm_sysctl_fw_loaded_handler(SYSCTLFN_PROTO);
static int iwm_sysctl_root_num;
static int iwm_lar_disable;
#ifndef IWM_DEFAULT_MCC
#define IWM_DEFAULT_MCC "ZZ"
#endif
static char iwm_default_mcc[3] = IWM_DEFAULT_MCC;
static int
iwm_firmload(struct iwm_softc *sc)
{
struct iwm_fw_info *fw = &sc->sc_fw;
firmware_handle_t fwh;
int err;
if (ISSET(sc->sc_flags, IWM_FLAG_FW_LOADED))
return 0;
/* Open firmware image. */
err = firmware_open("if_iwm", sc->sc_fwname, &fwh);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not get firmware handle %s\n", sc->sc_fwname);
return err;
}
if (fw->fw_rawdata != NULL && fw->fw_rawsize > 0) {
kmem_free(fw->fw_rawdata, fw->fw_rawsize);
fw->fw_rawdata = NULL;
}
fw->fw_rawsize = firmware_get_size(fwh);
/*
* Well, this is how the Linux driver checks it ....
*/
if (fw->fw_rawsize < sizeof(uint32_t)) {
aprint_error_dev(sc->sc_dev,
"firmware too short: %zd bytes\n", fw->fw_rawsize);
err = EINVAL;
goto out;
}
/* Read the firmware. */
fw->fw_rawdata = kmem_alloc(fw->fw_rawsize, KM_SLEEP);
if (fw->fw_rawdata == NULL) {
aprint_error_dev(sc->sc_dev,
"not enough memory to stock firmware %s\n", sc->sc_fwname);
err = ENOMEM;
goto out;
}
err = firmware_read(fwh, 0, fw->fw_rawdata, fw->fw_rawsize);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not read firmware %s\n", sc->sc_fwname);
goto out;
}
SET(sc->sc_flags, IWM_FLAG_FW_LOADED);
out:
/* caller will release memory, if necessary */
firmware_close(fwh);
return err;
}
/*
* just maintaining status quo.
*/
static void
iwm_fix_channel(struct iwm_softc *sc, struct mbuf *m)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
uint8_t subtype;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
int chan = le32toh(sc->sc_last_phy_info.channel);
if (chan < __arraycount(ic->ic_channels))
ic->ic_curchan = &ic->ic_channels[chan];
}
static int
iwm_store_cscheme(struct iwm_softc *sc, uint8_t *data, size_t dlen)
{
struct iwm_fw_cscheme_list *l = (struct iwm_fw_cscheme_list *)data;
if (dlen < sizeof(*l) ||
dlen < sizeof(l->size) + l->size * sizeof(*l->cs))
return EINVAL;
/* we don't actually store anything for now, always use s/w crypto */
return 0;
}
static int
iwm_firmware_store_section(struct iwm_softc *sc, enum iwm_ucode_type type,
uint8_t *data, size_t dlen)
{
struct iwm_fw_sects *fws;
struct iwm_fw_onesect *fwone;
if (type >= IWM_UCODE_TYPE_MAX)
return EINVAL;
if (dlen < sizeof(uint32_t))
return EINVAL;
fws = &sc->sc_fw.fw_sects[type];
if (fws->fw_count >= IWM_UCODE_SECT_MAX)
return EINVAL;
fwone = &fws->fw_sect[fws->fw_count];
/* first 32bit are device load offset */
memcpy(&fwone->fws_devoff, data, sizeof(uint32_t));
/* rest is data */
fwone->fws_data = data + sizeof(uint32_t);
fwone->fws_len = dlen - sizeof(uint32_t);
/* for freeing the buffer during driver unload */
fwone->fws_alloc = data;
fwone->fws_allocsize = dlen;
fws->fw_count++;
fws->fw_totlen += fwone->fws_len;
return 0;
}
struct iwm_tlv_calib_data {
uint32_t ucode_type;
struct iwm_tlv_calib_ctrl calib;
} __packed;
static int
iwm_set_default_calib(struct iwm_softc *sc, const void *data)
{
const struct iwm_tlv_calib_data *def_calib = data;
uint32_t ucode_type = le32toh(def_calib->ucode_type);
if (ucode_type >= IWM_UCODE_TYPE_MAX) {
DPRINTF(("%s: Wrong ucode_type %u for default calibration.\n",
DEVNAME(sc), ucode_type));
return EINVAL;
}
sc->sc_default_calib[ucode_type].flow_trigger =
def_calib->calib.flow_trigger;
sc->sc_default_calib[ucode_type].event_trigger =
def_calib->calib.event_trigger;
return 0;
}
static int
iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
struct iwm_fw_info *fw = &sc->sc_fw;
struct iwm_tlv_ucode_header *uhdr;
struct iwm_ucode_tlv tlv;
enum iwm_ucode_tlv_type tlv_type;
uint8_t *data;
int err, status;
size_t len;
if (ucode_type != IWM_UCODE_TYPE_INIT &&
fw->fw_status == IWM_FW_STATUS_DONE)
return 0;
if (fw->fw_status == IWM_FW_STATUS_NONE) {
fw->fw_status = IWM_FW_STATUS_INPROGRESS;
} else {
while (fw->fw_status == IWM_FW_STATUS_INPROGRESS)
tsleep(&sc->sc_fw, 0, "iwmfwp", 0);
}
status = fw->fw_status;
if (status == IWM_FW_STATUS_DONE)
return 0;
err = iwm_firmload(sc);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not read firmware %s (error %d)\n",
sc->sc_fwname, err);
goto out;
}
sc->sc_capaflags = 0;
sc->sc_capa_n_scan_channels = IWM_MAX_NUM_SCAN_CHANNELS;
memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa));
memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc));
uhdr = (void *)fw->fw_rawdata;
if (*(uint32_t *)fw->fw_rawdata != 0
|| le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) {
aprint_error_dev(sc->sc_dev, "invalid firmware %s\n",
sc->sc_fwname);
err = EINVAL;
goto out;
}
snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)",
IWM_UCODE_MAJOR(le32toh(uhdr->ver)),
IWM_UCODE_MINOR(le32toh(uhdr->ver)),
IWM_UCODE_API(le32toh(uhdr->ver)));
data = uhdr->data;
len = fw->fw_rawsize - sizeof(*uhdr);
while (len >= sizeof(tlv)) {
size_t tlv_len;
void *tlv_data;
memcpy(&tlv, data, sizeof(tlv));
tlv_len = le32toh(tlv.length);
tlv_type = le32toh(tlv.type);
len -= sizeof(tlv);
data += sizeof(tlv);
tlv_data = data;
if (len < tlv_len) {
aprint_error_dev(sc->sc_dev,
"firmware too short: %zu bytes\n", len);
err = EINVAL;
goto parse_out;
}
switch (tlv_type) {
case IWM_UCODE_TLV_PROBE_MAX_LEN:
if (tlv_len < sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
sc->sc_capa_max_probe_len
= le32toh(*(uint32_t *)tlv_data);
/* limit it to something sensible */
if (sc->sc_capa_max_probe_len >
IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) {
err = EINVAL;
goto parse_out;
}
break;
case IWM_UCODE_TLV_PAN:
if (tlv_len) {
err = EINVAL;
goto parse_out;
}
sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN;
break;
case IWM_UCODE_TLV_FLAGS:
if (tlv_len < sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
if (tlv_len % sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
/*
* Apparently there can be many flags, but Linux driver
* parses only the first one, and so do we.
*
* XXX: why does this override IWM_UCODE_TLV_PAN?
* Intentional or a bug? Observations from
* current firmware file:
* 1) TLV_PAN is parsed first
* 2) TLV_FLAGS contains TLV_FLAGS_PAN
* ==> this resets TLV_PAN to itself... hnnnk
*/
sc->sc_capaflags = le32toh(*(uint32_t *)tlv_data);
break;
case IWM_UCODE_TLV_CSCHEME:
err = iwm_store_cscheme(sc, tlv_data, tlv_len);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_NUM_OF_CPU: {
uint32_t num_cpu;
if (tlv_len != sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
num_cpu = le32toh(*(uint32_t *)tlv_data);
if (num_cpu == 2) {
fw->fw_sects[IWM_UCODE_TYPE_REGULAR].is_dual_cpus =
true;
fw->fw_sects[IWM_UCODE_TYPE_INIT].is_dual_cpus =
true;
fw->fw_sects[IWM_UCODE_TYPE_WOW].is_dual_cpus =
true;
} else if (num_cpu < 1 || num_cpu > 2) {
err = EINVAL;
goto parse_out;
}
break;
}
case IWM_UCODE_TLV_SEC_RT:
err = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_SEC_INIT:
err = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_INIT, tlv_data, tlv_len);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_SEC_WOWLAN:
err = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_WOW, tlv_data, tlv_len);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_DEF_CALIB:
if (tlv_len != sizeof(struct iwm_tlv_calib_data)) {
err = EINVAL;
goto parse_out;
}
err = iwm_set_default_calib(sc, tlv_data);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_PHY_SKU:
if (tlv_len != sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
sc->sc_fw_phy_config = le32toh(*(uint32_t *)tlv_data);
break;
case IWM_UCODE_TLV_API_CHANGES_SET: {
struct iwm_ucode_api *api;
uint32_t idx, bits;
int i;
if (tlv_len != sizeof(*api)) {
err = EINVAL;
goto parse_out;
}
api = (struct iwm_ucode_api *)tlv_data;
idx = le32toh(api->api_index);
bits = le32toh(api->api_flags);
if (idx >= howmany(IWM_NUM_UCODE_TLV_API, 32)) {
err = EINVAL;
goto parse_out;
}
for (i = 0; i < 32; i++) {
if (!ISSET(bits, __BIT(i)))
continue;
setbit(sc->sc_ucode_api, i + (32 * idx));
}
break;
}
case IWM_UCODE_TLV_ENABLED_CAPABILITIES: {
struct iwm_ucode_capa *capa;
uint32_t idx, bits;
int i;
if (tlv_len != sizeof(*capa)) {
err = EINVAL;
goto parse_out;
}
capa = (struct iwm_ucode_capa *)tlv_data;
idx = le32toh(capa->api_index);
bits = le32toh(capa->api_capa);
if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) {
err = EINVAL;
goto parse_out;
}
for (i = 0; i < 32; i++) {
if (!ISSET(bits, __BIT(i)))
continue;
setbit(sc->sc_enabled_capa, i + (32 * idx));
}
break;
}
case IWM_UCODE_TLV_FW_UNDOCUMENTED1:
case IWM_UCODE_TLV_SDIO_ADMA_ADDR:
case IWM_UCODE_TLV_FW_GSCAN_CAPA:
case IWM_UCODE_TLV_FW_MEM_SEG:
/* ignore, not used by current driver */
break;
case IWM_UCODE_TLV_SEC_RT_USNIFFER:
err = iwm_firmware_store_section(sc,
IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data,
tlv_len);
if (err)
goto parse_out;
break;
case IWM_UCODE_TLV_PAGING: {
uint32_t paging_mem_size;
if (tlv_len != sizeof(paging_mem_size)) {
err = EINVAL;
goto parse_out;
}
paging_mem_size = le32toh(*(uint32_t *)tlv_data);
if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) {
err = EINVAL;
goto parse_out;
}
if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) {
err = EINVAL;
goto parse_out;
}
fw->fw_sects[IWM_UCODE_TYPE_REGULAR].paging_mem_size =
paging_mem_size;
fw->fw_sects[IWM_UCODE_TYPE_REGULAR_USNIFFER].paging_mem_size =
paging_mem_size;
break;
}
case IWM_UCODE_TLV_N_SCAN_CHANNELS:
if (tlv_len != sizeof(uint32_t)) {
err = EINVAL;
goto parse_out;
}
sc->sc_capa_n_scan_channels =
le32toh(*(uint32_t *)tlv_data);
break;
case IWM_UCODE_TLV_FW_VERSION:
if (tlv_len != sizeof(uint32_t) * 3) {
err = EINVAL;
goto parse_out;
}
snprintf(sc->sc_fwver, sizeof(sc->sc_fwver),
"%d.%d.%d",
le32toh(((uint32_t *)tlv_data)[0]),
le32toh(((uint32_t *)tlv_data)[1]),
le32toh(((uint32_t *)tlv_data)[2]));
break;
default:
DPRINTF(("%s: unknown firmware section %d, abort\n",
DEVNAME(sc), tlv_type));
err = EINVAL;
goto parse_out;
}
len -= roundup(tlv_len, 4);
data += roundup(tlv_len, 4);
}
KASSERT(err == 0);
parse_out:
if (err) {
aprint_error_dev(sc->sc_dev,
"firmware parse error, section type %d\n", tlv_type);
}
if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) {
aprint_error_dev(sc->sc_dev,
"device uses unsupported power ops\n");
err = ENOTSUP;
}
out:
if (err)
fw->fw_status = IWM_FW_STATUS_NONE;
else
fw->fw_status = IWM_FW_STATUS_DONE;
wakeup(&sc->sc_fw);
if (err && fw->fw_rawdata != NULL) {
kmem_free(fw->fw_rawdata, fw->fw_rawsize);
fw->fw_rawdata = NULL;
CLR(sc->sc_flags, IWM_FLAG_FW_LOADED);
/* don't touch fw->fw_status */
memset(fw->fw_sects, 0, sizeof(fw->fw_sects));
}
return err;
}
static uint32_t
iwm_read_prph(struct iwm_softc *sc, uint32_t addr)
{
IWM_WRITE(sc,
IWM_HBUS_TARG_PRPH_RADDR, ((addr & 0x000fffff) | (3 << 24)));
IWM_BARRIER_READ_WRITE(sc);
return IWM_READ(sc, IWM_HBUS_TARG_PRPH_RDAT);
}
static void
iwm_write_prph(struct iwm_softc *sc, uint32_t addr, uint32_t val)
{
IWM_WRITE(sc,
IWM_HBUS_TARG_PRPH_WADDR, ((addr & 0x000fffff) | (3 << 24)));
IWM_BARRIER_WRITE(sc);
IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_WDAT, val);
}
#ifdef IWM_DEBUG
static int
iwm_read_mem(struct iwm_softc *sc, uint32_t addr, void *buf, int dwords)
{
int offs;
uint32_t *vals = buf;
if (iwm_nic_lock(sc)) {
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_RADDR, addr);
for (offs = 0; offs < dwords; offs++)
vals[offs] = IWM_READ(sc, IWM_HBUS_TARG_MEM_RDAT);
iwm_nic_unlock(sc);
return 0;
}
return EBUSY;
}
#endif
static int
iwm_write_mem(struct iwm_softc *sc, uint32_t addr, const void *buf, int dwords)
{
int offs;
const uint32_t *vals = buf;
if (iwm_nic_lock(sc)) {
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WADDR, addr);
/* WADDR auto-increments */
for (offs = 0; offs < dwords; offs++) {
uint32_t val = vals ? vals[offs] : 0;
IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WDAT, val);
}
iwm_nic_unlock(sc);
return 0;
}
return EBUSY;
}
static int
iwm_write_mem32(struct iwm_softc *sc, uint32_t addr, uint32_t val)
{
return iwm_write_mem(sc, addr, &val, 1);
}
static int
iwm_poll_bit(struct iwm_softc *sc, int reg, uint32_t bits, uint32_t mask,
int timo)
{
for (;;) {
if ((IWM_READ(sc, reg) & mask) == (bits & mask)) {
return 1;
}
if (timo < 10) {
return 0;
}
timo -= 10;
DELAY(10);
}
}
static int
iwm_nic_lock(struct iwm_softc *sc)
{
int rv = 0;
if (sc->sc_cmd_hold_nic_awake)
return 1;
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
DELAY(2);
if (iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY
| IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP, 15000)) {
rv = 1;
} else {
DPRINTF(("%s: resetting device via NMI\n", DEVNAME(sc)));
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_FORCE_NMI);
}
return rv;
}
static void
iwm_nic_unlock(struct iwm_softc *sc)
{
if (sc->sc_cmd_hold_nic_awake)
return;
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
}
static void
iwm_set_bits_mask_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits,
uint32_t mask)
{
uint32_t val;
/* XXX: no error path? */
if (iwm_nic_lock(sc)) {
val = iwm_read_prph(sc, reg) & mask;
val |= bits;
iwm_write_prph(sc, reg, val);
iwm_nic_unlock(sc);
}
}
static void
iwm_set_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits)
{
iwm_set_bits_mask_prph(sc, reg, bits, ~0);
}
static void
iwm_clear_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits)
{
iwm_set_bits_mask_prph(sc, reg, 0, ~bits);
}
static int
iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma,
bus_size_t size, bus_size_t alignment)
{
int nsegs, err;
void *va;
dma->tag = tag;
dma->size = size;
err = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT,
&dma->map);
if (err)
goto fail;
err = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
BUS_DMA_NOWAIT);
if (err)
goto fail;
err = bus_dmamem_map(tag, &dma->seg, 1, size, &va, BUS_DMA_NOWAIT);
if (err)
goto fail;
dma->vaddr = va;
err = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL,
BUS_DMA_NOWAIT);
if (err)
goto fail;
memset(dma->vaddr, 0, size);
bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE);
dma->paddr = dma->map->dm_segs[0].ds_addr;
return 0;
fail: iwm_dma_contig_free(dma);
return err;
}
static void
iwm_dma_contig_free(struct iwm_dma_info *dma)
{
if (dma->map != NULL) {
if (dma->vaddr != NULL) {
bus_dmamap_sync(dma->tag, dma->map, 0, dma->size,
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
bus_dmamem_free(dma->tag, &dma->seg, 1);
dma->vaddr = NULL;
}
bus_dmamap_destroy(dma->tag, dma->map);
dma->map = NULL;
}
}
static int
iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
{
bus_size_t size;
int i, err;
ring->cur = 0;
/* Allocate RX descriptors (256-byte aligned). */
size = IWM_RX_RING_COUNT * sizeof(uint32_t);
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not allocate RX ring DMA memory\n");
goto fail;
}
ring->desc = ring->desc_dma.vaddr;
/* Allocate RX status area (16-byte aligned). */
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma,
sizeof(*ring->stat), 16);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not allocate RX status DMA memory\n");
goto fail;
}
ring->stat = ring->stat_dma.vaddr;
for (i = 0; i < IWM_RX_RING_COUNT; i++) {
struct iwm_rx_data *data = &ring->data[i];
memset(data, 0, sizeof(*data));
err = bus_dmamap_create(sc->sc_dmat, IWM_RBUF_SIZE, 1,
IWM_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&data->map);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not create RX buf DMA map\n");
goto fail;
}
err = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i);
if (err)
goto fail;
}
return 0;
fail: iwm_free_rx_ring(sc, ring);
return err;
}
static void
iwm_disable_rx_dma(struct iwm_softc *sc)
{
int ntries;
if (iwm_nic_lock(sc)) {
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
for (ntries = 0; ntries < 1000; ntries++) {
if (IWM_READ(sc, IWM_FH_MEM_RSSR_RX_STATUS_REG) &
IWM_FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE)
break;
DELAY(10);
}
iwm_nic_unlock(sc);
}
}
void
iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
{
ring->cur = 0;
memset(ring->stat, 0, sizeof(*ring->stat));
bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0,
ring->stat_dma.size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}
static void
iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring)
{
int i;
iwm_dma_contig_free(&ring->desc_dma);
iwm_dma_contig_free(&ring->stat_dma);
for (i = 0; i < IWM_RX_RING_COUNT; i++) {
struct iwm_rx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->map != NULL) {
bus_dmamap_destroy(sc->sc_dmat, data->map);
data->map = NULL;
}
}
}
static int
iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid)
{
bus_addr_t paddr;
bus_size_t size;
int i, err, nsegs;
ring->qid = qid;
ring->queued = 0;
ring->cur = 0;
/* Allocate TX descriptors (256-byte aligned). */
size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd);
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not allocate TX ring DMA memory\n");
goto fail;
}
ring->desc = ring->desc_dma.vaddr;
/*
* We only use rings 0 through 9 (4 EDCA + cmd) so there is no need
* to allocate commands space for other rings.
*/
if (qid > IWM_CMD_QUEUE)
return 0;
size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd);
err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not allocate TX cmd DMA memory\n");
goto fail;
}
ring->cmd = ring->cmd_dma.vaddr;
paddr = ring->cmd_dma.paddr;
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
struct iwm_tx_data *data = &ring->data[i];
size_t mapsize;
data->cmd_paddr = paddr;
data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header)
+ offsetof(struct iwm_tx_cmd, scratch);
paddr += sizeof(struct iwm_device_cmd);
/* FW commands may require more mapped space than packets. */
if (qid == IWM_CMD_QUEUE) {
mapsize = IWM_RBUF_SIZE;
nsegs = 1;
} else {
mapsize = MCLBYTES;
nsegs = IWM_NUM_OF_TBS - 2;
}
err = bus_dmamap_create(sc->sc_dmat, mapsize, nsegs, mapsize,
0, BUS_DMA_NOWAIT, &data->map);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not create TX buf DMA map\n");
goto fail;
}
}
KASSERT(paddr == ring->cmd_dma.paddr + size);
return 0;
fail: iwm_free_tx_ring(sc, ring);
return err;
}
static void
iwm_clear_cmd_in_flight(struct iwm_softc *sc)
{
if (!sc->apmg_wake_up_wa)
return;
if (!sc->sc_cmd_hold_nic_awake) {
aprint_error_dev(sc->sc_dev,
"cmd_hold_nic_awake not set\n");
return;
}
sc->sc_cmd_hold_nic_awake = 0;
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
}
static int
iwm_set_cmd_in_flight(struct iwm_softc *sc)
{
int ret;
/*
* wake up the NIC to make sure that the firmware will see the host
* command - we will let the NIC sleep once all the host commands
* returned. This needs to be done only on NICs that have
* apmg_wake_up_wa set.
*/
if (sc->apmg_wake_up_wa && !sc->sc_cmd_hold_nic_awake) {
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
(IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP),
15000);
if (ret == 0) {
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
aprint_error_dev(sc->sc_dev,
"failed to wake NIC for hcmd\n");
return EIO;
}
sc->sc_cmd_hold_nic_awake = 1;
}
return 0;
}
static void
iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
{
int i;
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
struct iwm_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
/* Clear TX descriptors. */
memset(ring->desc, 0, ring->desc_dma.size);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0,
ring->desc_dma.size, BUS_DMASYNC_PREWRITE);
sc->qfullmsk &= ~(1 << ring->qid);
ring->queued = 0;
ring->cur = 0;
if (ring->qid == IWM_CMD_QUEUE && sc->sc_cmd_hold_nic_awake)
iwm_clear_cmd_in_flight(sc);
}
static void
iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring)
{
int i;
iwm_dma_contig_free(&ring->desc_dma);
iwm_dma_contig_free(&ring->cmd_dma);
for (i = 0; i < IWM_TX_RING_COUNT; i++) {
struct iwm_tx_data *data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
if (data->map != NULL) {
bus_dmamap_destroy(sc->sc_dmat, data->map);
data->map = NULL;
}
}
}
static void
iwm_enable_rfkill_int(struct iwm_softc *sc)
{
sc->sc_intmask = IWM_CSR_INT_BIT_RF_KILL;
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
}
static int
iwm_check_rfkill(struct iwm_softc *sc)
{
uint32_t v;
int s;
int rv;
s = splnet();
/*
* "documentation" is not really helpful here:
* 27: HW_RF_KILL_SW
* Indicates state of (platform's) hardware RF-Kill switch
*
* But apparently when it's off, it's on ...
*/
v = IWM_READ(sc, IWM_CSR_GP_CNTRL);
rv = (v & IWM_CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW) == 0;
if (rv) {
sc->sc_flags |= IWM_FLAG_RFKILL;
} else {
sc->sc_flags &= ~IWM_FLAG_RFKILL;
}
splx(s);
return rv;
}
static void
iwm_enable_interrupts(struct iwm_softc *sc)
{
sc->sc_intmask = IWM_CSR_INI_SET_MASK;
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
}
static void
iwm_restore_interrupts(struct iwm_softc *sc)
{
IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask);
}
static void
iwm_disable_interrupts(struct iwm_softc *sc)
{
int s = splnet();
IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
/* acknowledge all interrupts */
IWM_WRITE(sc, IWM_CSR_INT, ~0);
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0);
splx(s);
}
static void
iwm_ict_reset(struct iwm_softc *sc)
{
iwm_disable_interrupts(sc);
memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE);
bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWM_ICT_SIZE,
BUS_DMASYNC_PREWRITE);
sc->ict_cur = 0;
/* Set physical address of ICT (4KB aligned). */
IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG,
IWM_CSR_DRAM_INT_TBL_ENABLE
| IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK
| IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER
| sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT);
/* Switch to ICT interrupt mode in driver. */
sc->sc_flags |= IWM_FLAG_USE_ICT;
IWM_WRITE(sc, IWM_CSR_INT, ~0);
iwm_enable_interrupts(sc);
}
#define IWM_HW_READY_TIMEOUT 50
static int
iwm_set_hw_ready(struct iwm_softc *sc)
{
int ready;
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
ready = iwm_poll_bit(sc, IWM_CSR_HW_IF_CONFIG_REG,
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
IWM_HW_READY_TIMEOUT);
if (ready)
IWM_SETBITS(sc, IWM_CSR_MBOX_SET_REG,
IWM_CSR_MBOX_SET_REG_OS_ALIVE);
return ready;
}
#undef IWM_HW_READY_TIMEOUT
static int
iwm_prepare_card_hw(struct iwm_softc *sc)
{
int t = 0;
if (iwm_set_hw_ready(sc))
return 0;
DELAY(100);
/* If HW is not ready, prepare the conditions to check again */
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
IWM_CSR_HW_IF_CONFIG_REG_PREPARE);
do {
if (iwm_set_hw_ready(sc))
return 0;
DELAY(200);
t += 200;
} while (t < 150000);
return ETIMEDOUT;
}
static void
iwm_apm_config(struct iwm_softc *sc)
{
pcireg_t reg;
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag,
sc->sc_cap_off + PCIE_LCSR);
if (reg & PCIE_LCSR_ASPM_L1) {
/* Um the Linux driver prints "Disabling L0S for this one ... */
IWM_SETBITS(sc, IWM_CSR_GIO_REG,
IWM_CSR_GIO_REG_VAL_L0S_ENABLED);
} else {
/* ... and "Enabling" here */
IWM_CLRBITS(sc, IWM_CSR_GIO_REG,
IWM_CSR_GIO_REG_VAL_L0S_ENABLED);
}
}
/*
* Start up NIC's basic functionality after it has been reset
* e.g. after platform boot or shutdown.
* NOTE: This does not load uCode nor start the embedded processor
*/
static int
iwm_apm_init(struct iwm_softc *sc)
{
int err = 0;
/* Disable L0S exit timer (platform NMI workaround) */
if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS,
IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
}
/*
* Disable L0s without affecting L1;
* don't wait for ICH L0s (ICH bug W/A)
*/
IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS,
IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
/* Set FH wait threshold to maximum (HW error during stress W/A) */
IWM_SETBITS(sc, IWM_CSR_DBG_HPET_MEM_REG, IWM_CSR_DBG_HPET_MEM_REG_VAL);
/*
* Enable HAP INTA (interrupt from management bus) to
* wake device's PCI Express link L1a -> L0s
*/
IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG,
IWM_CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
iwm_apm_config(sc);
#if 0 /* not for 7k/8k */
/* Configure analog phase-lock-loop before activating to D0A */
if (trans->cfg->base_params->pll_cfg_val)
IWM_SETBITS(trans, IWM_CSR_ANA_PLL_CFG,
trans->cfg->base_params->pll_cfg_val);
#endif
/*
* Set "initialization complete" bit to move adapter from
* D0U* --> D0A* (powered-up active) state.
*/
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
/*
* Wait for clock stabilization; once stabilized, access to
* device-internal resources is supported, e.g. iwm_write_prph()
* and accesses to uCode SRAM.
*/
if (!iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000)) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for clock stabilization\n");
err = ETIMEDOUT;
goto out;
}
if (sc->host_interrupt_operation_mode) {
/*
* This is a bit of an abuse - This is needed for 7260 / 3160
* only check host_interrupt_operation_mode even if this is
* not related to host_interrupt_operation_mode.
*
* Enable the oscillator to count wake up time for L1 exit. This
* consumes slightly more power (100uA) - but allows to be sure
* that we wake up from L1 on time.
*
* This looks weird: read twice the same register, discard the
* value, set a bit, and yet again, read that same register
* just to discard the value. But that's the way the hardware
* seems to like it.
*/
iwm_read_prph(sc, IWM_OSC_CLK);
iwm_read_prph(sc, IWM_OSC_CLK);
iwm_set_bits_prph(sc, IWM_OSC_CLK, IWM_OSC_CLK_FORCE_CONTROL);
iwm_read_prph(sc, IWM_OSC_CLK);
iwm_read_prph(sc, IWM_OSC_CLK);
}
/*
* Enable DMA clock and wait for it to stabilize.
*
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
* do not disable clocks. This preserves any hardware bits already
* set by default in "CLK_CTRL_REG" after reset.
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
iwm_write_prph(sc, IWM_APMG_CLK_EN_REG,
IWM_APMG_CLK_VAL_DMA_CLK_RQT);
DELAY(20);
/* Disable L1-Active */
iwm_set_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
/* Clear the interrupt in APMG if the NIC is in RFKILL */
iwm_write_prph(sc, IWM_APMG_RTC_INT_STT_REG,
IWM_APMG_RTC_INT_STT_RFKILL);
}
out:
if (err)
aprint_error_dev(sc->sc_dev, "apm init error %d\n", err);
return err;
}
static void
iwm_apm_stop(struct iwm_softc *sc)
{
/* stop device's busmaster DMA activity */
IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_STOP_MASTER);
if (!iwm_poll_bit(sc, IWM_CSR_RESET,
IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED,
IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED, 100))
aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
DPRINTF(("iwm apm stop\n"));
}
static int
iwm_start_hw(struct iwm_softc *sc)
{
int err;
err = iwm_prepare_card_hw(sc);
if (err)
return err;
/* Reset the entire device */
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
DELAY(10);
err = iwm_apm_init(sc);
if (err)
return err;
iwm_enable_rfkill_int(sc);
iwm_check_rfkill(sc);
return 0;
}
static void
iwm_stop_device(struct iwm_softc *sc)
{
int chnl, ntries;
int qid;
iwm_disable_interrupts(sc);
sc->sc_flags &= ~IWM_FLAG_USE_ICT;
/* Deactivate TX scheduler. */
iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
/* Stop all DMA channels. */
if (iwm_nic_lock(sc)) {
for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
IWM_WRITE(sc,
IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0);
for (ntries = 0; ntries < 200; ntries++) {
uint32_t r;
r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG);
if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE(
chnl))
break;
DELAY(20);
}
}
iwm_nic_unlock(sc);
}
iwm_disable_rx_dma(sc);
iwm_reset_rx_ring(sc, &sc->rxq);
for (qid = 0; qid < __arraycount(sc->txq); qid++)
iwm_reset_tx_ring(sc, &sc->txq[qid]);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
/* Power-down device's busmaster DMA clocks */
if (iwm_nic_lock(sc)) {
iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG,
IWM_APMG_CLK_VAL_DMA_CLK_RQT);
DELAY(5);
iwm_nic_unlock(sc);
}
}
/* Make sure (redundant) we've released our request to stay awake */
IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
/* Stop the device, and put it in low power state */
iwm_apm_stop(sc);
/*
* Upon stop, the APM issues an interrupt if HW RF kill is set.
* Clean again the interrupt here
*/
iwm_disable_interrupts(sc);
/* Reset the on-board processor. */
IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET);
/* Even though we stop the HW we still want the RF kill interrupt. */
iwm_enable_rfkill_int(sc);
iwm_check_rfkill(sc);
}
static void
iwm_nic_config(struct iwm_softc *sc)
{
uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash;
uint32_t reg_val = 0;
radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >>
IWM_FW_PHY_CFG_RADIO_TYPE_POS;
radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >>
IWM_FW_PHY_CFG_RADIO_STEP_POS;
radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >>
IWM_FW_PHY_CFG_RADIO_DASH_POS;
reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) <<
IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP;
reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) <<
IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH;
/* radio configuration */
reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE;
reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP;
reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val);
DPRINTF(("Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type,
radio_cfg_step, radio_cfg_dash));
/*
* W/A : NIC is stuck in a reset state after Early PCIe power off
* (PCIe power is lost before PERST# is asserted), causing ME FW
* to lose ownership and not being able to obtain it back.
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
}
}
static int
iwm_nic_rx_init(struct iwm_softc *sc)
{
if (!iwm_nic_lock(sc))
return EBUSY;
memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat));
bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
0, sc->rxq.stat_dma.size,
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
iwm_disable_rx_dma(sc);
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0);
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
/* Set physical address of RX ring (256-byte aligned). */
IWM_WRITE(sc,
IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8);
/* Set physical address of RX status (16-byte aligned). */
IWM_WRITE(sc,
IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4);
/* Enable RX. */
IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG,
IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */
IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK |
IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K |
(IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) |
IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS);
IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF);
/* W/A for interrupt coalescing bug in 7260 and 3160 */
if (sc->host_interrupt_operation_mode)
IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE);
/*
* This value should initially be 0 (before preparing any RBs),
* and should be 8 after preparing the first 8 RBs (for example).
*/
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8);
iwm_nic_unlock(sc);
return 0;
}
static int
iwm_nic_tx_init(struct iwm_softc *sc)
{
int qid;
if (!iwm_nic_lock(sc))
return EBUSY;
/* Deactivate TX scheduler. */
iwm_write_prph(sc, IWM_SCD_TXFACT, 0);
/* Set physical address of "keep warm" page (16-byte aligned). */
IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4);
for (qid = 0; qid < __arraycount(sc->txq); qid++) {
struct iwm_tx_ring *txq = &sc->txq[qid];
/* Set physical address of TX ring (256-byte aligned). */
IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid),
txq->desc_dma.paddr >> 8);
DPRINTF(("loading ring %d descriptors (%p) at %"PRIxMAX"\n",
qid, txq->desc, (uintmax_t)(txq->desc_dma.paddr >> 8)));
}
iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE);
iwm_nic_unlock(sc);
return 0;
}
static int
iwm_nic_init(struct iwm_softc *sc)
{
int err;
iwm_apm_init(sc);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG,
IWM_APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
~IWM_APMG_PS_CTRL_MSK_PWR_SRC);
}
iwm_nic_config(sc);
err = iwm_nic_rx_init(sc);
if (err)
return err;
err = iwm_nic_tx_init(sc);
if (err)
return err;
DPRINTF(("shadow registers enabled\n"));
IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff);
return 0;
}
static const uint8_t iwm_ac_to_tx_fifo[] = {
IWM_TX_FIFO_VO,
IWM_TX_FIFO_VI,
IWM_TX_FIFO_BE,
IWM_TX_FIFO_BK,
};
static int
iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo)
{
if (!iwm_nic_lock(sc)) {
DPRINTF(("%s: cannot enable txq %d\n", DEVNAME(sc), qid));
return EBUSY;
}
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0);
if (qid == IWM_CMD_QUEUE) {
iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
(0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE)
| (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN));
iwm_nic_unlock(sc);
iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid));
if (!iwm_nic_lock(sc))
return EBUSY;
iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0);
iwm_nic_unlock(sc);
iwm_write_mem32(sc,
sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0);
/* Set scheduler window size and frame limit. */
iwm_write_mem32(sc,
sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) +
sizeof(uint32_t),
((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) &
IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) |
((IWM_FRAME_LIMIT
<< IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) &
IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK));
if (!iwm_nic_lock(sc))
return EBUSY;
iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid),
(1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) |
(fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) |
(1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) |
IWM_SCD_QUEUE_STTS_REG_MSK);
} else {
struct iwm_scd_txq_cfg_cmd cmd;
int err;
iwm_nic_unlock(sc);
memset(&cmd, 0, sizeof(cmd));
cmd.scd_queue = qid;
cmd.enable = 1;
cmd.sta_id = sta_id;
cmd.tx_fifo = fifo;
cmd.aggregate = 0;
cmd.window = IWM_FRAME_LIMIT;
err = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, 0, sizeof(cmd),
&cmd);
if (err)
return err;
if (!iwm_nic_lock(sc))
return EBUSY;
}
iwm_write_prph(sc, IWM_SCD_EN_CTRL,
iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid);
iwm_nic_unlock(sc);
DPRINTF(("enabled txq %d FIFO %d\n", qid, fifo));
return 0;
}
static int
iwm_post_alive(struct iwm_softc *sc)
{
int nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND -
IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t);
int err, chnl;
uint32_t base;
if (!iwm_nic_lock(sc))
return EBUSY;
base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR);
if (sc->sched_base != base) {
DPRINTF(("%s: sched addr mismatch: 0x%08x != 0x%08x\n",
DEVNAME(sc), sc->sched_base, base));
sc->sched_base = base;
}
iwm_nic_unlock(sc);
iwm_ict_reset(sc);
/* Clear TX scheduler state in SRAM. */
err = iwm_write_mem(sc,
sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND, NULL, nwords);
if (err)
return err;
if (!iwm_nic_lock(sc))
return EBUSY;
/* Set physical address of TX scheduler rings (1KB aligned). */
iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10);
iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0);
iwm_nic_unlock(sc);
/* enable command channel */
err = iwm_enable_txq(sc, 0 /* unused */, IWM_CMD_QUEUE, 7);
if (err)
return err;
if (!iwm_nic_lock(sc))
return EBUSY;
/* Activate TX scheduler. */
iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff);
/* Enable DMA channels. */
for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) {
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl),
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE);
}
IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG,
IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN);
/* Enable L1-Active */
if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) {
iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG,
IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
}
iwm_nic_unlock(sc);
return 0;
}
static struct iwm_phy_db_entry *
iwm_phy_db_get_section(struct iwm_softc *sc, enum iwm_phy_db_section_type type,
uint16_t chg_id)
{
struct iwm_phy_db *phy_db = &sc->sc_phy_db;
if (type >= IWM_PHY_DB_MAX)
return NULL;
switch (type) {
case IWM_PHY_DB_CFG:
return &phy_db->cfg;
case IWM_PHY_DB_CALIB_NCH:
return &phy_db->calib_nch;
case IWM_PHY_DB_CALIB_CHG_PAPD:
if (chg_id >= IWM_NUM_PAPD_CH_GROUPS)
return NULL;
return &phy_db->calib_ch_group_papd[chg_id];
case IWM_PHY_DB_CALIB_CHG_TXP:
if (chg_id >= IWM_NUM_TXP_CH_GROUPS)
return NULL;
return &phy_db->calib_ch_group_txp[chg_id];
default:
return NULL;
}
return NULL;
}
static int
iwm_phy_db_set_section(struct iwm_softc *sc,
struct iwm_calib_res_notif_phy_db *phy_db_notif, uint16_t size)
{
struct iwm_phy_db_entry *entry;
enum iwm_phy_db_section_type type = le16toh(phy_db_notif->type);
uint16_t chg_id = 0;
if (type == IWM_PHY_DB_CALIB_CHG_PAPD ||
type == IWM_PHY_DB_CALIB_CHG_TXP)
chg_id = le16toh(*(uint16_t *)phy_db_notif->data);
entry = iwm_phy_db_get_section(sc, type, chg_id);
if (!entry)
return EINVAL;
if (entry->data)
kmem_intr_free(entry->data, entry->size);
entry->data = kmem_intr_alloc(size, KM_NOSLEEP);
if (!entry->data) {
entry->size = 0;
return ENOMEM;
}
memcpy(entry->data, phy_db_notif->data, size);
entry->size = size;
DPRINTFN(10, ("%s(%d): [PHYDB]SET: Type %d, Size: %d, data: %p\n",
__func__, __LINE__, type, size, entry->data));
return 0;
}
static int
iwm_is_valid_channel(uint16_t ch_id)
{
if (ch_id <= 14 ||
(36 <= ch_id && ch_id <= 64 && ch_id % 4 == 0) ||
(100 <= ch_id && ch_id <= 140 && ch_id % 4 == 0) ||
(145 <= ch_id && ch_id <= 165 && ch_id % 4 == 1))
return 1;
return 0;
}
static uint8_t
iwm_ch_id_to_ch_index(uint16_t ch_id)
{
if (!iwm_is_valid_channel(ch_id))
return 0xff;
if (ch_id <= 14)
return ch_id - 1;
if (ch_id <= 64)
return (ch_id + 20) / 4;
if (ch_id <= 140)
return (ch_id - 12) / 4;
return (ch_id - 13) / 4;
}
static uint16_t
iwm_channel_id_to_papd(uint16_t ch_id)
{
if (!iwm_is_valid_channel(ch_id))
return 0xff;
if (1 <= ch_id && ch_id <= 14)
return 0;
if (36 <= ch_id && ch_id <= 64)
return 1;
if (100 <= ch_id && ch_id <= 140)
return 2;
return 3;
}
static uint16_t
iwm_channel_id_to_txp(struct iwm_softc *sc, uint16_t ch_id)
{
struct iwm_phy_db *phy_db = &sc->sc_phy_db;
struct iwm_phy_db_chg_txp *txp_chg;
int i;
uint8_t ch_index = iwm_ch_id_to_ch_index(ch_id);
if (ch_index == 0xff)
return 0xff;
for (i = 0; i < IWM_NUM_TXP_CH_GROUPS; i++) {
txp_chg = (void *)phy_db->calib_ch_group_txp[i].data;
if (!txp_chg)
return 0xff;
/*
* Looking for the first channel group the max channel
* of which is higher than the requested channel.
*/
if (le16toh(txp_chg->max_channel_idx) >= ch_index)
return i;
}
return 0xff;
}
static int
iwm_phy_db_get_section_data(struct iwm_softc *sc, uint32_t type, uint8_t **data,
uint16_t *size, uint16_t ch_id)
{
struct iwm_phy_db_entry *entry;
uint16_t ch_group_id = 0;
if (type == IWM_PHY_DB_CALIB_CHG_PAPD)
ch_group_id = iwm_channel_id_to_papd(ch_id);
else if (type == IWM_PHY_DB_CALIB_CHG_TXP)
ch_group_id = iwm_channel_id_to_txp(sc, ch_id);
entry = iwm_phy_db_get_section(sc, type, ch_group_id);
if (!entry)
return EINVAL;
*data = entry->data;
*size = entry->size;
DPRINTFN(10, ("%s(%d): [PHYDB] GET: Type %d , Size: %d\n",
__func__, __LINE__, type, *size));
return 0;
}
static int
iwm_send_phy_db_cmd(struct iwm_softc *sc, uint16_t type, uint16_t length,
void *data)
{
struct iwm_phy_db_cmd phy_db_cmd;
struct iwm_host_cmd cmd = {
.id = IWM_PHY_DB_CMD,
.flags = IWM_CMD_ASYNC,
};
DPRINTFN(10, ("Sending PHY-DB hcmd of type %d, of length %d\n",
type, length));
phy_db_cmd.type = le16toh(type);
phy_db_cmd.length = le16toh(length);
cmd.data[0] = &phy_db_cmd;
cmd.len[0] = sizeof(struct iwm_phy_db_cmd);
cmd.data[1] = data;
cmd.len[1] = length;
return iwm_send_cmd(sc, &cmd);
}
static int
iwm_phy_db_send_all_channel_groups(struct iwm_softc *sc,
enum iwm_phy_db_section_type type, uint8_t max_ch_groups)
{
uint16_t i;
int err;
struct iwm_phy_db_entry *entry;
/* Send all the channel-specific groups to operational fw */
for (i = 0; i < max_ch_groups; i++) {
entry = iwm_phy_db_get_section(sc, type, i);
if (!entry)
return EINVAL;
if (!entry->size)
continue;
err = iwm_send_phy_db_cmd(sc, type, entry->size, entry->data);
if (err) {
DPRINTF(("%s: Can't SEND phy_db section %d (%d), "
"err %d\n", DEVNAME(sc), type, i, err));
return err;
}
DPRINTFN(10, ("%s: Sent PHY_DB HCMD, type = %d num = %d\n",
DEVNAME(sc), type, i));
DELAY(1000);
}
return 0;
}
static int
iwm_send_phy_db_data(struct iwm_softc *sc)
{
uint8_t *data = NULL;
uint16_t size = 0;
int err;
err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CFG, &data, &size, 0);
if (err)
return err;
err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CFG, size, data);
if (err)
return err;
err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CALIB_NCH,
&data, &size, 0);
if (err)
return err;
err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CALIB_NCH, size, data);
if (err)
return err;
err = iwm_phy_db_send_all_channel_groups(sc,
IWM_PHY_DB_CALIB_CHG_PAPD, IWM_NUM_PAPD_CH_GROUPS);
if (err)
return err;
err = iwm_phy_db_send_all_channel_groups(sc,
IWM_PHY_DB_CALIB_CHG_TXP, IWM_NUM_TXP_CH_GROUPS);
if (err)
return err;
return 0;
}
/*
* For the high priority TE use a time event type that has similar priority to
* the FW's action scan priority.
*/
#define IWM_ROC_TE_TYPE_NORMAL IWM_TE_P2P_DEVICE_DISCOVERABLE
#define IWM_ROC_TE_TYPE_MGMT_TX IWM_TE_P2P_CLIENT_ASSOC
/* used to convert from time event API v2 to v1 */
#define IWM_TE_V2_DEP_POLICY_MSK (IWM_TE_V2_DEP_OTHER | IWM_TE_V2_DEP_TSF |\
IWM_TE_V2_EVENT_SOCIOPATHIC)
static inline uint16_t
iwm_te_v2_get_notify(uint16_t policy)
{
return le16toh(policy) & IWM_TE_V2_NOTIF_MSK;
}
static inline uint16_t
iwm_te_v2_get_dep_policy(uint16_t policy)
{
return (le16toh(policy) & IWM_TE_V2_DEP_POLICY_MSK) >>
IWM_TE_V2_PLACEMENT_POS;
}
static inline uint16_t
iwm_te_v2_get_absence(uint16_t policy)
{
return (le16toh(policy) & IWM_TE_V2_ABSENCE) >> IWM_TE_V2_ABSENCE_POS;
}
static void
iwm_te_v2_to_v1(const struct iwm_time_event_cmd_v2 *cmd_v2,
struct iwm_time_event_cmd_v1 *cmd_v1)
{
cmd_v1->id_and_color = cmd_v2->id_and_color;
cmd_v1->action = cmd_v2->action;
cmd_v1->id = cmd_v2->id;
cmd_v1->apply_time = cmd_v2->apply_time;
cmd_v1->max_delay = cmd_v2->max_delay;
cmd_v1->depends_on = cmd_v2->depends_on;
cmd_v1->interval = cmd_v2->interval;
cmd_v1->duration = cmd_v2->duration;
if (cmd_v2->repeat == IWM_TE_V2_REPEAT_ENDLESS)
cmd_v1->repeat = htole32(IWM_TE_V1_REPEAT_ENDLESS);
else
cmd_v1->repeat = htole32(cmd_v2->repeat);
cmd_v1->max_frags = htole32(cmd_v2->max_frags);
cmd_v1->interval_reciprocal = 0; /* unused */
cmd_v1->dep_policy = htole32(iwm_te_v2_get_dep_policy(cmd_v2->policy));
cmd_v1->is_present = htole32(!iwm_te_v2_get_absence(cmd_v2->policy));
cmd_v1->notify = htole32(iwm_te_v2_get_notify(cmd_v2->policy));
}
static int
iwm_send_time_event_cmd(struct iwm_softc *sc,
const struct iwm_time_event_cmd_v2 *cmd)
{
struct iwm_time_event_cmd_v1 cmd_v1;
if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_TIME_EVENT_API_V2)
return iwm_send_cmd_pdu(sc, IWM_TIME_EVENT_CMD, 0, sizeof(*cmd),
cmd);
iwm_te_v2_to_v1(cmd, &cmd_v1);
return iwm_send_cmd_pdu(sc, IWM_TIME_EVENT_CMD, 0, sizeof(cmd_v1),
&cmd_v1);
}
static void
iwm_protect_session(struct iwm_softc *sc, struct iwm_node *in,
uint32_t duration, uint32_t max_delay)
{
struct iwm_time_event_cmd_v2 time_cmd;
memset(&time_cmd, 0, sizeof(time_cmd));
time_cmd.action = htole32(IWM_FW_CTXT_ACTION_ADD);
time_cmd.id_and_color =
htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
time_cmd.id = htole32(IWM_TE_BSS_STA_AGGRESSIVE_ASSOC);
time_cmd.apply_time = htole32(0);
time_cmd.max_frags = IWM_TE_V2_FRAG_NONE;
time_cmd.max_delay = htole32(max_delay);
/* TODO: why do we need to interval = bi if it is not periodic? */
time_cmd.interval = htole32(1);
time_cmd.duration = htole32(duration);
time_cmd.repeat = 1;
time_cmd.policy
= htole16(IWM_TE_V2_NOTIF_HOST_EVENT_START |
IWM_TE_V2_NOTIF_HOST_EVENT_END |
IWM_T2_V2_START_IMMEDIATELY);
iwm_send_time_event_cmd(sc, &time_cmd);
}
/*
* NVM read access and content parsing. We do not support
* external NVM or writing NVM.
*/
/* list of NVM sections we are allowed/need to read */
static const int iwm_nvm_to_read[] = {
IWM_NVM_SECTION_TYPE_HW,
IWM_NVM_SECTION_TYPE_SW,
IWM_NVM_SECTION_TYPE_REGULATORY,
IWM_NVM_SECTION_TYPE_CALIBRATION,
IWM_NVM_SECTION_TYPE_PRODUCTION,
IWM_NVM_SECTION_TYPE_HW_8000,
IWM_NVM_SECTION_TYPE_MAC_OVERRIDE,
IWM_NVM_SECTION_TYPE_PHY_SKU,
};
/* Default NVM size to read */
#define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024)
#define IWM_MAX_NVM_SECTION_SIZE_7000 (16 * 512 * sizeof(uint16_t)) /*16 KB*/
#define IWM_MAX_NVM_SECTION_SIZE_8000 (32 * 512 * sizeof(uint16_t)) /*32 KB*/
#define IWM_NVM_WRITE_OPCODE 1
#define IWM_NVM_READ_OPCODE 0
static int
iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, uint16_t offset,
uint16_t length, uint8_t *data, uint16_t *len)
{
offset = 0;
struct iwm_nvm_access_cmd nvm_access_cmd = {
.offset = htole16(offset),
.length = htole16(length),
.type = htole16(section),
.op_code = IWM_NVM_READ_OPCODE,
};
struct iwm_nvm_access_resp *nvm_resp;
struct iwm_rx_packet *pkt;
struct iwm_host_cmd cmd = {
.id = IWM_NVM_ACCESS_CMD,
.flags = (IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL),
.data = { &nvm_access_cmd, },
};
int err, offset_read;
size_t bytes_read;
uint8_t *resp_data;
cmd.len[0] = sizeof(struct iwm_nvm_access_cmd);
err = iwm_send_cmd(sc, &cmd);
if (err) {
DPRINTF(("%s: Could not send NVM_ACCESS command (error=%d)\n",
DEVNAME(sc), err));
return err;
}
pkt = cmd.resp_pkt;
if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
err = EIO;
goto exit;
}
/* Extract NVM response */
nvm_resp = (void *)pkt->data;
err = le16toh(nvm_resp->status);
bytes_read = le16toh(nvm_resp->length);
offset_read = le16toh(nvm_resp->offset);
resp_data = nvm_resp->data;
if (err) {
err = EINVAL;
goto exit;
}
if (offset_read != offset) {
err = EINVAL;
goto exit;
}
if (bytes_read > length) {
err = EINVAL;
goto exit;
}
memcpy(data + offset, resp_data, bytes_read);
*len = bytes_read;
exit:
iwm_free_resp(sc, &cmd);
return err;
}
/*
* Reads an NVM section completely.
* NICs prior to 7000 family doesn't have a real NVM, but just read
* section 0 which is the EEPROM. Because the EEPROM reading is unlimited
* by uCode, we need to manually check in this case that we don't
* overflow and try to read more than the EEPROM size.
*/
static int
iwm_nvm_read_section(struct iwm_softc *sc, uint16_t section, uint8_t *data,
uint16_t *len, size_t max_len)
{
uint16_t chunklen, seglen;
int err;
chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE;
*len = 0;
/* Read NVM chunks until exhausted (reading less than requested) */
while (seglen == chunklen && *len < max_len) {
err = iwm_nvm_read_chunk(sc, section, *len, chunklen, data,
&seglen);
if (err) {
DPRINTF(("%s: Cannot read NVM from section %d "
"offset %d, length %d\n",
DEVNAME(sc), section, *len, chunklen));
return err;
}
*len += seglen;
}
DPRINTFN(4, ("NVM section %d read completed\n", section));
return 0;
}
static uint8_t
iwm_fw_valid_tx_ant(struct iwm_softc *sc)
{
uint8_t tx_ant;
tx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN)
>> IWM_FW_PHY_CFG_TX_CHAIN_POS);
if (sc->sc_nvm.valid_tx_ant)
tx_ant &= sc->sc_nvm.valid_tx_ant;
return tx_ant;
}
static uint8_t
iwm_fw_valid_rx_ant(struct iwm_softc *sc)
{
uint8_t rx_ant;
rx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RX_CHAIN)
>> IWM_FW_PHY_CFG_RX_CHAIN_POS);
if (sc->sc_nvm.valid_rx_ant)
rx_ant &= sc->sc_nvm.valid_rx_ant;
return rx_ant;
}
static void
iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags,
const uint8_t *nvm_channels, size_t nchan)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_nvm_data *data = &sc->sc_nvm;
int ch_idx;
struct ieee80211_channel *channel;
uint16_t ch_flags;
int is_5ghz;
int flags, hw_value;
for (ch_idx = 0; ch_idx < nchan; ch_idx++) {
ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx);
aprint_debug_dev(sc->sc_dev,
"Ch. %d: %svalid %cibss %s %cradar %cdfs"
" %cwide %c40MHz %c80MHz %c160MHz\n",
nvm_channels[ch_idx],
ch_flags & IWM_NVM_CHANNEL_VALID ? "" : "in",
ch_flags & IWM_NVM_CHANNEL_IBSS ? '+' : '-',
ch_flags & IWM_NVM_CHANNEL_ACTIVE ? "active" : "passive",
ch_flags & IWM_NVM_CHANNEL_RADAR ? '+' : '-',
ch_flags & IWM_NVM_CHANNEL_DFS ? '+' : '-',
ch_flags & IWM_NVM_CHANNEL_WIDE ? '+' : '-',
ch_flags & IWM_NVM_CHANNEL_40MHZ ? '+' : '-',
ch_flags & IWM_NVM_CHANNEL_80MHZ ? '+' : '-',
ch_flags & IWM_NVM_CHANNEL_160MHZ ? '+' : '-');
if (ch_idx >= IWM_NUM_2GHZ_CHANNELS &&
!data->sku_cap_band_52GHz_enable)
ch_flags &= ~IWM_NVM_CHANNEL_VALID;
if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) {
DPRINTF(("Ch. %d Flags %x [%sGHz] - No traffic\n",
nvm_channels[ch_idx], ch_flags,
(ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? "5" : "2.4"));
continue;
}
hw_value = nvm_channels[ch_idx];
channel = &ic->ic_channels[hw_value];
is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS;
if (!is_5ghz) {
flags = IEEE80211_CHAN_2GHZ;
channel->ic_flags
= IEEE80211_CHAN_CCK
| IEEE80211_CHAN_OFDM
| IEEE80211_CHAN_DYN
| IEEE80211_CHAN_2GHZ;
} else {
flags = IEEE80211_CHAN_5GHZ;
channel->ic_flags =
IEEE80211_CHAN_A;
}
channel->ic_freq = ieee80211_ieee2mhz(hw_value, flags);
if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE))
channel->ic_flags |= IEEE80211_CHAN_PASSIVE;
#ifndef IEEE80211_NO_HT
if (data->sku_cap_11n_enable)
channel->ic_flags |= IEEE80211_CHAN_HT;
#endif
}
}
#ifndef IEEE80211_NO_HT
static void
iwm_setup_ht_rates(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
/* TX is supported with the same MCS as RX. */
ic->ic_tx_mcs_set = IEEE80211_TX_MCS_SET_DEFINED;
ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */
#ifdef notyet
if (sc->sc_nvm.sku_cap_mimo_disable)
return;
if (iwm_fw_valid_rx_ant(sc) > 1)
ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */
if (iwm_fw_valid_rx_ant(sc) > 2)
ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */
#endif
}
#define IWM_MAX_RX_BA_SESSIONS 16
static void
iwm_sta_rx_agg(struct iwm_softc *sc, struct ieee80211_node *ni, uint8_t tid,
uint16_t ssn, int start)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_add_sta_cmd_v7 cmd;
struct iwm_node *in = (struct iwm_node *)ni;
int err, s;
uint32_t status;
if (start && sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS) {
ieee80211_addba_req_refuse(ic, ni, tid);
return;
}
memset(&cmd, 0, sizeof(cmd));
cmd.sta_id = IWM_STATION_ID;
cmd.mac_id_n_color
= htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
cmd.add_modify = IWM_STA_MODE_MODIFY;
if (start) {
cmd.add_immediate_ba_tid = (uint8_t)tid;
cmd.add_immediate_ba_ssn = ssn;
} else {
cmd.remove_immediate_ba_tid = (uint8_t)tid;
}
cmd.modify_mask = start ? IWM_STA_MODIFY_ADD_BA_TID :
IWM_STA_MODIFY_REMOVE_BA_TID;
status = IWM_ADD_STA_SUCCESS;
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd), &cmd,
&status);
s = splnet();
if (err == 0 && status == IWM_ADD_STA_SUCCESS) {
if (start) {
sc->sc_rx_ba_sessions++;
ieee80211_addba_req_accept(ic, ni, tid);
} else if (sc->sc_rx_ba_sessions > 0)
sc->sc_rx_ba_sessions--;
} else if (start)
ieee80211_addba_req_refuse(ic, ni, tid);
splx(s);
}
static void
iwm_htprot_task(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
int err;
/* This call updates HT protection based on in->in_ni.ni_htop1. */
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 1);
if (err)
aprint_error_dev(sc->sc_dev,
"could not change HT protection: error %d\n", err);
}
/*
* This function is called by upper layer when HT protection settings in
* beacons have changed.
*/
static void
iwm_update_htprot(struct ieee80211com *ic, struct ieee80211_node *ni)
{
struct iwm_softc *sc = ic->ic_softc;
/* assumes that ni == ic->ic_bss */
task_add(systq, &sc->htprot_task);
}
static void
iwm_ba_task(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
if (sc->ba_start)
iwm_sta_rx_agg(sc, ni, sc->ba_tid, sc->ba_ssn, 1);
else
iwm_sta_rx_agg(sc, ni, sc->ba_tid, 0, 0);
}
/*
* This function is called by upper layer when an ADDBA request is received
* from another STA and before the ADDBA response is sent.
*/
static int
iwm_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid];
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
if (sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS)
return ENOSPC;
sc->ba_start = 1;
sc->ba_tid = tid;
sc->ba_ssn = htole16(ba->ba_winstart);
task_add(systq, &sc->ba_task);
return EBUSY;
}
/*
* This function is called by upper layer on teardown of an HT-immediate
* Block Ack agreement (eg. upon receipt of a DELBA frame).
*/
static void
iwm_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni,
uint8_t tid)
{
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
sc->ba_start = 0;
sc->ba_tid = tid;
task_add(systq, &sc->ba_task);
}
#endif
static void
iwm_free_fw_paging(struct iwm_softc *sc)
{
int i;
if (sc->fw_paging_db[0].fw_paging_block.vaddr == NULL)
return;
for (i = 0; i < IWM_NUM_OF_FW_PAGING_BLOCKS; i++) {
iwm_dma_contig_free(&sc->fw_paging_db[i].fw_paging_block);
}
memset(sc->fw_paging_db, 0, sizeof(sc->fw_paging_db));
}
static int
iwm_fill_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *fws)
{
int sec_idx, idx;
uint32_t offset = 0;
/*
* find where is the paging image start point:
* if CPU2 exist and it's in paging format, then the image looks like:
* CPU1 sections (2 or more)
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between CPU1 to CPU2
* CPU2 sections (not paged)
* PAGING_SEPARATOR_SECTION delimiter - separate between CPU2
* non paged to CPU2 paging sec
* CPU2 paging CSS
* CPU2 paging image (including instruction and data)
*/
for (sec_idx = 0; sec_idx < IWM_UCODE_SECT_MAX; sec_idx++) {
if (fws->fw_sect[sec_idx].fws_devoff ==
IWM_PAGING_SEPARATOR_SECTION) {
sec_idx++;
break;
}
}
/*
* If paging is enabled there should be at least 2 more sections left
* (one for CSS and one for Paging data)
*/
if (sec_idx >= __arraycount(fws->fw_sect) - 1) {
aprint_verbose_dev(sc->sc_dev,
"Paging: Missing CSS and/or paging sections\n");
iwm_free_fw_paging(sc);
return EINVAL;
}
/* copy the CSS block to the dram */
DPRINTF(("%s: Paging: load paging CSS to FW, sec = %d\n", DEVNAME(sc),
sec_idx));
memcpy(sc->fw_paging_db[0].fw_paging_block.vaddr,
fws->fw_sect[sec_idx].fws_data, sc->fw_paging_db[0].fw_paging_size);
DPRINTF(("%s: Paging: copied %d CSS bytes to first block\n",
DEVNAME(sc), sc->fw_paging_db[0].fw_paging_size));
sec_idx++;
/*
* copy the paging blocks to the dram
* loop index start from 1 since that CSS block already copied to dram
* and CSS index is 0.
* loop stop at num_of_paging_blk since that last block is not full.
*/
for (idx = 1; idx < sc->num_of_paging_blk; idx++) {
memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr,
(const char *)fws->fw_sect[sec_idx].fws_data + offset,
sc->fw_paging_db[idx].fw_paging_size);
DPRINTF(("%s: Paging: copied %d paging bytes to block %d\n",
DEVNAME(sc), sc->fw_paging_db[idx].fw_paging_size, idx));
offset += sc->fw_paging_db[idx].fw_paging_size;
}
/* copy the last paging block */
if (sc->num_of_pages_in_last_blk > 0) {
memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr,
(const char *)fws->fw_sect[sec_idx].fws_data + offset,
IWM_FW_PAGING_SIZE * sc->num_of_pages_in_last_blk);
DPRINTF(("%s: Paging: copied %d pages in the last block %d\n",
DEVNAME(sc), sc->num_of_pages_in_last_blk, idx));
}
return 0;
}
static int
iwm_alloc_fw_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *fws)
{
int blk_idx = 0;
int error, num_of_pages;
bus_dmamap_t dmap;
if (sc->fw_paging_db[0].fw_paging_block.vaddr != NULL) {
int i;
/* Device got reset, and we setup firmware paging again */
for (i = 0; i < sc->num_of_paging_blk + 1; i++) {
dmap = sc->fw_paging_db[i].fw_paging_block.map;
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
}
return 0;
}
/* ensure IWM_BLOCK_2_EXP_SIZE is power of 2 of IWM_PAGING_BLOCK_SIZE */
CTASSERT(__BIT(IWM_BLOCK_2_EXP_SIZE) == IWM_PAGING_BLOCK_SIZE);
num_of_pages = fws->paging_mem_size / IWM_FW_PAGING_SIZE;
sc->num_of_paging_blk =
howmany(num_of_pages, IWM_NUM_OF_PAGE_PER_GROUP);
sc->num_of_pages_in_last_blk = num_of_pages -
IWM_NUM_OF_PAGE_PER_GROUP * (sc->num_of_paging_blk - 1);
DPRINTF(("%s: Paging: allocating mem for %d paging blocks, "
"each block holds 8 pages, last block holds %d pages\n",
DEVNAME(sc), sc->num_of_paging_blk, sc->num_of_pages_in_last_blk));
/* allocate block of 4Kbytes for paging CSS */
error = iwm_dma_contig_alloc(sc->sc_dmat,
&sc->fw_paging_db[blk_idx].fw_paging_block, IWM_FW_PAGING_SIZE,
4096);
if (error) {
/* free all the previous pages since we failed */
iwm_free_fw_paging(sc);
return ENOMEM;
}
sc->fw_paging_db[blk_idx].fw_paging_size = IWM_FW_PAGING_SIZE;
DPRINTF(("%s: Paging: allocated 4K(CSS) bytes for firmware paging.\n",
DEVNAME(sc)));
/*
* allocate blocks in dram.
* since that CSS allocated in fw_paging_db[0] loop start from index 1
*/
for (blk_idx = 1; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) {
/* allocate block of IWM_PAGING_BLOCK_SIZE (32K) */
/* XXX Use iwm_dma_contig_alloc for allocating */
error = iwm_dma_contig_alloc(sc->sc_dmat,
&sc->fw_paging_db[blk_idx].fw_paging_block,
IWM_PAGING_BLOCK_SIZE, 4096);
if (error) {
/* free all the previous pages since we failed */
iwm_free_fw_paging(sc);
return ENOMEM;
}
sc->fw_paging_db[blk_idx].fw_paging_size =
IWM_PAGING_BLOCK_SIZE;
DPRINTF(("%s: Paging: allocated 32K bytes for firmware "
"paging.\n", DEVNAME(sc)));
}
return 0;
}
static int
iwm_save_fw_paging(struct iwm_softc *sc, const struct iwm_fw_sects *fws)
{
int err;
err = iwm_alloc_fw_paging_mem(sc, fws);
if (err)
return err;
return iwm_fill_paging_mem(sc, fws);
}
static bool
iwm_has_new_tx_api(struct iwm_softc *sc)
{
/* XXX */
return false;
}
/* send paging cmd to FW in case CPU2 has paging image */
static int
iwm_send_paging_cmd(struct iwm_softc *sc, const struct iwm_fw_sects *fws)
{
struct iwm_fw_paging_cmd fw_paging_cmd = {
.flags = htole32(IWM_PAGING_CMD_IS_SECURED |
IWM_PAGING_CMD_IS_ENABLED |
(sc->num_of_pages_in_last_blk <<
IWM_PAGING_CMD_NUM_OF_PAGES_IN_LAST_GRP_POS)),
.block_size = htole32(IWM_BLOCK_2_EXP_SIZE),
.block_num = htole32(sc->num_of_paging_blk),
};
size_t size = sizeof(fw_paging_cmd);
int blk_idx;
bus_dmamap_t dmap;
if (!iwm_has_new_tx_api(sc))
size -= (sizeof(uint64_t) - sizeof(uint32_t)) *
IWM_NUM_OF_FW_PAGING_BLOCKS;
/* loop for for all paging blocks + CSS block */
for (blk_idx = 0; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) {
bus_addr_t dev_phy_addr =
sc->fw_paging_db[blk_idx].fw_paging_block.paddr;
if (iwm_has_new_tx_api(sc)) {
fw_paging_cmd.device_phy_addr.addr64[blk_idx] =
htole64(dev_phy_addr);
} else {
dev_phy_addr = dev_phy_addr >> IWM_PAGE_2_EXP_SIZE;
fw_paging_cmd.device_phy_addr.addr32[blk_idx] =
htole32(dev_phy_addr);
}
dmap = sc->fw_paging_db[blk_idx].fw_paging_block.map,
bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
}
return iwm_send_cmd_pdu(sc,
iwm_cmd_id(IWM_FW_PAGING_BLOCK_CMD, IWM_ALWAYS_LONG_GROUP, 0),
0, size, &fw_paging_cmd);
}
static void
iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data,
const uint16_t *mac_override, const uint16_t *nvm_hw)
{
static const uint8_t reserved_mac[ETHER_ADDR_LEN] = {
0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
};
static const u_int8_t etheranyaddr[ETHER_ADDR_LEN] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
const uint8_t *hw_addr;
if (mac_override) {
hw_addr = (const uint8_t *)(mac_override +
IWM_MAC_ADDRESS_OVERRIDE_8000);
/*
* Store the MAC address from MAO section.
* No byte swapping is required in MAO section
*/
memcpy(data->hw_addr, hw_addr, ETHER_ADDR_LEN);
/*
* Force the use of the OTP MAC address in case of reserved MAC
* address in the NVM, or if address is given but invalid.
*/
if (memcmp(reserved_mac, hw_addr, ETHER_ADDR_LEN) != 0 &&
(memcmp(etherbroadcastaddr, data->hw_addr,
sizeof(etherbroadcastaddr)) != 0) &&
(memcmp(etheranyaddr, data->hw_addr,
sizeof(etheranyaddr)) != 0) &&
!ETHER_IS_MULTICAST(data->hw_addr))
return;
}
if (nvm_hw) {
/* Read the mac address from WFMP registers. */
uint32_t mac_addr0 =
htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0));
uint32_t mac_addr1 =
htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1));
hw_addr = (const uint8_t *)&mac_addr0;
data->hw_addr[0] = hw_addr[3];
data->hw_addr[1] = hw_addr[2];
data->hw_addr[2] = hw_addr[1];
data->hw_addr[3] = hw_addr[0];
hw_addr = (const uint8_t *)&mac_addr1;
data->hw_addr[4] = hw_addr[1];
data->hw_addr[5] = hw_addr[0];
return;
}
aprint_error_dev(sc->sc_dev, "mac address not found\n");
memset(data->hw_addr, 0, sizeof(data->hw_addr));
}
static int
iwm_parse_nvm_data(struct iwm_softc *sc, const uint16_t *nvm_hw,
const uint16_t *nvm_sw, const uint16_t *nvm_calib,
const uint16_t *mac_override, const uint16_t *phy_sku,
const uint16_t *regulatory)
{
struct iwm_nvm_data *data = &sc->sc_nvm;
uint8_t hw_addr[ETHER_ADDR_LEN];
uint32_t sku;
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
uint16_t radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG);
data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg);
data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg);
data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg);
data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg);
data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION);
sku = le16_to_cpup(nvm_sw + IWM_SKU);
} else {
uint32_t radio_cfg = le32_to_cpup(phy_sku + IWM_RADIO_CFG_8000);
data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg);
data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg);
data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg);
data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK_8000(radio_cfg);
data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg);
data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg);
data->nvm_version = le32_to_cpup(nvm_sw + IWM_NVM_VERSION_8000);
sku = le32_to_cpup(phy_sku + IWM_SKU_8000);
}
data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ;
data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ;
data->sku_cap_11n_enable = sku & IWM_NVM_SKU_CAP_11N_ENABLE;
data->sku_cap_mimo_disable = sku & IWM_NVM_SKU_CAP_MIMO_DISABLE;
data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
memcpy(hw_addr, nvm_hw + IWM_HW_ADDR, ETHER_ADDR_LEN);
data->hw_addr[0] = hw_addr[1];
data->hw_addr[1] = hw_addr[0];
data->hw_addr[2] = hw_addr[3];
data->hw_addr[3] = hw_addr[2];
data->hw_addr[4] = hw_addr[5];
data->hw_addr[5] = hw_addr[4];
} else
iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
uint16_t lar_offset, lar_config;
lar_offset = data->nvm_version < 0xE39 ?
IWM_NVM_LAR_OFFSET_8000_OLD : IWM_NVM_LAR_OFFSET_8000;
lar_config = le16_to_cpup(regulatory + lar_offset);
data->lar_enabled = !!(lar_config & IWM_NVM_LAR_ENABLED_8000);
}
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS],
iwm_nvm_channels, __arraycount(iwm_nvm_channels));
else
iwm_init_channel_map(sc, &regulatory[IWM_NVM_CHANNELS_8000],
iwm_nvm_channels_8000, __arraycount(iwm_nvm_channels_8000));
data->calib_version = 255; /* TODO:
this value will prevent some checks from
failing, we need to check if this
field is still needed, and if it does,
where is it in the NVM */
return 0;
}
static int
iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections)
{
const uint16_t *hw, *sw, *calib, *mac_override = NULL, *phy_sku = NULL;
const uint16_t *regulatory = NULL;
/* Checking for required sections */
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) {
if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
!sections[IWM_NVM_SECTION_TYPE_HW].data) {
return ENOENT;
}
hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data;
} else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
/* SW and REGULATORY sections are mandatory */
if (!sections[IWM_NVM_SECTION_TYPE_SW].data ||
!sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) {
return ENOENT;
}
/* MAC_OVERRIDE or at least HW section must exist */
if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data &&
!sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) {
return ENOENT;
}
/* PHY_SKU section is mandatory in B0 */
if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) {
return ENOENT;
}
regulatory = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_REGULATORY].data;
hw = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_HW_8000].data;
mac_override =
(const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data;
phy_sku = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data;
} else {
panic("unknown device family %d\n", sc->sc_device_family);
}
sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data;
calib = (const uint16_t *)
sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data;
return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override,
phy_sku, regulatory);
}
static int
iwm_nvm_init(struct iwm_softc *sc)
{
struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS];
int i, section, err;
uint16_t len;
uint8_t *buf;
const size_t bufsz = (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) ?
IWM_MAX_NVM_SECTION_SIZE_8000 : IWM_MAX_NVM_SECTION_SIZE_7000;
/* Read From FW NVM */
DPRINTF(("Read NVM\n"));
memset(nvm_sections, 0, sizeof(nvm_sections));
buf = kmem_alloc(bufsz, KM_SLEEP);
if (buf == NULL)
return ENOMEM;
for (i = 0; i < __arraycount(iwm_nvm_to_read); i++) {
section = iwm_nvm_to_read[i];
KASSERT(section <= IWM_NVM_NUM_OF_SECTIONS);
err = iwm_nvm_read_section(sc, section, buf, &len, bufsz);
if (err) {
err = 0;
continue;
}
nvm_sections[section].data = kmem_alloc(len, KM_SLEEP);
if (nvm_sections[section].data == NULL) {
err = ENOMEM;
break;
}
memcpy(nvm_sections[section].data, buf, len);
nvm_sections[section].length = len;
}
kmem_free(buf, bufsz);
if (err == 0)
err = iwm_parse_nvm_sections(sc, nvm_sections);
for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) {
if (nvm_sections[i].data != NULL)
kmem_free(nvm_sections[i].data, nvm_sections[i].length);
}
return err;
}
static int
iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr,
const uint8_t *section, uint32_t byte_cnt)
{
int err = EINVAL;
uint32_t chunk_sz, offset;
chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt);
for (offset = 0; offset < byte_cnt; offset += chunk_sz) {
uint32_t addr, len;
const uint8_t *data;
bool is_extended = false;
addr = dst_addr + offset;
len = MIN(chunk_sz, byte_cnt - offset);
data = section + offset;
if (addr >= IWM_FW_MEM_EXTENDED_START &&
addr <= IWM_FW_MEM_EXTENDED_END)
is_extended = true;
if (is_extended)
iwm_set_bits_prph(sc, IWM_LMPM_CHICK,
IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
err = iwm_firmware_load_chunk(sc, addr, data, len);
if (is_extended)
iwm_clear_bits_prph(sc, IWM_LMPM_CHICK,
IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE);
if (err)
break;
}
return err;
}
static int
iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr,
const uint8_t *section, uint32_t byte_cnt)
{
struct iwm_dma_info *dma = &sc->fw_dma;
int err;
/* Copy firmware chunk into pre-allocated DMA-safe memory. */
memcpy(dma->vaddr, section, byte_cnt);
bus_dmamap_sync(sc->sc_dmat, dma->map, 0, byte_cnt,
BUS_DMASYNC_PREWRITE);
sc->sc_fw_chunk_done = 0;
if (!iwm_nic_lock(sc))
return EBUSY;
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL),
dst_addr);
IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL),
dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL),
(iwm_get_dma_hi_addr(dma->paddr)
<< IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL),
1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM |
1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX |
IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL),
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
iwm_nic_unlock(sc);
/* Wait for this segment to load. */
err = 0;
while (!sc->sc_fw_chunk_done) {
err = tsleep(&sc->sc_fw, 0, "iwmfw", mstohz(5000));
if (err)
break;
}
if (!sc->sc_fw_chunk_done) {
DPRINTF(("%s: fw chunk addr 0x%x len %d failed to load\n",
DEVNAME(sc), dst_addr, byte_cnt));
}
return err;
}
static int
iwm_load_cpu_sections_7000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
int cpu, int *first_ucode_section)
{
int i, err = 0;
uint32_t last_read_idx = 0;
void *data;
uint32_t dlen;
uint32_t offset;
if (cpu == 1) {
*first_ucode_section = 0;
} else {
(*first_ucode_section)++;
}
for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
last_read_idx = i;
data = fws->fw_sect[i].fws_data;
dlen = fws->fw_sect[i].fws_len;
offset = fws->fw_sect[i].fws_devoff;
/*
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
* CPU1 to CPU2.
* PAGING_SEPARATOR_SECTION delimiter - separate between
* CPU2 non paged to CPU2 paging sec.
*/
if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
offset == IWM_PAGING_SEPARATOR_SECTION)
break;
if (dlen > sc->sc_fwdmasegsz) {
err = EFBIG;
} else
err = iwm_firmware_load_sect(sc, offset, data, dlen);
if (err) {
DPRINTF(("%s: could not load firmware chunk %d "
"(error %d)\n", DEVNAME(sc), i, err));
return err;
}
}
*first_ucode_section = last_read_idx;
return 0;
}
static int
iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
struct iwm_fw_sects *fws;
int err = 0;
int first_ucode_section;
fws = &sc->sc_fw.fw_sects[ucode_type];
DPRINTF(("%s: working with %s CPU\n", DEVNAME(sc),
fws->is_dual_cpus ? "dual" : "single"));
/* load to FW the binary Secured sections of CPU1 */
err = iwm_load_cpu_sections_7000(sc, fws, 1, &first_ucode_section);
if (err)
return err;
if (fws->is_dual_cpus) {
/* set CPU2 header address */
if (iwm_nic_lock(sc)) {
iwm_write_prph(sc,
IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR,
IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE);
iwm_nic_unlock(sc);
}
/* load to FW the binary sections of CPU2 */
err = iwm_load_cpu_sections_7000(sc, fws, 2,
&first_ucode_section);
if (err)
return err;
}
/* release CPU reset */
IWM_WRITE(sc, IWM_CSR_RESET, 0);
return 0;
}
static int
iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws,
int cpu, int *first_ucode_section)
{
int shift_param;
int i, err = 0, sec_num = 0x1;
uint32_t val, last_read_idx = 0;
void *data;
uint32_t dlen;
uint32_t offset;
if (cpu == 1) {
shift_param = 0;
*first_ucode_section = 0;
} else {
shift_param = 16;
(*first_ucode_section)++;
}
for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) {
last_read_idx = i;
data = fws->fw_sect[i].fws_data;
dlen = fws->fw_sect[i].fws_len;
offset = fws->fw_sect[i].fws_devoff;
/*
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
* CPU1 to CPU2.
* PAGING_SEPARATOR_SECTION delimiter - separate between
* CPU2 non paged to CPU2 paging sec.
*/
if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION ||
offset == IWM_PAGING_SEPARATOR_SECTION)
break;
if (dlen > sc->sc_fwdmasegsz) {
err = EFBIG;
} else
err = iwm_firmware_load_sect(sc, offset, data, dlen);
if (err) {
DPRINTF(("%s: could not load firmware chunk %d "
"(error %d)\n", DEVNAME(sc), i, err));
return err;
}
/* Notify the ucode of the loaded section number and status */
if (iwm_nic_lock(sc)) {
val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS);
val = val | (sec_num << shift_param);
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val);
sec_num = (sec_num << 1) | 0x1;
iwm_nic_unlock(sc);
/*
* The firmware won't load correctly without this delay.
*/
DELAY(8000);
}
}
*first_ucode_section = last_read_idx;
if (iwm_nic_lock(sc)) {
if (cpu == 1)
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF);
else
IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
iwm_nic_unlock(sc);
}
return 0;
}
static int
iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
struct iwm_fw_sects *fws;
int err = 0;
int first_ucode_section;
fws = &sc->sc_fw.fw_sects[ucode_type];
/* configure the ucode to be ready to get the secured image */
/* release CPU reset */
if (iwm_nic_lock(sc)) {
iwm_write_prph(sc, IWM_RELEASE_CPU_RESET,
IWM_RELEASE_CPU_RESET_BIT);
iwm_nic_unlock(sc);
}
/* load to FW the binary Secured sections of CPU1 */
err = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section);
if (err)
return err;
/* load to FW the binary sections of CPU2 */
return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section);
}
static int
iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
int err, w;
sc->sc_uc.uc_intr = 0;
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
err = iwm_load_firmware_8000(sc, ucode_type);
else
err = iwm_load_firmware_7000(sc, ucode_type);
if (err)
return err;
/* wait for the firmware to load */
for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++)
err = tsleep(&sc->sc_uc, 0, "iwmuc", mstohz(100));
if (err || !sc->sc_uc.uc_ok) {
aprint_error_dev(sc->sc_dev,
"could not load firmware (error %d, ok %d)\n",
err, sc->sc_uc.uc_ok);
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
aprint_error_dev(sc->sc_dev, "cpu1 status: 0x%x\n",
iwm_read_prph(sc, IWM_SB_CPU_1_STATUS));
aprint_error_dev(sc->sc_dev, "cpu2 status: 0x%x\n",
iwm_read_prph(sc, IWM_SB_CPU_2_STATUS));
}
}
return err;
}
static int
iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
int err;
IWM_WRITE(sc, IWM_CSR_INT, ~0);
err = iwm_nic_init(sc);
if (err) {
aprint_error_dev(sc->sc_dev, "Unable to init nic\n");
return err;
}
/* make sure rfkill handshake bits are cleared */
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR,
IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
/* clear (again), then enable host interrupts */
IWM_WRITE(sc, IWM_CSR_INT, ~0);
iwm_enable_interrupts(sc);
/* really make sure rfkill handshake bits are cleared */
/* maybe we should write a few times more? just to make sure */
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL);
return iwm_load_firmware(sc, ucode_type);
}
static int
iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant)
{
struct iwm_tx_ant_cfg_cmd tx_ant_cmd = {
.valid = htole32(valid_tx_ant),
};
return iwm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD, 0,
sizeof(tx_ant_cmd), &tx_ant_cmd);
}
static int
iwm_send_phy_cfg_cmd(struct iwm_softc *sc)
{
struct iwm_phy_cfg_cmd phy_cfg_cmd;
enum iwm_ucode_type ucode_type = sc->sc_uc_current;
phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config);
phy_cfg_cmd.calib_control.event_trigger =
sc->sc_default_calib[ucode_type].event_trigger;
phy_cfg_cmd.calib_control.flow_trigger =
sc->sc_default_calib[ucode_type].flow_trigger;
DPRINTFN(10, ("Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg));
return iwm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, 0,
sizeof(phy_cfg_cmd), &phy_cfg_cmd);
}
static int
iwm_load_ucode_wait_alive(struct iwm_softc *sc, enum iwm_ucode_type ucode_type)
{
struct iwm_fw_sects *fws;
enum iwm_ucode_type old_type = sc->sc_uc_current;
int err;
err = iwm_read_firmware(sc, ucode_type);
if (err)
return err;
sc->sc_uc_current = ucode_type;
err = iwm_start_fw(sc, ucode_type);
if (err) {
sc->sc_uc_current = old_type;
return err;
}
err = iwm_post_alive(sc);
if (err)
return err;
fws = &sc->sc_fw.fw_sects[ucode_type];
if (fws->paging_mem_size) {
err = iwm_save_fw_paging(sc, fws);
if (err)
return err;
err = iwm_send_paging_cmd(sc, fws);
if (err) {
iwm_free_fw_paging(sc);
return err;
}
}
return 0;
}
static int
iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm)
{
int err;
if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) {
aprint_error_dev(sc->sc_dev,
"radio is disabled by hardware switch\n");
return EPERM;
}
sc->sc_init_complete = 0;
err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_INIT);
if (err) {
DPRINTF(("%s: failed to load init firmware\n", DEVNAME(sc)));
return err;
}
if (justnvm) {
err = iwm_nvm_init(sc);
if (err) {
aprint_error_dev(sc->sc_dev, "failed to read nvm\n");
return err;
}
memcpy(&sc->sc_ic.ic_myaddr, &sc->sc_nvm.hw_addr,
ETHER_ADDR_LEN);
return 0;
}
err = iwm_send_bt_init_conf(sc);
if (err)
return err;
err = iwm_sf_config(sc, IWM_SF_INIT_OFF);
if (err)
return err;
err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc));
if (err)
return err;
/*
* Send phy configurations command to init uCode
* to start the 16.0 uCode init image internal calibrations.
*/
err = iwm_send_phy_cfg_cmd(sc);
if (err)
return err;
/*
* Nothing to do but wait for the init complete notification
* from the firmware
*/
while (!sc->sc_init_complete) {
err = tsleep(&sc->sc_init_complete, 0, "iwminit", mstohz(2000));
if (err)
break;
}
return err;
}
static int
iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx)
{
struct iwm_rx_ring *ring = &sc->rxq;
struct iwm_rx_data *data = &ring->data[idx];
struct mbuf *m;
int err;
int fatal = 0;
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL)
return ENOBUFS;
if (size <= MCLBYTES) {
MCLGET(m, M_DONTWAIT);
} else {
MEXTMALLOC(m, IWM_RBUF_SIZE, M_DONTWAIT);
}
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return ENOBUFS;
}
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
fatal = 1;
}
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (err) {
/* XXX */
if (fatal)
panic("iwm: could not load RX mbuf");
m_freem(m);
return err;
}
data->m = m;
bus_dmamap_sync(sc->sc_dmat, data->map, 0, size, BUS_DMASYNC_PREREAD);
/* Update RX descriptor. */
ring->desc[idx] = htole32(data->map->dm_segs[0].ds_addr >> 8);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
idx * sizeof(uint32_t), sizeof(uint32_t), BUS_DMASYNC_PREWRITE);
return 0;
}
#define IWM_RSSI_OFFSET 50
static int
iwm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
{
int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm;
uint32_t agc_a, agc_b;
uint32_t val;
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]);
agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS;
agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS;
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]);
rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS;
rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS;
/*
* dBm = rssi dB - agc dB - constant.
* Higher AGC (higher radio gain) means lower signal.
*/
rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a;
rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b;
max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm);
DPRINTF(("Rssi In A %d B %d Max %d AGCA %d AGCB %d\n",
rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b));
return max_rssi_dbm;
}
/*
* RSSI values are reported by the FW as positive values - need to negate
* to obtain their dBM. Account for missing antennas by replacing 0
* values by -256dBm: practically 0 power and a non-feasible 8 bit value.
*/
static int
iwm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info)
{
int energy_a, energy_b, energy_c, max_energy;
uint32_t val;
val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]);
energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >>
IWM_RX_INFO_ENERGY_ANT_A_POS;
energy_a = energy_a ? -energy_a : -256;
energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >>
IWM_RX_INFO_ENERGY_ANT_B_POS;
energy_b = energy_b ? -energy_b : -256;
energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >>
IWM_RX_INFO_ENERGY_ANT_C_POS;
energy_c = energy_c ? -energy_c : -256;
max_energy = MAX(energy_a, energy_b);
max_energy = MAX(max_energy, energy_c);
DPRINTFN(12, ("energy In A %d B %d C %d, and max %d\n",
energy_a, energy_b, energy_c, max_energy));
return max_energy;
}
static void
iwm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
struct iwm_rx_data *data)
{
struct iwm_rx_phy_info *phy_info = (void *)pkt->data;
DPRINTFN(20, ("received PHY stats\n"));
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt),
sizeof(*phy_info), BUS_DMASYNC_POSTREAD);
memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info));
}
/*
* Retrieve the average noise (in dBm) among receivers.
*/
static int
iwm_get_noise(const struct iwm_statistics_rx_non_phy *stats)
{
int i, total, nbant, noise;
total = nbant = noise = 0;
for (i = 0; i < 3; i++) {
noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff;
if (noise) {
total += noise;
nbant++;
}
}
/* There should be at least one antenna but check anyway. */
return (nbant == 0) ? -127 : (total / nbant) - 107;
}
static void
iwm_rx_rx_mpdu(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
struct iwm_rx_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct ieee80211_channel *c = NULL;
struct mbuf *m;
struct iwm_rx_phy_info *phy_info;
struct iwm_rx_mpdu_res_start *rx_res;
int device_timestamp;
uint32_t len;
uint32_t rx_pkt_status;
int rssi;
int s;
bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE,
BUS_DMASYNC_POSTREAD);
phy_info = &sc->sc_last_phy_info;
rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data;
wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res));
len = le16toh(rx_res->byte_count);
rx_pkt_status = le32toh(*(uint32_t *)(pkt->data +
sizeof(*rx_res) + len));
m = data->m;
m->m_data = pkt->data + sizeof(*rx_res);
m->m_pkthdr.len = m->m_len = len;
if (__predict_false(phy_info->cfg_phy_cnt > 20)) {
DPRINTF(("dsp size out of range [0,20]: %d\n",
phy_info->cfg_phy_cnt));
return;
}
if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) ||
!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) {
DPRINTF(("Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status));
return; /* drop */
}
device_timestamp = le32toh(phy_info->system_timestamp);
if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) {
rssi = iwm_get_signal_strength(sc, phy_info);
} else {
rssi = iwm_calc_rssi(sc, phy_info);
}
rssi = -rssi;
if (ic->ic_state == IEEE80211_S_SCAN)
iwm_fix_channel(sc, m);
if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0)
return;
m_set_rcvif(m, IC2IFP(ic));
if (le32toh(phy_info->channel) < __arraycount(ic->ic_channels))
c = &ic->ic_channels[le32toh(phy_info->channel)];
s = splnet();
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
if (c)
ni->ni_chan = c;
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE))
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
tap->wr_chan_freq =
htole16(ic->ic_channels[phy_info->channel].ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_channels[phy_info->channel].ic_flags);
tap->wr_dbm_antsignal = (int8_t)rssi;
tap->wr_dbm_antnoise = (int8_t)sc->sc_noise;
tap->wr_tsft = phy_info->system_timestamp;
if (phy_info->phy_flags &
htole16(IWM_RX_RES_PHY_FLAGS_OFDM_HT)) {
uint8_t mcs = (phy_info->rate_n_flags &
htole32(IWM_RATE_HT_MCS_RATE_CODE_MSK |
IWM_RATE_HT_MCS_NSS_MSK));
tap->wr_rate = (0x80 | mcs);
} else {
uint8_t rate = (phy_info->rate_n_flags &
htole32(IWM_RATE_LEGACY_RATE_MSK));
switch (rate) {
/* CCK rates. */
case 10: tap->wr_rate = 2; break;
case 20: tap->wr_rate = 4; break;
case 55: tap->wr_rate = 11; break;
case 110: tap->wr_rate = 22; break;
/* OFDM rates. */
case 0xd: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0x5: tap->wr_rate = 24; break;
case 0x7: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xb: tap->wr_rate = 72; break;
case 0x1: tap->wr_rate = 96; break;
case 0x3: tap->wr_rate = 108; break;
/* Unknown rate: should not happen. */
default: tap->wr_rate = 0;
}
}
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
ieee80211_input(ic, m, ni, rssi, device_timestamp);
ieee80211_free_node(ni);
splx(s);
}
static void
iwm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
struct iwm_node *in)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
struct iwm_tx_resp *tx_resp = (void *)pkt->data;
int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK;
int failack = tx_resp->failure_frame;
KASSERT(tx_resp->frame_count == 1);
/* Update rate control statistics. */
in->in_amn.amn_txcnt++;
if (failack > 0) {
in->in_amn.amn_retrycnt++;
}
if (status != IWM_TX_STATUS_SUCCESS &&
status != IWM_TX_STATUS_DIRECT_DONE)
ifp->if_oerrors++;
else
ifp->if_opackets++;
}
static void
iwm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt,
struct iwm_rx_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = IC2IFP(ic);
struct iwm_cmd_header *cmd_hdr = &pkt->hdr;
int idx = cmd_hdr->idx;
int qid = cmd_hdr->qid;
struct iwm_tx_ring *ring = &sc->txq[qid];
struct iwm_tx_data *txd = &ring->data[idx];
struct iwm_node *in = txd->in;
int s;
s = splnet();
if (txd->done) {
DPRINTF(("%s: got tx interrupt that's already been handled!\n",
DEVNAME(sc)));
splx(s);
return;
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE,
BUS_DMASYNC_POSTREAD);
sc->sc_tx_timer = 0;
iwm_rx_tx_cmd_single(sc, pkt, in);
bus_dmamap_sync(sc->sc_dmat, txd->map, 0, txd->map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txd->map);
m_freem(txd->m);
DPRINTFN(8, ("free txd %p, in %p\n", txd, txd->in));
KASSERT(txd->done == 0);
txd->done = 1;
KASSERT(txd->in);
txd->m = NULL;
txd->in = NULL;
ieee80211_free_node(&in->in_ni);
if (--ring->queued < IWM_TX_RING_LOMARK) {
sc->qfullmsk &= ~(1 << qid);
if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) {
ifp->if_flags &= ~IFF_OACTIVE;
KASSERT(KERNEL_LOCKED_P());
iwm_start(ifp);
}
}
splx(s);
}
static int
iwm_binding_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action)
{
struct iwm_binding_cmd cmd;
struct iwm_phy_ctxt *phyctxt = in->in_phyctxt;
int i, err;
uint32_t status;
memset(&cmd, 0, sizeof(cmd));
cmd.id_and_color
= htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color));
cmd.action = htole32(action);
cmd.phy = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color));
cmd.macs[0] = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
for (i = 1; i < IWM_MAX_MACS_IN_BINDING; i++)
cmd.macs[i] = htole32(IWM_FW_CTXT_INVALID);
status = 0;
err = iwm_send_cmd_pdu_status(sc, IWM_BINDING_CONTEXT_CMD,
sizeof(cmd), &cmd, &status);
if (err == 0 && status != 0)
err = EIO;
return err;
}
static void
iwm_phy_ctxt_cmd_hdr(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt,
struct iwm_phy_context_cmd *cmd, uint32_t action, uint32_t apply_time)
{
memset(cmd, 0, sizeof(struct iwm_phy_context_cmd));
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(ctxt->id,
ctxt->color));
cmd->action = htole32(action);
cmd->apply_time = htole32(apply_time);
}
static void
iwm_phy_ctxt_cmd_data(struct iwm_softc *sc, struct iwm_phy_context_cmd *cmd,
struct ieee80211_channel *chan, uint8_t chains_static,
uint8_t chains_dynamic)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t active_cnt, idle_cnt;
cmd->ci.band = IEEE80211_IS_CHAN_2GHZ(chan) ?
IWM_PHY_BAND_24 : IWM_PHY_BAND_5;
cmd->ci.channel = ieee80211_chan2ieee(ic, chan);
cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE20;
cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW;
/* Set rx the chains */
idle_cnt = chains_static;
active_cnt = chains_dynamic;
cmd->rxchain_info = htole32(iwm_fw_valid_rx_ant(sc) <<
IWM_PHY_RX_CHAIN_VALID_POS);
cmd->rxchain_info |= htole32(idle_cnt << IWM_PHY_RX_CHAIN_CNT_POS);
cmd->rxchain_info |= htole32(active_cnt <<
IWM_PHY_RX_CHAIN_MIMO_CNT_POS);
cmd->txchain_info = htole32(iwm_fw_valid_tx_ant(sc));
}
static int
iwm_phy_ctxt_cmd(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt,
uint8_t chains_static, uint8_t chains_dynamic, uint32_t action,
uint32_t apply_time)
{
struct iwm_phy_context_cmd cmd;
iwm_phy_ctxt_cmd_hdr(sc, ctxt, &cmd, action, apply_time);
iwm_phy_ctxt_cmd_data(sc, &cmd, ctxt->channel,
chains_static, chains_dynamic);
return iwm_send_cmd_pdu(sc, IWM_PHY_CONTEXT_CMD, 0,
sizeof(struct iwm_phy_context_cmd), &cmd);
}
static int
iwm_send_cmd(struct iwm_softc *sc, struct iwm_host_cmd *hcmd)
{
struct iwm_tx_ring *ring = &sc->txq[IWM_CMD_QUEUE];
struct iwm_tfd *desc;
struct iwm_tx_data *txdata;
struct iwm_device_cmd *cmd;
struct mbuf *m;
bus_addr_t paddr;
uint32_t addr_lo;
int err = 0, i, paylen, off, s;
int code;
int async, wantresp;
int group_id;
size_t hdrlen, datasz;
uint8_t *data;
code = hcmd->id;
async = hcmd->flags & IWM_CMD_ASYNC;
wantresp = hcmd->flags & IWM_CMD_WANT_SKB;
for (i = 0, paylen = 0; i < __arraycount(hcmd->len); i++) {
paylen += hcmd->len[i];
}
/* if the command wants an answer, busy sc_cmd_resp */
if (wantresp) {
KASSERT(!async);
while (sc->sc_wantresp != IWM_CMD_RESP_IDLE)
tsleep(&sc->sc_wantresp, 0, "iwmcmdsl", 0);
sc->sc_wantresp = ring->qid << 16 | ring->cur;
}
/*
* Is the hardware still available? (after e.g. above wait).
*/
s = splnet();
if (sc->sc_flags & IWM_FLAG_STOPPED) {
err = ENXIO;
goto out;
}
desc = &ring->desc[ring->cur];
txdata = &ring->data[ring->cur];
group_id = iwm_cmd_groupid(code);
if (group_id != 0) {
hdrlen = sizeof(cmd->hdr_wide);
datasz = sizeof(cmd->data_wide);
} else {
hdrlen = sizeof(cmd->hdr);
datasz = sizeof(cmd->data);
}
if (paylen > datasz) {
/* Command is too large to fit in pre-allocated space. */
size_t totlen = hdrlen + paylen;
if (paylen > IWM_MAX_CMD_PAYLOAD_SIZE) {
aprint_error_dev(sc->sc_dev,
"firmware command too long (%zd bytes)\n", totlen);
err = EINVAL;
goto out;
}
m = m_gethdr(M_DONTWAIT, MT_DATA);
if (m == NULL) {
err = ENOMEM;
goto out;
}
MEXTMALLOC(m, IWM_RBUF_SIZE, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
aprint_error_dev(sc->sc_dev,
"could not get fw cmd mbuf (%zd bytes)\n", totlen);
m_freem(m);
err = ENOMEM;
goto out;
}
cmd = mtod(m, struct iwm_device_cmd *);
err = bus_dmamap_load(sc->sc_dmat, txdata->map, cmd,
totlen, NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not load fw cmd mbuf (%zd bytes)\n", totlen);
m_freem(m);
goto out;
}
txdata->m = m;
paddr = txdata->map->dm_segs[0].ds_addr;
} else {
cmd = &ring->cmd[ring->cur];
paddr = txdata->cmd_paddr;
}
if (group_id != 0) {
cmd->hdr_wide.opcode = iwm_cmd_opcode(code);
cmd->hdr_wide.group_id = group_id;
cmd->hdr_wide.qid = ring->qid;
cmd->hdr_wide.idx = ring->cur;
cmd->hdr_wide.length = htole16(paylen);
cmd->hdr_wide.version = iwm_cmd_version(code);
data = cmd->data_wide;
} else {
cmd->hdr.code = code;
cmd->hdr.flags = 0;
cmd->hdr.qid = ring->qid;
cmd->hdr.idx = ring->cur;
data = cmd->data;
}
for (i = 0, off = 0; i < __arraycount(hcmd->data); i++) {
if (hcmd->len[i] == 0)
continue;
memcpy(data + off, hcmd->data[i], hcmd->len[i]);
off += hcmd->len[i];
}
KASSERT(off == paylen);
/* lo field is not aligned */
addr_lo = htole32((uint32_t)paddr);
memcpy(&desc->tbs[0].lo, &addr_lo, sizeof(uint32_t));
desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(paddr)
| ((hdrlen + paylen) << 4));
desc->num_tbs = 1;
DPRINTFN(8, ("iwm_send_cmd 0x%x size=%zu %s\n",
code, hdrlen + paylen, async ? " (async)" : ""));
if (paylen > datasz) {
bus_dmamap_sync(sc->sc_dmat, txdata->map, 0, hdrlen + paylen,
BUS_DMASYNC_PREWRITE);
} else {
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
(uint8_t *)cmd - (uint8_t *)ring->cmd, hdrlen + paylen,
BUS_DMASYNC_PREWRITE);
}
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
(uint8_t *)desc - (uint8_t *)ring->desc, sizeof(*desc),
BUS_DMASYNC_PREWRITE);
err = iwm_set_cmd_in_flight(sc);
if (err)
goto out;
ring->queued++;
#if 0
iwm_update_sched(sc, ring->qid, ring->cur, 0, 0);
#endif
DPRINTF(("sending command 0x%x qid %d, idx %d\n",
code, ring->qid, ring->cur));
/* Kick command ring. */
ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
if (!async) {
int generation = sc->sc_generation;
err = tsleep(desc, PCATCH, "iwmcmd", mstohz(2000));
if (err == 0) {
/* if hardware is no longer up, return error */
if (generation != sc->sc_generation) {
err = ENXIO;
} else {
hcmd->resp_pkt = (void *)sc->sc_cmd_resp;
}
}
}
out:
if (wantresp && err) {
iwm_free_resp(sc, hcmd);
}
splx(s);
return err;
}
static int
iwm_send_cmd_pdu(struct iwm_softc *sc, uint32_t id, uint32_t flags,
uint16_t len, const void *data)
{
struct iwm_host_cmd cmd = {
.id = id,
.len = { len, },
.data = { data, },
.flags = flags,
};
return iwm_send_cmd(sc, &cmd);
}
static int
iwm_send_cmd_status(struct iwm_softc *sc, struct iwm_host_cmd *cmd,
uint32_t *status)
{
struct iwm_rx_packet *pkt;
struct iwm_cmd_response *resp;
int err, resp_len;
KASSERT((cmd->flags & IWM_CMD_WANT_SKB) == 0);
cmd->flags |= IWM_CMD_WANT_SKB;
err = iwm_send_cmd(sc, cmd);
if (err)
return err;
pkt = cmd->resp_pkt;
/* Can happen if RFKILL is asserted */
if (!pkt) {
err = 0;
goto out_free_resp;
}
if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) {
err = EIO;
goto out_free_resp;
}
resp_len = iwm_rx_packet_payload_len(pkt);
if (resp_len != sizeof(*resp)) {
err = EIO;
goto out_free_resp;
}
resp = (void *)pkt->data;
*status = le32toh(resp->status);
out_free_resp:
iwm_free_resp(sc, cmd);
return err;
}
static int
iwm_send_cmd_pdu_status(struct iwm_softc *sc, uint32_t id, uint16_t len,
const void *data, uint32_t *status)
{
struct iwm_host_cmd cmd = {
.id = id,
.len = { len, },
.data = { data, },
};
return iwm_send_cmd_status(sc, &cmd, status);
}
static void
iwm_free_resp(struct iwm_softc *sc, struct iwm_host_cmd *hcmd)
{
KASSERT(sc->sc_wantresp != IWM_CMD_RESP_IDLE);
KASSERT((hcmd->flags & IWM_CMD_WANT_SKB) == IWM_CMD_WANT_SKB);
sc->sc_wantresp = IWM_CMD_RESP_IDLE;
wakeup(&sc->sc_wantresp);
}
static void
iwm_cmd_done(struct iwm_softc *sc, int qid, int idx)
{
struct iwm_tx_ring *ring = &sc->txq[IWM_CMD_QUEUE];
struct iwm_tx_data *data;
int s;
if (qid != IWM_CMD_QUEUE) {
return; /* Not a command ack. */
}
s = splnet();
data = &ring->data[idx];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
wakeup(&ring->desc[idx]);
if (((idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) {
aprint_error_dev(sc->sc_dev,
"Some HCMDs skipped?: idx=%d queued=%d cur=%d\n",
idx, ring->queued, ring->cur);
}
KASSERT(ring->queued > 0);
if (--ring->queued == 0)
iwm_clear_cmd_in_flight(sc);
splx(s);
}
#if 0
/*
* necessary only for block ack mode
*/
void
iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id,
uint16_t len)
{
struct iwm_agn_scd_bc_tbl *scd_bc_tbl;
uint16_t w_val;
scd_bc_tbl = sc->sched_dma.vaddr;
len += 8; /* magic numbers came naturally from paris */
if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE)
len = roundup(len, 4) / 4;
w_val = htole16(sta_id << 12 | len);
/* Update TX scheduler. */
scd_bc_tbl[qid].tfd_offset[idx] = w_val;
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr,
sizeof(uint16_t), BUS_DMASYNC_PREWRITE);
/* I really wonder what this is ?!? */
if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) {
scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val;
bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map,
(char *)(void *)(w + IWM_TFD_QUEUE_SIZE_MAX) -
(char *)(void *)sc->sched_dma.vaddr,
sizeof (uint16_t), BUS_DMASYNC_PREWRITE);
}
}
#endif
/*
* Fill in various bit for management frames, and leave them
* unfilled for data frames (firmware takes care of that).
* Return the selected TX rate.
*/
static const struct iwm_rate *
iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in,
struct ieee80211_frame *wh, struct iwm_tx_cmd *tx)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = &in->in_ni;
const struct iwm_rate *rinfo;
int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
int ridx, rate_flags, i, ind;
int nrates = ni->ni_rates.rs_nrates;
tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT;
tx->data_retry_limit = IWM_DEFAULT_TX_RETRY;
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA) {
/* for non-data, use the lowest supported rate */
ridx = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ?
IWM_RIDX_OFDM : IWM_RIDX_CCK;
tx->data_retry_limit = IWM_MGMT_DFAULT_RETRY_LIMIT;
#ifndef IEEE80211_NO_HT
} else if (ic->ic_fixed_mcs != -1) {
ridx = sc->sc_fixed_ridx;
#endif
} else if (ic->ic_fixed_rate != -1) {
ridx = sc->sc_fixed_ridx;
} else {
/* for data frames, use RS table */
tx->initial_rate_index = 0;
tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE);
DPRINTFN(12, ("start with txrate %d\n",
tx->initial_rate_index));
#ifndef IEEE80211_NO_HT
if (ni->ni_flags & IEEE80211_NODE_HT) {
ridx = iwm_mcs2ridx[ni->ni_txmcs];
return &iwm_rates[ridx];
}
#endif
ridx = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ?
IWM_RIDX_OFDM : IWM_RIDX_CCK;
for (i = 0; i < nrates; i++) {
if (iwm_rates[i].rate == (ni->ni_txrate &
IEEE80211_RATE_VAL)) {
ridx = i;
break;
}
}
return &iwm_rates[ridx];
}
rinfo = &iwm_rates[ridx];
for (i = 0, ind = sc->sc_mgmt_last_antenna;
i < IWM_RATE_MCS_ANT_NUM; i++) {
ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM;
if (iwm_fw_valid_tx_ant(sc) & (1 << ind)) {
sc->sc_mgmt_last_antenna = ind;
break;
}
}
rate_flags = (1 << sc->sc_mgmt_last_antenna) << IWM_RATE_MCS_ANT_POS;
if (IWM_RIDX_IS_CCK(ridx))
rate_flags |= IWM_RATE_MCS_CCK_MSK;
#ifndef IEEE80211_NO_HT
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
rinfo->ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP) {
rate_flags |= IWM_RATE_MCS_HT_MSK;
tx->rate_n_flags = htole32(rate_flags | rinfo->ht_plcp);
} else
#endif
tx->rate_n_flags = htole32(rate_flags | rinfo->plcp);
return rinfo;
}
#define TB0_SIZE 16
static int
iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (struct iwm_node *)ni;
struct iwm_tx_ring *ring;
struct iwm_tx_data *data;
struct iwm_tfd *desc;
struct iwm_device_cmd *cmd;
struct iwm_tx_cmd *tx;
struct ieee80211_frame *wh;
struct ieee80211_key *k = NULL;
struct mbuf *m1;
const struct iwm_rate *rinfo;
uint32_t flags;
u_int hdrlen;
bus_dma_segment_t *seg;
uint8_t tid, type;
int i, totlen, err, pad;
wh = mtod(m, struct ieee80211_frame *);
hdrlen = ieee80211_anyhdrsize(wh);
type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK;
tid = 0;
ring = &sc->txq[ac];
desc = &ring->desc[ring->cur];
memset(desc, 0, sizeof(*desc));
data = &ring->data[ring->cur];
cmd = &ring->cmd[ring->cur];
cmd->hdr.code = IWM_TX_CMD;
cmd->hdr.flags = 0;
cmd->hdr.qid = ring->qid;
cmd->hdr.idx = ring->cur;
tx = (void *)cmd->data;
memset(tx, 0, sizeof(*tx));
rinfo = iwm_tx_fill_cmd(sc, in, wh, tx);
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct iwm_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
#ifndef IEEE80211_NO_HT
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
type == IEEE80211_FC0_TYPE_DATA &&
rinfo->plcp == IWM_RATE_INVM_PLCP) {
tap->wt_rate = (0x80 | rinfo->ht_plcp);
} else
#endif
tap->wt_rate = rinfo->rate;
tap->wt_hwqueue = ac;
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
}
/* Encrypt the frame if need be. */
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m);
if (k == NULL) {
m_freem(m);
return ENOBUFS;
}
/* Packet header may have moved, reset our local pointer. */
wh = mtod(m, struct ieee80211_frame *);
}
totlen = m->m_pkthdr.len;
flags = 0;
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
flags |= IWM_TX_CMD_FLG_ACK;
}
if (type == IEEE80211_FC0_TYPE_DATA &&
!IEEE80211_IS_MULTICAST(wh->i_addr1) &&
(totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold ||
(ic->ic_flags & IEEE80211_F_USEPROT)))
flags |= IWM_TX_CMD_FLG_PROT_REQUIRE;
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
type != IEEE80211_FC0_TYPE_DATA)
tx->sta_id = IWM_AUX_STA_ID;
else
tx->sta_id = IWM_STATION_ID;
if (type == IEEE80211_FC0_TYPE_MGT) {
uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ ||
subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ)
tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC);
else
tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT);
} else {
tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE);
}
if (hdrlen & 3) {
/* First segment length must be a multiple of 4. */
flags |= IWM_TX_CMD_FLG_MH_PAD;
pad = 4 - (hdrlen & 3);
} else
pad = 0;
tx->driver_txop = 0;
tx->next_frame_len = 0;
tx->len = htole16(totlen);
tx->tid_tspec = tid;
tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE);
/* Set physical address of "scratch area". */
tx->dram_lsb_ptr = htole32(data->scratch_paddr);
tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr);
/* Copy 802.11 header in TX command. */
memcpy(tx + 1, wh, hdrlen);
flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL;
tx->sec_ctl = 0;
tx->tx_flags |= htole32(flags);
/* Trim 802.11 header. */
m_adj(m, hdrlen);
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (err) {
if (err != EFBIG) {
aprint_error_dev(sc->sc_dev,
"can't map mbuf (error %d)\n", err);
m_freem(m);
return err;
}
/* Too many DMA segments, linearize mbuf. */
MGETHDR(m1, M_DONTWAIT, MT_DATA);
if (m1 == NULL) {
m_freem(m);
return ENOBUFS;
}
if (m->m_pkthdr.len > MHLEN) {
MCLGET(m1, M_DONTWAIT);
if (!(m1->m_flags & M_EXT)) {
m_freem(m);
m_freem(m1);
return ENOBUFS;
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
m_freem(m);
m = m1;
err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (err) {
aprint_error_dev(sc->sc_dev,
"can't map mbuf (error %d)\n", err);
m_freem(m);
return err;
}
}
data->m = m;
data->in = in;
data->done = 0;
DPRINTFN(8, ("sending txd %p, in %p\n", data, data->in));
KASSERT(data->in != NULL);
DPRINTFN(8, ("sending data: qid=%d idx=%d len=%d nsegs=%d type=%d "
"subtype=%x tx_flags=%08x init_rateidx=%08x rate_n_flags=%08x\n",
ring->qid, ring->cur, totlen, data->map->dm_nsegs, type,
(wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) >> 4,
le32toh(tx->tx_flags), le32toh(tx->initial_rate_index),
le32toh(tx->rate_n_flags)));
/* Fill TX descriptor. */
desc->num_tbs = 2 + data->map->dm_nsegs;
desc->tbs[0].lo = htole32(data->cmd_paddr);
desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
(TB0_SIZE << 4);
desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE);
desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) |
((sizeof(struct iwm_cmd_header) + sizeof(*tx)
+ hdrlen + pad - TB0_SIZE) << 4);
/* Other DMA segments are for data payload. */
seg = data->map->dm_segs;
for (i = 0; i < data->map->dm_nsegs; i++, seg++) {
desc->tbs[i+2].lo = htole32(seg->ds_addr);
desc->tbs[i+2].hi_n_len =
htole16(iwm_get_dma_hi_addr(seg->ds_addr))
| ((seg->ds_len) << 4);
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map,
(uint8_t *)cmd - (uint8_t *)ring->cmd, sizeof(*cmd),
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map,
(uint8_t *)desc - (uint8_t *)ring->desc, sizeof(*desc),
BUS_DMASYNC_PREWRITE);
#if 0
iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id,
le16toh(tx->len));
#endif
/* Kick TX ring. */
ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT;
IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur);
/* Mark TX ring as full if we reach a certain threshold. */
if (++ring->queued > IWM_TX_RING_HIMARK) {
sc->qfullmsk |= 1 << ring->qid;
}
return 0;
}
#if 0
/* not necessary? */
static int
iwm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync)
{
struct iwm_tx_path_flush_cmd flush_cmd = {
.queues_ctl = htole32(tfd_msk),
.flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH),
};
int err;
err = iwm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, sync ? 0 : IWM_CMD_ASYNC,
sizeof(flush_cmd), &flush_cmd);
if (err)
aprint_error_dev(sc->sc_dev, "Flushing tx queue failed: %d\n",
err);
return err;
}
#endif
static void
iwm_led_enable(struct iwm_softc *sc)
{
IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_ON);
}
static void
iwm_led_disable(struct iwm_softc *sc)
{
IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_OFF);
}
static int
iwm_led_is_enabled(struct iwm_softc *sc)
{
return (IWM_READ(sc, IWM_CSR_LED_REG) == IWM_CSR_LED_REG_TURN_ON);
}
static void
iwm_led_blink_timeout(void *arg)
{
struct iwm_softc *sc = arg;
if (iwm_led_is_enabled(sc))
iwm_led_disable(sc);
else
iwm_led_enable(sc);
callout_schedule(&sc->sc_led_blink_to, mstohz(200));
}
static void
iwm_led_blink_start(struct iwm_softc *sc)
{
callout_schedule(&sc->sc_led_blink_to, mstohz(200));
}
static void
iwm_led_blink_stop(struct iwm_softc *sc)
{
callout_stop(&sc->sc_led_blink_to);
iwm_led_disable(sc);
}
#define IWM_POWER_KEEP_ALIVE_PERIOD_SEC 25
static int
iwm_beacon_filter_send_cmd(struct iwm_softc *sc,
struct iwm_beacon_filter_cmd *cmd)
{
return iwm_send_cmd_pdu(sc, IWM_REPLY_BEACON_FILTERING_CMD,
0, sizeof(struct iwm_beacon_filter_cmd), cmd);
}
static void
iwm_beacon_filter_set_cqm_params(struct iwm_softc *sc, struct iwm_node *in,
struct iwm_beacon_filter_cmd *cmd)
{
cmd->ba_enable_beacon_abort = htole32(sc->sc_bf.ba_enabled);
}
static int
iwm_update_beacon_abort(struct iwm_softc *sc, struct iwm_node *in, int enable)
{
struct iwm_beacon_filter_cmd cmd = {
IWM_BF_CMD_CONFIG_DEFAULTS,
.bf_enable_beacon_filter = htole32(1),
.ba_enable_beacon_abort = htole32(enable),
};
if (!sc->sc_bf.bf_enabled)
return 0;
sc->sc_bf.ba_enabled = enable;
iwm_beacon_filter_set_cqm_params(sc, in, &cmd);
return iwm_beacon_filter_send_cmd(sc, &cmd);
}
static void
iwm_power_build_cmd(struct iwm_softc *sc, struct iwm_node *in,
struct iwm_mac_power_cmd *cmd)
{
struct ieee80211_node *ni = &in->in_ni;
int dtim_period, dtim_msec, keep_alive;
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
in->in_color));
if (ni->ni_dtim_period)
dtim_period = ni->ni_dtim_period;
else
dtim_period = 1;
/*
* Regardless of power management state the driver must set
* keep alive period. FW will use it for sending keep alive NDPs
* immediately after association. Check that keep alive period
* is at least 3 * DTIM.
*/
dtim_msec = dtim_period * ni->ni_intval;
keep_alive = MAX(3 * dtim_msec, 1000 * IWM_POWER_KEEP_ALIVE_PERIOD_SEC);
keep_alive = roundup(keep_alive, 1000) / 1000;
cmd->keep_alive_seconds = htole16(keep_alive);
#ifdef notyet
cmd->flags = htole16(IWM_POWER_FLAGS_POWER_SAVE_ENA_MSK);
cmd->rx_data_timeout = IWM_DEFAULT_PS_RX_DATA_TIMEOUT;
cmd->tx_data_timeout = IWM_DEFAULT_PS_TX_DATA_TIMEOUT;
#endif
}
static int
iwm_power_mac_update_mode(struct iwm_softc *sc, struct iwm_node *in)
{
int err;
int ba_enable;
struct iwm_mac_power_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
iwm_power_build_cmd(sc, in, &cmd);
err = iwm_send_cmd_pdu(sc, IWM_MAC_PM_POWER_TABLE, 0,
sizeof(cmd), &cmd);
if (err)
return err;
ba_enable = !!(cmd.flags &
htole16(IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK));
return iwm_update_beacon_abort(sc, in, ba_enable);
}
static int
iwm_power_update_device(struct iwm_softc *sc)
{
struct iwm_device_power_cmd cmd = {
#ifdef notyet
.flags = htole16(IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK),
#else
.flags = 0,
#endif
};
if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DEVICE_PS_CMD))
return 0;
cmd.flags |= htole16(IWM_DEVICE_POWER_FLAGS_CAM_MSK);
DPRINTF(("Sending device power command with flags = 0x%X\n",
cmd.flags));
return iwm_send_cmd_pdu(sc, IWM_POWER_TABLE_CMD, 0, sizeof(cmd), &cmd);
}
#ifdef notyet
static int
iwm_enable_beacon_filter(struct iwm_softc *sc, struct iwm_node *in)
{
struct iwm_beacon_filter_cmd cmd = {
IWM_BF_CMD_CONFIG_DEFAULTS,
.bf_enable_beacon_filter = htole32(1),
};
int err;
iwm_beacon_filter_set_cqm_params(sc, in, &cmd);
err = iwm_beacon_filter_send_cmd(sc, &cmd);
if (err == 0)
sc->sc_bf.bf_enabled = 1;
return err;
}
#endif
static int
iwm_disable_beacon_filter(struct iwm_softc *sc)
{
struct iwm_beacon_filter_cmd cmd;
int err;
memset(&cmd, 0, sizeof(cmd));
if ((sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_BF_UPDATED) == 0)
return 0;
err = iwm_beacon_filter_send_cmd(sc, &cmd);
if (err == 0)
sc->sc_bf.bf_enabled = 0;
return err;
}
static int
iwm_add_sta_cmd(struct iwm_softc *sc, struct iwm_node *in, int update)
{
struct iwm_add_sta_cmd_v7 add_sta_cmd;
int err;
uint32_t status;
memset(&add_sta_cmd, 0, sizeof(add_sta_cmd));
add_sta_cmd.sta_id = IWM_STATION_ID;
add_sta_cmd.mac_id_n_color
= htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color));
if (!update) {
int ac;
for (ac = 0; ac < WME_NUM_AC; ac++) {
add_sta_cmd.tfd_queue_msk |=
htole32(__BIT(iwm_ac_to_tx_fifo[ac]));
}
IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid);
}
add_sta_cmd.add_modify = update ? 1 : 0;
add_sta_cmd.station_flags_msk
|= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK);
add_sta_cmd.tid_disable_tx = htole16(0xffff);
if (update)
add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX);
#ifndef IEEE80211_NO_HT
if (in->in_ni.ni_flags & IEEE80211_NODE_HT) {
add_sta_cmd.station_flags_msk
|= htole32(IWM_STA_FLG_MAX_AGG_SIZE_MSK |
IWM_STA_FLG_AGG_MPDU_DENS_MSK);
add_sta_cmd.station_flags
|= htole32(IWM_STA_FLG_MAX_AGG_SIZE_64K);
switch (ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) {
case IEEE80211_AMPDU_PARAM_SS_2:
add_sta_cmd.station_flags
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_2US);
break;
case IEEE80211_AMPDU_PARAM_SS_4:
add_sta_cmd.station_flags
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_4US);
break;
case IEEE80211_AMPDU_PARAM_SS_8:
add_sta_cmd.station_flags
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_8US);
break;
case IEEE80211_AMPDU_PARAM_SS_16:
add_sta_cmd.station_flags
|= htole32(IWM_STA_FLG_AGG_MPDU_DENS_16US);
break;
default:
break;
}
}
#endif
status = IWM_ADD_STA_SUCCESS;
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(add_sta_cmd),
&add_sta_cmd, &status);
if (err == 0 && status != IWM_ADD_STA_SUCCESS)
err = EIO;
return err;
}
static int
iwm_add_aux_sta(struct iwm_softc *sc)
{
struct iwm_add_sta_cmd_v7 cmd;
int err;
uint32_t status;
err = iwm_enable_txq(sc, 0, IWM_AUX_QUEUE, IWM_TX_FIFO_MCAST);
if (err)
return err;
memset(&cmd, 0, sizeof(cmd));
cmd.sta_id = IWM_AUX_STA_ID;
cmd.mac_id_n_color =
htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_MAC_INDEX_AUX, 0));
cmd.tfd_queue_msk = htole32(1 << IWM_AUX_QUEUE);
cmd.tid_disable_tx = htole16(0xffff);
status = IWM_ADD_STA_SUCCESS;
err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd), &cmd,
&status);
if (err == 0 && status != IWM_ADD_STA_SUCCESS)
err = EIO;
return err;
}
#define IWM_PLCP_QUIET_THRESH 1
#define IWM_ACTIVE_QUIET_TIME 10
#define LONG_OUT_TIME_PERIOD 600
#define SHORT_OUT_TIME_PERIOD 200
#define SUSPEND_TIME_PERIOD 100
static uint16_t
iwm_scan_rx_chain(struct iwm_softc *sc)
{
uint16_t rx_chain;
uint8_t rx_ant;
rx_ant = iwm_fw_valid_rx_ant(sc);
rx_chain = rx_ant << IWM_PHY_RX_CHAIN_VALID_POS;
rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_POS;
rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_SEL_POS;
rx_chain |= 0x1 << IWM_PHY_RX_CHAIN_DRIVER_FORCE_POS;
return htole16(rx_chain);
}
static uint32_t
iwm_scan_rate_n_flags(struct iwm_softc *sc, int flags, int no_cck)
{
uint32_t tx_ant;
int i, ind;
for (i = 0, ind = sc->sc_scan_last_antenna;
i < IWM_RATE_MCS_ANT_NUM; i++) {
ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM;
if (iwm_fw_valid_tx_ant(sc) & (1 << ind)) {
sc->sc_scan_last_antenna = ind;
break;
}
}
tx_ant = (1 << sc->sc_scan_last_antenna) << IWM_RATE_MCS_ANT_POS;
if ((flags & IEEE80211_CHAN_2GHZ) && !no_cck)
return htole32(IWM_RATE_1M_PLCP | IWM_RATE_MCS_CCK_MSK |
tx_ant);
else
return htole32(IWM_RATE_6M_PLCP | tx_ant);
}
#ifdef notyet
/*
* If req->n_ssids > 0, it means we should do an active scan.
* In case of active scan w/o directed scan, we receive a zero-length SSID
* just to notify that this scan is active and not passive.
* In order to notify the FW of the number of SSIDs we wish to scan (including
* the zero-length one), we need to set the corresponding bits in chan->type,
* one for each SSID, and set the active bit (first). If the first SSID is
* already included in the probe template, so we need to set only
* req->n_ssids - 1 bits in addition to the first bit.
*/
static uint16_t
iwm_get_active_dwell(struct iwm_softc *sc, int flags, int n_ssids)
{
if (flags & IEEE80211_CHAN_2GHZ)
return 30 + 3 * (n_ssids + 1);
return 20 + 2 * (n_ssids + 1);
}
static uint16_t
iwm_get_passive_dwell(struct iwm_softc *sc, int flags)
{
return (flags & IEEE80211_CHAN_2GHZ) ? 100 + 20 : 100 + 10;
}
#endif
static uint8_t
iwm_lmac_scan_fill_channels(struct iwm_softc *sc,
struct iwm_scan_channel_cfg_lmac *chan, int n_ssids)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c;
uint8_t nchan;
for (nchan = 0, c = &ic->ic_channels[1];
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
nchan < sc->sc_capa_n_scan_channels;
c++) {
if (c->ic_flags == 0)
continue;
chan->channel_num = htole16(ieee80211_mhz2ieee(c->ic_freq, 0));
chan->iter_count = htole16(1);
chan->iter_interval = htole32(0);
chan->flags = htole32(IWM_UNIFIED_SCAN_CHANNEL_PARTIAL);
chan->flags |= htole32(IWM_SCAN_CHANNEL_NSSIDS(n_ssids));
if (!IEEE80211_IS_CHAN_PASSIVE(c) && n_ssids != 0)
chan->flags |= htole32(IWM_SCAN_CHANNEL_TYPE_ACTIVE);
chan++;
nchan++;
}
return nchan;
}
static uint8_t
iwm_umac_scan_fill_channels(struct iwm_softc *sc,
struct iwm_scan_channel_cfg_umac *chan, int n_ssids)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_channel *c;
uint8_t nchan;
for (nchan = 0, c = &ic->ic_channels[1];
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
nchan < sc->sc_capa_n_scan_channels;
c++) {
if (c->ic_flags == 0)
continue;
chan->channel_num = ieee80211_mhz2ieee(c->ic_freq, 0);
chan->iter_count = 1;
chan->iter_interval = htole16(0);
chan->flags = htole32(IWM_SCAN_CHANNEL_UMAC_NSSIDS(n_ssids));
chan++;
nchan++;
}
return nchan;
}
static int
iwm_fill_probe_req(struct iwm_softc *sc, struct iwm_scan_probe_req *preq)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh = (struct ieee80211_frame *)preq->buf;
struct ieee80211_rateset *rs;
size_t remain = sizeof(preq->buf);
uint8_t *frm, *pos;
memset(preq, 0, sizeof(*preq));
if (remain < sizeof(*wh) + 2 + ic->ic_des_esslen)
return ENOBUFS;
/*
* Build a probe request frame. Most of the following code is a
* copy & paste of what is done in net80211.
*/
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
*(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */
*(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */
frm = (uint8_t *)(wh + 1);
frm = ieee80211_add_ssid(frm, ic->ic_des_essid, ic->ic_des_esslen);
/* Tell the firmware where the MAC header is. */
preq->mac_header.offset = 0;
preq->mac_header.len = htole16(frm - (uint8_t *)wh);
remain -= frm - (uint8_t *)wh;
/* Fill in 2GHz IEs and tell firmware where they are. */
rs = &ic->ic_sup_rates[IEEE80211_MODE_11G];
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
if (remain < 4 + rs->rs_nrates)
return ENOBUFS;
} else if (remain < 2 + rs->rs_nrates)
return ENOBUFS;
preq->band_data[0].offset = htole16(frm - (uint8_t *)wh);
pos = frm;
frm = ieee80211_add_rates(frm, rs);
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
frm = ieee80211_add_xrates(frm, rs);
preq->band_data[0].len = htole16(frm - pos);
remain -= frm - pos;
if (isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)) {
if (remain < 3)
return ENOBUFS;
*frm++ = IEEE80211_ELEMID_DSPARMS;
*frm++ = 1;
*frm++ = 0;
remain -= 3;
}
if (sc->sc_nvm.sku_cap_band_52GHz_enable) {
/* Fill in 5GHz IEs. */
rs = &ic->ic_sup_rates[IEEE80211_MODE_11A];
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
if (remain < 4 + rs->rs_nrates)
return ENOBUFS;
} else if (remain < 2 + rs->rs_nrates)
return ENOBUFS;
preq->band_data[1].offset = htole16(frm - (uint8_t *)wh);
pos = frm;
frm = ieee80211_add_rates(frm, rs);
if (rs->rs_nrates > IEEE80211_RATE_SIZE)
frm = ieee80211_add_xrates(frm, rs);
preq->band_data[1].len = htole16(frm - pos);
remain -= frm - pos;
}
#ifndef IEEE80211_NO_HT
/* Send 11n IEs on both 2GHz and 5GHz bands. */
preq->common_data.offset = htole16(frm - (uint8_t *)wh);
pos = frm;
if (ic->ic_flags & IEEE80211_F_HTON) {
if (remain < 28)
return ENOBUFS;
frm = ieee80211_add_htcaps(frm, ic);
/* XXX add WME info? */
}
#endif
preq->common_data.len = htole16(frm - pos);
return 0;
}
static int
iwm_lmac_scan(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_host_cmd hcmd = {
.id = IWM_SCAN_OFFLOAD_REQUEST_CMD,
.len = { 0, },
.data = { NULL, },
.flags = 0,
};
struct iwm_scan_req_lmac *req;
size_t req_len;
int err;
DPRINTF(("%s: %s\n", DEVNAME(sc), __func__));
req_len = sizeof(struct iwm_scan_req_lmac) +
(sizeof(struct iwm_scan_channel_cfg_lmac) *
sc->sc_capa_n_scan_channels) + sizeof(struct iwm_scan_probe_req);
if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE)
return ENOMEM;
req = kmem_zalloc(req_len, KM_SLEEP);
if (req == NULL)
return ENOMEM;
hcmd.len[0] = (uint16_t)req_len;
hcmd.data[0] = (void *)req;
/* These timings correspond to iwlwifi's UNASSOC scan. */
req->active_dwell = 10;
req->passive_dwell = 110;
req->fragmented_dwell = 44;
req->extended_dwell = 90;
req->max_out_time = 0;
req->suspend_time = 0;
req->scan_prio = htole32(IWM_SCAN_PRIORITY_HIGH);
req->rx_chain_select = iwm_scan_rx_chain(sc);
req->iter_num = htole32(1);
req->delay = 0;
req->scan_flags = htole32(IWM_LMAC_SCAN_FLAG_PASS_ALL |
IWM_LMAC_SCAN_FLAG_ITER_COMPLETE |
IWM_LMAC_SCAN_FLAG_EXTENDED_DWELL);
if (ic->ic_des_esslen == 0)
req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PASSIVE);
else
req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PRE_CONNECTION);
if (isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT))
req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAGS_RRM_ENABLED);
req->flags = htole32(IWM_PHY_BAND_24);
if (sc->sc_nvm.sku_cap_band_52GHz_enable)
req->flags |= htole32(IWM_PHY_BAND_5);
req->filter_flags =
htole32(IWM_MAC_FILTER_ACCEPT_GRP | IWM_MAC_FILTER_IN_BEACON);
/* Tx flags 2 GHz. */
req->tx_cmd[0].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL |
IWM_TX_CMD_FLG_BT_DIS);
req->tx_cmd[0].rate_n_flags =
iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_2GHZ, 1/*XXX*/);
req->tx_cmd[0].sta_id = IWM_AUX_STA_ID;
/* Tx flags 5 GHz. */
req->tx_cmd[1].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL |
IWM_TX_CMD_FLG_BT_DIS);
req->tx_cmd[1].rate_n_flags =
iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_5GHZ, 1/*XXX*/);
req->tx_cmd[1].sta_id = IWM_AUX_STA_ID;
/* Check if we're doing an active directed scan. */
if (ic->ic_des_esslen != 0) {
req->direct_scan[0].id = IEEE80211_ELEMID_SSID;
req->direct_scan[0].len = ic->ic_des_esslen;
memcpy(req->direct_scan[0].ssid, ic->ic_des_essid,
ic->ic_des_esslen);
}
req->n_channels = iwm_lmac_scan_fill_channels(sc,
(struct iwm_scan_channel_cfg_lmac *)req->data,
ic->ic_des_esslen != 0);
err = iwm_fill_probe_req(sc,
(struct iwm_scan_probe_req *)(req->data +
(sizeof(struct iwm_scan_channel_cfg_lmac) *
sc->sc_capa_n_scan_channels)));
if (err) {
kmem_free(req, req_len);
return err;
}
/* Specify the scan plan: We'll do one iteration. */
req->schedule[0].iterations = 1;
req->schedule[0].full_scan_mul = 1;
/* Disable EBS. */
req->channel_opt[0].non_ebs_ratio = 1;
req->channel_opt[1].non_ebs_ratio = 1;
err = iwm_send_cmd(sc, &hcmd);
kmem_free(req, req_len);
return err;
}
static int
iwm_config_umac_scan(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_scan_config *scan_config;
int err, nchan;
size_t cmd_size;
struct ieee80211_channel *c;
struct iwm_host_cmd hcmd = {
.id = iwm_cmd_id(IWM_SCAN_CFG_CMD, IWM_ALWAYS_LONG_GROUP, 0),
.flags = 0,
};
static const uint32_t rates = (IWM_SCAN_CONFIG_RATE_1M |
IWM_SCAN_CONFIG_RATE_2M | IWM_SCAN_CONFIG_RATE_5M |
IWM_SCAN_CONFIG_RATE_11M | IWM_SCAN_CONFIG_RATE_6M |
IWM_SCAN_CONFIG_RATE_9M | IWM_SCAN_CONFIG_RATE_12M |
IWM_SCAN_CONFIG_RATE_18M | IWM_SCAN_CONFIG_RATE_24M |
IWM_SCAN_CONFIG_RATE_36M | IWM_SCAN_CONFIG_RATE_48M |
IWM_SCAN_CONFIG_RATE_54M);
cmd_size = sizeof(*scan_config) + sc->sc_capa_n_scan_channels;
scan_config = kmem_zalloc(cmd_size, KM_SLEEP);
if (scan_config == NULL)
return ENOMEM;
scan_config->tx_chains = htole32(iwm_fw_valid_tx_ant(sc));
scan_config->rx_chains = htole32(iwm_fw_valid_rx_ant(sc));
scan_config->legacy_rates = htole32(rates |
IWM_SCAN_CONFIG_SUPPORTED_RATE(rates));
/* These timings correspond to iwlwifi's UNASSOC scan. */
scan_config->dwell_active = 10;
scan_config->dwell_passive = 110;
scan_config->dwell_fragmented = 44;
scan_config->dwell_extended = 90;
scan_config->out_of_channel_time = htole32(0);
scan_config->suspend_time = htole32(0);
IEEE80211_ADDR_COPY(scan_config->mac_addr, sc->sc_ic.ic_myaddr);
scan_config->bcast_sta_id = IWM_AUX_STA_ID;
scan_config->channel_flags = IWM_CHANNEL_FLAG_EBS |
IWM_CHANNEL_FLAG_ACCURATE_EBS | IWM_CHANNEL_FLAG_EBS_ADD |
IWM_CHANNEL_FLAG_PRE_SCAN_PASSIVE2ACTIVE;
for (c = &ic->ic_channels[1], nchan = 0;
c <= &ic->ic_channels[IEEE80211_CHAN_MAX] &&
nchan < sc->sc_capa_n_scan_channels; c++) {
if (c->ic_flags == 0)
continue;
scan_config->channel_array[nchan++] =
ieee80211_mhz2ieee(c->ic_freq, 0);
}
scan_config->flags = htole32(IWM_SCAN_CONFIG_FLAG_ACTIVATE |
IWM_SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS |
IWM_SCAN_CONFIG_FLAG_SET_TX_CHAINS |
IWM_SCAN_CONFIG_FLAG_SET_RX_CHAINS |
IWM_SCAN_CONFIG_FLAG_SET_AUX_STA_ID |
IWM_SCAN_CONFIG_FLAG_SET_ALL_TIMES |
IWM_SCAN_CONFIG_FLAG_SET_LEGACY_RATES |
IWM_SCAN_CONFIG_FLAG_SET_MAC_ADDR |
IWM_SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS|
IWM_SCAN_CONFIG_N_CHANNELS(nchan) |
IWM_SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED);
hcmd.data[0] = scan_config;
hcmd.len[0] = cmd_size;
err = iwm_send_cmd(sc, &hcmd);
kmem_free(scan_config, cmd_size);
return err;
}
static int
iwm_umac_scan(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_host_cmd hcmd = {
.id = iwm_cmd_id(IWM_SCAN_REQ_UMAC, IWM_ALWAYS_LONG_GROUP, 0),
.len = { 0, },
.data = { NULL, },
.flags = 0,
};
struct iwm_scan_req_umac *req;
struct iwm_scan_req_umac_tail *tail;
size_t req_len;
int err;
DPRINTF(("%s: %s\n", DEVNAME(sc), __func__));
req_len = sizeof(struct iwm_scan_req_umac) +
(sizeof(struct iwm_scan_channel_cfg_umac) *
sc->sc_capa_n_scan_channels) +
sizeof(struct iwm_scan_req_umac_tail);
if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE)
return ENOMEM;
req = kmem_zalloc(req_len, KM_SLEEP);
if (req == NULL)
return ENOMEM;
hcmd.len[0] = (uint16_t)req_len;
hcmd.data[0] = (void *)req;
/* These timings correspond to iwlwifi's UNASSOC scan. */
req->active_dwell = 10;
req->passive_dwell = 110;
req->fragmented_dwell = 44;
req->extended_dwell = 90;
req->max_out_time = 0;
req->suspend_time = 0;
req->scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH);
req->ooc_priority = htole32(IWM_SCAN_PRIORITY_HIGH);
req->n_channels = iwm_umac_scan_fill_channels(sc,
(struct iwm_scan_channel_cfg_umac *)req->data,
ic->ic_des_esslen != 0);
req->general_flags = htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASS_ALL |
IWM_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE |
IWM_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL);
tail = (struct iwm_scan_req_umac_tail *)(req->data +
sizeof(struct iwm_scan_channel_cfg_umac) *
sc->sc_capa_n_scan_channels);
/* Check if we're doing an active directed scan. */
if (ic->ic_des_esslen != 0) {
tail->direct_scan[0].id = IEEE80211_ELEMID_SSID;
tail->direct_scan[0].len = ic->ic_des_esslen;
memcpy(tail->direct_scan[0].ssid, ic->ic_des_essid,
ic->ic_des_esslen);
req->general_flags |=
htole32(IWM_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT);
} else
req->general_flags |= htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASSIVE);
if (isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT))
req->general_flags |=
htole32(IWM_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED);
err = iwm_fill_probe_req(sc, &tail->preq);
if (err) {
kmem_free(req, req_len);
return err;
}
/* Specify the scan plan: We'll do one iteration. */
tail->schedule[0].interval = 0;
tail->schedule[0].iter_count = 1;
err = iwm_send_cmd(sc, &hcmd);
kmem_free(req, req_len);
return err;
}
static uint8_t
iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx)
{
int i;
uint8_t rval;
for (i = 0; i < rs->rs_nrates; i++) {
rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL);
if (rval == iwm_rates[ridx].rate)
return rs->rs_rates[i];
}
return 0;
}
static void
iwm_ack_rates(struct iwm_softc *sc, struct iwm_node *in, int *cck_rates,
int *ofdm_rates)
{
struct ieee80211_node *ni = &in->in_ni;
struct ieee80211_rateset *rs = &ni->ni_rates;
int lowest_present_ofdm = -1;
int lowest_present_cck = -1;
uint8_t cck = 0;
uint8_t ofdm = 0;
int i;
if (ni->ni_chan == IEEE80211_CHAN_ANYC ||
IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
for (i = IWM_FIRST_CCK_RATE; i < IWM_FIRST_OFDM_RATE; i++) {
if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0)
continue;
cck |= (1 << i);
if (lowest_present_cck == -1 || lowest_present_cck > i)
lowest_present_cck = i;
}
}
for (i = IWM_FIRST_OFDM_RATE; i <= IWM_LAST_NON_HT_RATE; i++) {
if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0)
continue;
ofdm |= (1 << (i - IWM_FIRST_OFDM_RATE));
if (lowest_present_ofdm == -1 || lowest_present_ofdm > i)
lowest_present_ofdm = i;
}
/*
* Now we've got the basic rates as bitmaps in the ofdm and cck
* variables. This isn't sufficient though, as there might not
* be all the right rates in the bitmap. E.g. if the only basic
* rates are 5.5 Mbps and 11 Mbps, we still need to add 1 Mbps
* and 6 Mbps because the 802.11-2007 standard says in 9.6:
*
* [...] a STA responding to a received frame shall transmit
* its Control Response frame [...] at the highest rate in the
* BSSBasicRateSet parameter that is less than or equal to the
* rate of the immediately previous frame in the frame exchange
* sequence ([...]) and that is of the same modulation class
* ([...]) as the received frame. If no rate contained in the
* BSSBasicRateSet parameter meets these conditions, then the
* control frame sent in response to a received frame shall be
* transmitted at the highest mandatory rate of the PHY that is
* less than or equal to the rate of the received frame, and
* that is of the same modulation class as the received frame.
*
* As a consequence, we need to add all mandatory rates that are
* lower than all of the basic rates to these bitmaps.
*/
if (IWM_RATE_24M_INDEX < lowest_present_ofdm)
ofdm |= IWM_RATE_BIT_MSK(24) >> IWM_FIRST_OFDM_RATE;
if (IWM_RATE_12M_INDEX < lowest_present_ofdm)
ofdm |= IWM_RATE_BIT_MSK(12) >> IWM_FIRST_OFDM_RATE;
/* 6M already there or needed so always add */
ofdm |= IWM_RATE_BIT_MSK(6) >> IWM_FIRST_OFDM_RATE;
/*
* CCK is a bit more complex with DSSS vs. HR/DSSS vs. ERP.
* Note, however:
* - if no CCK rates are basic, it must be ERP since there must
* be some basic rates at all, so they're OFDM => ERP PHY
* (or we're in 5 GHz, and the cck bitmap will never be used)
* - if 11M is a basic rate, it must be ERP as well, so add 5.5M
* - if 5.5M is basic, 1M and 2M are mandatory
* - if 2M is basic, 1M is mandatory
* - if 1M is basic, that's the only valid ACK rate.
* As a consequence, it's not as complicated as it sounds, just add
* any lower rates to the ACK rate bitmap.
*/
if (IWM_RATE_11M_INDEX < lowest_present_cck)
cck |= IWM_RATE_BIT_MSK(11) >> IWM_FIRST_CCK_RATE;
if (IWM_RATE_5M_INDEX < lowest_present_cck)
cck |= IWM_RATE_BIT_MSK(5) >> IWM_FIRST_CCK_RATE;
if (IWM_RATE_2M_INDEX < lowest_present_cck)
cck |= IWM_RATE_BIT_MSK(2) >> IWM_FIRST_CCK_RATE;
/* 1M already there or needed so always add */
cck |= IWM_RATE_BIT_MSK(1) >> IWM_FIRST_CCK_RATE;
*cck_rates = cck;
*ofdm_rates = ofdm;
}
static void
iwm_mac_ctxt_cmd_common(struct iwm_softc *sc, struct iwm_node *in,
struct iwm_mac_ctx_cmd *cmd, uint32_t action, int assoc)
{
#define IWM_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
int cck_ack_rates, ofdm_ack_rates;
int i;
cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id,
in->in_color));
cmd->action = htole32(action);
cmd->mac_type = htole32(IWM_FW_MAC_TYPE_BSS_STA);
cmd->tsf_id = htole32(IWM_TSF_ID_A);
IEEE80211_ADDR_COPY(cmd->node_addr, ic->ic_myaddr);
IEEE80211_ADDR_COPY(cmd->bssid_addr, ni->ni_bssid);
iwm_ack_rates(sc, in, &cck_ack_rates, &ofdm_ack_rates);
cmd->cck_rates = htole32(cck_ack_rates);
cmd->ofdm_rates = htole32(ofdm_ack_rates);
cmd->cck_short_preamble
= htole32((ic->ic_flags & IEEE80211_F_SHPREAMBLE)
? IWM_MAC_FLG_SHORT_PREAMBLE : 0);
cmd->short_slot
= htole32((ic->ic_flags & IEEE80211_F_SHSLOT)
? IWM_MAC_FLG_SHORT_SLOT : 0);
for (i = 0; i < WME_NUM_AC; i++) {
struct wmeParams *wmep = &ic->ic_wme.wme_params[i];
int txf = iwm_ac_to_tx_fifo[i];
cmd->ac[txf].cw_min = htole16(IWM_EXP2(wmep->wmep_logcwmin));
cmd->ac[txf].cw_max = htole16(IWM_EXP2(wmep->wmep_logcwmax));
cmd->ac[txf].aifsn = wmep->wmep_aifsn;
cmd->ac[txf].fifos_mask = (1 << txf);
cmd->ac[txf].edca_txop = htole16(wmep->wmep_txopLimit * 32);
}
if (ni->ni_flags & IEEE80211_NODE_QOS)
cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_UPDATE_EDCA);
#ifndef IEEE80211_NO_HT
if (ni->ni_flags & IEEE80211_NODE_HT) {
enum ieee80211_htprot htprot =
(ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK);
switch (htprot) {
case IEEE80211_HTPROT_NONE:
break;
case IEEE80211_HTPROT_NONMEMBER:
case IEEE80211_HTPROT_NONHT_MIXED:
cmd->protection_flags |=
htole32(IWM_MAC_PROT_FLG_HT_PROT);
case IEEE80211_HTPROT_20MHZ:
cmd->protection_flags |=
htole32(IWM_MAC_PROT_FLG_HT_PROT |
IWM_MAC_PROT_FLG_FAT_PROT);
break;
default:
break;
}
cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_TGN);
}
#endif
if (ic->ic_flags & IEEE80211_F_USEPROT)
cmd->protection_flags |= htole32(IWM_MAC_PROT_FLG_TGG_PROTECT);
cmd->filter_flags = htole32(IWM_MAC_FILTER_ACCEPT_GRP);
#undef IWM_EXP2
}
static void
iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *sc, struct iwm_node *in,
struct iwm_mac_data_sta *sta, int assoc)
{
struct ieee80211_node *ni = &in->in_ni;
uint32_t dtim_off;
uint64_t tsf;
dtim_off = ni->ni_dtim_count * ni->ni_intval * IEEE80211_DUR_TU;
tsf = le64toh(ni->ni_tstamp.tsf);
sta->is_assoc = htole32(assoc);
sta->dtim_time = htole32(ni->ni_rstamp + dtim_off);
sta->dtim_tsf = htole64(tsf + dtim_off);
sta->bi = htole32(ni->ni_intval);
sta->bi_reciprocal = htole32(iwm_reciprocal(ni->ni_intval));
sta->dtim_interval = htole32(ni->ni_intval * ni->ni_dtim_period);
sta->dtim_reciprocal = htole32(iwm_reciprocal(sta->dtim_interval));
sta->listen_interval = htole32(10);
sta->assoc_id = htole32(ni->ni_associd);
sta->assoc_beacon_arrive_time = htole32(ni->ni_rstamp);
}
static int
iwm_mac_ctxt_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action,
int assoc)
{
struct ieee80211_node *ni = &in->in_ni;
struct iwm_mac_ctx_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
iwm_mac_ctxt_cmd_common(sc, in, &cmd, action, assoc);
/* Allow beacons to pass through as long as we are not associated or we
* do not have dtim period information */
if (!assoc || !ni->ni_associd || !ni->ni_dtim_period)
cmd.filter_flags |= htole32(IWM_MAC_FILTER_IN_BEACON);
else
iwm_mac_ctxt_cmd_fill_sta(sc, in, &cmd.sta, assoc);
return iwm_send_cmd_pdu(sc, IWM_MAC_CONTEXT_CMD, 0, sizeof(cmd), &cmd);
}
#define IWM_MISSED_BEACONS_THRESHOLD 8
static void
iwm_rx_missed_beacons_notif(struct iwm_softc *sc,
struct iwm_rx_packet *pkt, struct iwm_rx_data *data)
{
struct iwm_missed_beacons_notif *mb = (void *)pkt->data;
int s;
DPRINTF(("missed bcn mac_id=%u, consecutive=%u (%u, %u, %u)\n",
le32toh(mb->mac_id),
le32toh(mb->consec_missed_beacons),
le32toh(mb->consec_missed_beacons_since_last_rx),
le32toh(mb->num_recvd_beacons),
le32toh(mb->num_expected_beacons)));
/*
* TODO: the threshold should be adjusted based on latency conditions,
* and/or in case of a CS flow on one of the other AP vifs.
*/
if (le32toh(mb->consec_missed_beacons_since_last_rx) >
IWM_MISSED_BEACONS_THRESHOLD) {
s = splnet();
ieee80211_beacon_miss(&sc->sc_ic);
splx(s);
}
}
static int
iwm_update_quotas(struct iwm_softc *sc, struct iwm_node *in)
{
struct iwm_time_quota_cmd cmd;
int i, idx, num_active_macs, quota, quota_rem;
int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, };
int n_ifs[IWM_MAX_BINDINGS] = {0, };
uint16_t id;
memset(&cmd, 0, sizeof(cmd));
/* currently, PHY ID == binding ID */
if (in) {
id = in->in_phyctxt->id;
KASSERT(id < IWM_MAX_BINDINGS);
colors[id] = in->in_phyctxt->color;
if (1)
n_ifs[id] = 1;
}
/*
* The FW's scheduling session consists of
* IWM_MAX_QUOTA fragments. Divide these fragments
* equally between all the bindings that require quota
*/
num_active_macs = 0;
for (i = 0; i < IWM_MAX_BINDINGS; i++) {
cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID);
num_active_macs += n_ifs[i];
}
quota = 0;
quota_rem = 0;
if (num_active_macs) {
quota = IWM_MAX_QUOTA / num_active_macs;
quota_rem = IWM_MAX_QUOTA % num_active_macs;
}
for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) {
if (colors[i] < 0)
continue;
cmd.quotas[idx].id_and_color =
htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i]));
if (n_ifs[i] <= 0) {
cmd.quotas[idx].quota = htole32(0);
cmd.quotas[idx].max_duration = htole32(0);
} else {
cmd.quotas[idx].quota = htole32(quota * n_ifs[i]);
cmd.quotas[idx].max_duration = htole32(0);
}
idx++;
}
/* Give the remainder of the session to the first binding */
cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem);
return iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, 0, sizeof(cmd), &cmd);
}
static int
iwm_auth(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
uint32_t duration;
int err;
err = iwm_sf_config(sc, IWM_SF_FULL_ON);
if (err)
return err;
err = iwm_allow_mcast(sc);
if (err)
return err;
sc->sc_phyctxt[0].channel = in->in_ni.ni_chan;
err = iwm_phy_ctxt_cmd(sc, &sc->sc_phyctxt[0], 1, 1,
IWM_FW_CTXT_ACTION_MODIFY, 0);
if (err)
return err;
in->in_phyctxt = &sc->sc_phyctxt[0];
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD, 0);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not add MAC context (error %d)\n", err);
return err;
}
err = iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD);
if (err)
return err;
err = iwm_add_sta_cmd(sc, in, 0);
if (err)
return err;
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 0);
if (err) {
aprint_error_dev(sc->sc_dev, "failed to update MAC\n");
return err;
}
/*
* Prevent the FW from wandering off channel during association
* by "protecting" the session with a time event.
*/
if (in->in_ni.ni_intval)
duration = in->in_ni.ni_intval * 2;
else
duration = IEEE80211_DUR_TU;
iwm_protect_session(sc, in, duration, in->in_ni.ni_intval / 2);
DELAY(100);
return 0;
}
static int
iwm_assoc(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
int err;
err = iwm_add_sta_cmd(sc, in, 1);
if (err)
return err;
return 0;
}
static struct ieee80211_node *
iwm_node_alloc(struct ieee80211_node_table *nt)
{
return malloc(sizeof(struct iwm_node), M_80211_NODE, M_NOWAIT | M_ZERO);
}
static void
iwm_calib_timeout(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
#ifndef IEEE80211_NO_HT
struct ieee80211_node *ni = &in->in_ni;
int otxrate;
#endif
int s;
s = splnet();
if ((ic->ic_fixed_rate == -1
#ifndef IEEE80211_NO_HT
|| ic->ic_fixed_mcs == -1
#endif
) &&
ic->ic_opmode == IEEE80211_M_STA && ic->ic_bss) {
#ifndef IEEE80211_NO_HT
if (ni->ni_flags & IEEE80211_NODE_HT)
otxrate = ni->ni_txmcs;
else
otxrate = ni->ni_txrate;
#endif
ieee80211_amrr_choose(&sc->sc_amrr, &in->in_ni, &in->in_amn);
#ifndef IEEE80211_NO_HT
/*
* If AMRR has chosen a new TX rate we must update
* the firwmare's LQ rate table from process context.
*/
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
otxrate != ni->ni_txmcs)
softint_schedule(sc->setrates_task);
else if (otxrate != ni->ni_txrate)
softint_schedule(sc->setrates_task);
#endif
}
splx(s);
callout_schedule(&sc->sc_calib_to, mstohz(500));
}
#ifndef IEEE80211_NO_HT
static void
iwm_setrates_task(void *arg)
{
struct iwm_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
/* Update rates table based on new TX rate determined by AMRR. */
iwm_setrates(in);
}
static int
iwm_setrates(struct iwm_node *in)
{
struct ieee80211_node *ni = &in->in_ni;
struct ieee80211com *ic = ni->ni_ic;
struct iwm_softc *sc = IC2IFP(ic)->if_softc;
struct iwm_lq_cmd *lq = &in->in_lq;
struct ieee80211_rateset *rs = &ni->ni_rates;
int i, j, ridx, ridx_min, tab = 0;
#ifndef IEEE80211_NO_HT
int sgi_ok;
#endif
struct iwm_host_cmd cmd = {
.id = IWM_LQ_CMD,
.len = { sizeof(in->in_lq), },
};
memset(lq, 0, sizeof(*lq));
lq->sta_id = IWM_STATION_ID;
if (ic->ic_flags & IEEE80211_F_USEPROT)
lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK;
#ifndef IEEE80211_NO_HT
sgi_ok = ((ni->ni_flags & IEEE80211_NODE_HT) &&
(ni->ni_htcaps & IEEE80211_HTCAP_SGI20));
#endif
/*
* Fill the LQ rate selection table with legacy and/or HT rates
* in descending order, i.e. with the node's current TX rate first.
* In cases where throughput of an HT rate corresponds to a legacy
* rate it makes no sense to add both. We rely on the fact that
* iwm_rates is laid out such that equivalent HT/legacy rates share
* the same IWM_RATE_*_INDEX value. Also, rates not applicable to
* legacy/HT are assumed to be marked with an 'invalid' PLCP value.
*/
j = 0;
ridx_min = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ?
IWM_RIDX_OFDM : IWM_RIDX_CCK;
for (ridx = IWM_RIDX_MAX; ridx >= ridx_min; ridx--) {
if (j >= __arraycount(lq->rs_table))
break;
tab = 0;
#ifndef IEEE80211_NO_HT
if ((ni->ni_flags & IEEE80211_NODE_HT) &&
iwm_rates[ridx].ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP) {
for (i = ni->ni_txmcs; i >= 0; i--) {
if (isclr(ni->ni_rxmcs, i))
continue;
if (ridx == iwm_mcs2ridx[i]) {
tab = iwm_rates[ridx].ht_plcp;
tab |= IWM_RATE_MCS_HT_MSK;
if (sgi_ok)
tab |= IWM_RATE_MCS_SGI_MSK;
break;
}
}
}
#endif
if (tab == 0 && iwm_rates[ridx].plcp != IWM_RATE_INVM_PLCP) {
for (i = ni->ni_txrate; i >= 0; i--) {
if (iwm_rates[ridx].rate == (rs->rs_rates[i] &
IEEE80211_RATE_VAL)) {
tab = iwm_rates[ridx].plcp;
break;
}
}
}
if (tab == 0)
continue;
tab |= 1 << IWM_RATE_MCS_ANT_POS;
if (IWM_RIDX_IS_CCK(ridx))
tab |= IWM_RATE_MCS_CCK_MSK;
DPRINTFN(2, ("station rate %d %x\n", i, tab));
lq->rs_table[j++] = htole32(tab);
}
/* Fill the rest with the lowest possible rate */
i = j > 0 ? j - 1 : 0;
while (j < __arraycount(lq->rs_table))
lq->rs_table[j++] = lq->rs_table[i];
lq->single_stream_ant_msk = IWM_ANT_A;
lq->dual_stream_ant_msk = IWM_ANT_AB;
lq->agg_time_limit = htole16(4000); /* 4ms */
lq->agg_disable_start_th = 3;
#ifdef notyet
lq->agg_frame_cnt_limit = 0x3f;
#else
lq->agg_frame_cnt_limit = 1; /* tx agg disabled */
#endif
cmd.data[0] = &in->in_lq;
return iwm_send_cmd(sc, &cmd);
}
#endif
static int
iwm_media_change(struct ifnet *ifp)
{
struct iwm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t rate, ridx;
int err;
err = ieee80211_media_change(ifp);
if (err != ENETRESET)
return err;
#ifndef IEEE80211_NO_HT
if (ic->ic_fixed_mcs != -1)
sc->sc_fixed_ridx = iwm_mcs2ridx[ic->ic_fixed_mcs];
else
#endif
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
/* Map 802.11 rate to HW rate index. */
for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++)
if (iwm_rates[ridx].rate == rate)
break;
sc->sc_fixed_ridx = ridx;
}
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
iwm_stop(ifp, 0);
err = iwm_init(ifp);
}
return err;
}
static int
iwm_do_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = IC2IFP(ic);
struct iwm_softc *sc = ifp->if_softc;
enum ieee80211_state ostate = ic->ic_state;
struct iwm_node *in;
int err;
DPRINTF(("switching state %s->%s\n", ieee80211_state_name[ostate],
ieee80211_state_name[nstate]));
if (ostate == IEEE80211_S_SCAN && nstate != ostate)
iwm_led_blink_stop(sc);
if (ostate == IEEE80211_S_RUN && nstate != ostate)
iwm_disable_beacon_filter(sc);
/* Reset the device if moving out of AUTH, ASSOC, or RUN. */
/* XXX Is there a way to switch states without a full reset? */
if (ostate > IEEE80211_S_SCAN && nstate < ostate) {
/*
* Upon receiving a deauth frame from AP the net80211 stack
* puts the driver into AUTH state. This will fail with this
* driver so bring the FSM from RUN to SCAN in this case.
*/
if (nstate != IEEE80211_S_INIT) {
DPRINTF(("Force transition to INIT; MGT=%d\n", arg));
/* Always pass arg as -1 since we can't Tx right now. */
sc->sc_newstate(ic, IEEE80211_S_INIT, -1);
iwm_stop(ifp, 0);
iwm_init(ifp);
return 0;
}
iwm_stop_device(sc);
iwm_init_hw(sc);
}
switch (nstate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_SCAN:
if (ostate == nstate &&
ISSET(sc->sc_flags, IWM_FLAG_SCANNING))
return 0;
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN))
err = iwm_umac_scan(sc);
else
err = iwm_lmac_scan(sc);
if (err) {
DPRINTF(("%s: could not initiate scan: %d\n",
DEVNAME(sc), err));
return err;
}
SET(sc->sc_flags, IWM_FLAG_SCANNING);
ic->ic_state = nstate;
iwm_led_blink_start(sc);
return 0;
case IEEE80211_S_AUTH:
err = iwm_auth(sc);
if (err) {
DPRINTF(("%s: could not move to auth state: %d\n",
DEVNAME(sc), err));
return err;
}
break;
case IEEE80211_S_ASSOC:
err = iwm_assoc(sc);
if (err) {
DPRINTF(("%s: failed to associate: %d\n", DEVNAME(sc),
err));
return err;
}
break;
case IEEE80211_S_RUN:
in = (struct iwm_node *)ic->ic_bss;
/* We have now been assigned an associd by the AP. */
err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 1);
if (err) {
aprint_error_dev(sc->sc_dev, "failed to update MAC\n");
return err;
}
err = iwm_power_update_device(sc);
if (err) {
aprint_error_dev(sc->sc_dev,
"could send power command (error %d)\n", err);
return err;
}
#ifdef notyet
/*
* Disabled for now. Default beacon filter settings
* prevent net80211 from getting ERP and HT protection
* updates from beacons.
*/
err = iwm_enable_beacon_filter(sc, in);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not enable beacon filter\n");
return err;
}
#endif
err = iwm_power_mac_update_mode(sc, in);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not update MAC power (error %d)\n", err);
return err;
}
err = iwm_update_quotas(sc, in);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not update quotas (error %d)\n", err);
return err;
}
ieee80211_amrr_node_init(&sc->sc_amrr, &in->in_amn);
/* Start at lowest available bit-rate, AMRR will raise. */
in->in_ni.ni_txrate = 0;
#ifndef IEEE80211_NO_HT
in->in_ni.ni_txmcs = 0;
iwm_setrates(in);
#endif
callout_schedule(&sc->sc_calib_to, mstohz(500));
iwm_led_enable(sc);
break;
default:
break;
}
return sc->sc_newstate(ic, nstate, arg);
}
static void
iwm_newstate_cb(struct work *wk, void *v)
{
struct iwm_softc *sc = v;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_newstate_state *iwmns = (struct iwm_newstate_state *)wk;
enum ieee80211_state nstate = iwmns->ns_nstate;
int generation = iwmns->ns_generation;
int arg = iwmns->ns_arg;
int s;
kmem_free(iwmns, sizeof(*iwmns));
s = splnet();
DPRINTF(("Prepare to switch state %d->%d\n", ic->ic_state, nstate));
if (sc->sc_generation != generation) {
DPRINTF(("newstate_cb: someone pulled the plug meanwhile\n"));
if (nstate == IEEE80211_S_INIT) {
DPRINTF(("newstate_cb: nstate == IEEE80211_S_INIT: "
"calling sc_newstate()\n"));
(void) sc->sc_newstate(ic, nstate, arg);
}
} else
(void) iwm_do_newstate(ic, nstate, arg);
splx(s);
}
static int
iwm_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct iwm_newstate_state *iwmns;
struct ifnet *ifp = IC2IFP(ic);
struct iwm_softc *sc = ifp->if_softc;
callout_stop(&sc->sc_calib_to);
iwmns = kmem_intr_alloc(sizeof(*iwmns), KM_NOSLEEP);
if (!iwmns) {
DPRINTF(("%s: allocating state cb mem failed\n", DEVNAME(sc)));
return ENOMEM;
}
iwmns->ns_nstate = nstate;
iwmns->ns_arg = arg;
iwmns->ns_generation = sc->sc_generation;
workqueue_enqueue(sc->sc_nswq, &iwmns->ns_wk, NULL);
return 0;
}
static void
iwm_endscan(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int s;
DPRINTF(("%s: scan ended\n", DEVNAME(sc)));
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_end_scan(ic);
splx(s);
}
/*
* Aging and idle timeouts for the different possible scenarios
* in default configuration
*/
static const uint32_t
iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
{
htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF),
htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF),
htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_MCAST_AGING_TIMER_DEF),
htole32(IWM_SF_MCAST_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_BA_AGING_TIMER_DEF),
htole32(IWM_SF_BA_IDLE_TIMER_DEF)
},
{
htole32(IWM_SF_TX_RE_AGING_TIMER_DEF),
htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF)
},
};
/*
* Aging and idle timeouts for the different possible scenarios
* in single BSS MAC configuration.
*/
static const uint32_t
iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = {
{
htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER),
htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER)
},
{
htole32(IWM_SF_AGG_UNICAST_AGING_TIMER),
htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER)
},
{
htole32(IWM_SF_MCAST_AGING_TIMER),
htole32(IWM_SF_MCAST_IDLE_TIMER)
},
{
htole32(IWM_SF_BA_AGING_TIMER),
htole32(IWM_SF_BA_IDLE_TIMER)
},
{
htole32(IWM_SF_TX_RE_AGING_TIMER),
htole32(IWM_SF_TX_RE_IDLE_TIMER)
},
};
static void
iwm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd,
struct ieee80211_node *ni)
{
int i, j, watermark;
sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN);
/*
* If we are in association flow - check antenna configuration
* capabilities of the AP station, and choose the watermark accordingly.
*/
if (ni) {
#ifndef IEEE80211_NO_HT
if (ni->ni_flags & IEEE80211_NODE_HT) {
#ifdef notyet
if (ni->ni_rxmcs[2] != 0)
watermark = IWM_SF_W_MARK_MIMO3;
else if (ni->ni_rxmcs[1] != 0)
watermark = IWM_SF_W_MARK_MIMO2;
else
#endif
watermark = IWM_SF_W_MARK_SISO;
} else
#endif
watermark = IWM_SF_W_MARK_LEGACY;
/* default watermark value for unassociated mode. */
} else {
watermark = IWM_SF_W_MARK_MIMO2;
}
sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark);
for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) {
for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) {
sf_cmd->long_delay_timeouts[i][j] =
htole32(IWM_SF_LONG_DELAY_AGING_TIMER);
}
}
if (ni) {
memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout,
sizeof(iwm_sf_full_timeout));
} else {
memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def,
sizeof(iwm_sf_full_timeout_def));
}
}
static int
iwm_sf_config(struct iwm_softc *sc, int new_state)
{
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_sf_cfg_cmd sf_cmd = {
.state = htole32(IWM_SF_FULL_ON),
};
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF);
switch (new_state) {
case IWM_SF_UNINIT:
case IWM_SF_INIT_OFF:
iwm_fill_sf_command(sc, &sf_cmd, NULL);
break;
case IWM_SF_FULL_ON:
iwm_fill_sf_command(sc, &sf_cmd, ic->ic_bss);
break;
default:
return EINVAL;
}
return iwm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC,
sizeof(sf_cmd), &sf_cmd);
}
static int
iwm_send_bt_init_conf(struct iwm_softc *sc)
{
struct iwm_bt_coex_cmd bt_cmd;
bt_cmd.mode = htole32(IWM_BT_COEX_WIFI);
bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET);
return iwm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd), &bt_cmd);
}
static bool
iwm_is_lar_supported(struct iwm_softc *sc)
{
bool nvm_lar = sc->sc_nvm.lar_enabled;
bool tlv_lar = isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_LAR_SUPPORT);
if (iwm_lar_disable)
return false;
/*
* Enable LAR only if it is supported by the FW (TLV) &&
* enabled in the NVM
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
return nvm_lar && tlv_lar;
else
return tlv_lar;
}
static int
iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2)
{
struct iwm_mcc_update_cmd mcc_cmd;
struct iwm_host_cmd hcmd = {
.id = IWM_MCC_UPDATE_CMD,
.flags = IWM_CMD_WANT_SKB,
.data = { &mcc_cmd },
};
int err;
int resp_v2 = isset(sc->sc_enabled_capa,
IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2);
if (!iwm_is_lar_supported(sc)) {
DPRINTF(("%s: no LAR support\n", __func__));
return 0;
}
memset(&mcc_cmd, 0, sizeof(mcc_cmd));
mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]);
if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) ||
isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC))
mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT;
else
mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW;
if (resp_v2)
hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd);
else
hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1);
err = iwm_send_cmd(sc, &hcmd);
if (err)
return err;
iwm_free_resp(sc, &hcmd);
return 0;
}
static void
iwm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff)
{
struct iwm_host_cmd cmd = {
.id = IWM_REPLY_THERMAL_MNG_BACKOFF,
.len = { sizeof(uint32_t), },
.data = { &backoff, },
};
iwm_send_cmd(sc, &cmd);
}
static int
iwm_init_hw(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int err, i, ac;
err = iwm_preinit(sc);
if (err)
return err;
err = iwm_start_hw(sc);
if (err) {
aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
return err;
}
err = iwm_run_init_mvm_ucode(sc, 0);
if (err)
return err;
/* Should stop and start HW since INIT image just loaded. */
iwm_stop_device(sc);
err = iwm_start_hw(sc);
if (err) {
aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
return err;
}
/* Restart, this time with the regular firmware */
err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not load firmware (error %d)\n", err);
goto err;
}
err = iwm_send_bt_init_conf(sc);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not init bt coex (error %d)\n", err);
goto err;
}
err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc));
if (err) {
aprint_error_dev(sc->sc_dev,
"could not init tx ant config (error %d)\n", err);
goto err;
}
/* Send phy db control command and then phy db calibration*/
err = iwm_send_phy_db_data(sc);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not init phy db (error %d)\n", err);
goto err;
}
err = iwm_send_phy_cfg_cmd(sc);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not send phy config (error %d)\n", err);
goto err;
}
/* Add auxiliary station for scanning */
err = iwm_add_aux_sta(sc);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not add aux station (error %d)\n", err);
goto err;
}
for (i = 0; i < IWM_NUM_PHY_CTX; i++) {
/*
* The channel used here isn't relevant as it's
* going to be overwritten in the other flows.
* For now use the first channel we have.
*/
sc->sc_phyctxt[i].channel = &ic->ic_channels[1];
err = iwm_phy_ctxt_cmd(sc, &sc->sc_phyctxt[i], 1, 1,
IWM_FW_CTXT_ACTION_ADD, 0);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not add phy context %d (error %d)\n",
i, err);
goto err;
}
}
/* Initialize tx backoffs to the minimum. */
if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000)
iwm_tt_tx_backoff(sc, 0);
err = iwm_power_update_device(sc);
if (err) {
aprint_error_dev(sc->sc_dev,
"could send power command (error %d)\n", err);
goto err;
}
err = iwm_send_update_mcc_cmd(sc, iwm_default_mcc);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not init LAR (error %d)\n", err);
goto err;
}
if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) {
err = iwm_config_umac_scan(sc);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not configure scan (error %d)\n", err);
goto err;
}
}
for (ac = 0; ac < WME_NUM_AC; ac++) {
err = iwm_enable_txq(sc, IWM_STATION_ID, ac,
iwm_ac_to_tx_fifo[ac]);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not enable Tx queue %d (error %d)\n",
i, err);
goto err;
}
}
err = iwm_disable_beacon_filter(sc);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not disable beacon filter (error %d)\n", err);
goto err;
}
return 0;
err:
iwm_stop_device(sc);
return err;
}
/* Allow multicast from our BSSID. */
static int
iwm_allow_mcast(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct iwm_mcast_filter_cmd *cmd;
size_t size;
int err;
size = roundup(sizeof(*cmd), 4);
cmd = kmem_intr_zalloc(size, KM_NOSLEEP);
if (cmd == NULL)
return ENOMEM;
cmd->filter_own = 1;
cmd->port_id = 0;
cmd->count = 0;
cmd->pass_all = 1;
IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid);
err = iwm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD, 0, size, cmd);
kmem_intr_free(cmd, size);
return err;
}
static int
iwm_init(struct ifnet *ifp)
{
struct iwm_softc *sc = ifp->if_softc;
int err;
if (ISSET(sc->sc_flags, IWM_FLAG_HW_INITED))
return 0;
sc->sc_generation++;
sc->sc_flags &= ~IWM_FLAG_STOPPED;
err = iwm_init_hw(sc);
if (err) {
iwm_stop(ifp, 1);
return err;
}
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
ieee80211_begin_scan(&sc->sc_ic, 0);
SET(sc->sc_flags, IWM_FLAG_HW_INITED);
return 0;
}
static void
iwm_start(struct ifnet *ifp)
{
struct iwm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ether_header *eh;
struct mbuf *m;
int ac;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
/* why isn't this done per-queue? */
if (sc->qfullmsk != 0) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
/* need to send management frames even if we're not RUNning */
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m) {
ni = M_GETCTX(m, struct ieee80211_node *);
M_CLEARCTX(m);
ac = WME_AC_BE;
goto sendit;
}
if (ic->ic_state != IEEE80211_S_RUN) {
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
if (m->m_len < sizeof (*eh) &&
(m = m_pullup(m, sizeof (*eh))) == NULL) {
ifp->if_oerrors++;
continue;
}
eh = mtod(m, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m);
ifp->if_oerrors++;
continue;
}
/* classify mbuf so we can find which tx ring to use */
if (ieee80211_classify(ic, m, ni) != 0) {
m_freem(m);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
/* No QoS encapsulation for EAPOL frames. */
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
M_WME_GETAC(m) : WME_AC_BE;
bpf_mtap(ifp, m);
if ((m = ieee80211_encap(ic, m, ni)) == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
sendit:
bpf_mtap3(ic->ic_rawbpf, m);
if (iwm_tx(sc, m, ni, ac) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
if (ifp->if_flags & IFF_UP) {
sc->sc_tx_timer = 15;
ifp->if_timer = 1;
}
}
}
static void
iwm_stop(struct ifnet *ifp, int disable)
{
struct iwm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct iwm_node *in = (struct iwm_node *)ic->ic_bss;
sc->sc_flags &= ~IWM_FLAG_HW_INITED;
sc->sc_flags |= IWM_FLAG_STOPPED;
sc->sc_generation++;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
if (in)
in->in_phyctxt = NULL;
if (ic->ic_state != IEEE80211_S_INIT)
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
callout_stop(&sc->sc_calib_to);
iwm_led_blink_stop(sc);
ifp->if_timer = sc->sc_tx_timer = 0;
iwm_stop_device(sc);
}
static void
iwm_watchdog(struct ifnet *ifp)
{
struct iwm_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
aprint_error_dev(sc->sc_dev, "device timeout\n");
#ifdef IWM_DEBUG
iwm_nic_error(sc);
#endif
ifp->if_flags &= ~IFF_UP;
iwm_stop(ifp, 1);
ifp->if_oerrors++;
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static int
iwm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct iwm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
const struct sockaddr *sa;
int s, err = 0;
s = splnet();
switch (cmd) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
/* FALLTHROUGH */
case SIOCSIFFLAGS:
err = ifioctl_common(ifp, cmd, data);
if (err)
break;
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING)) {
err = iwm_init(ifp);
if (err)
ifp->if_flags &= ~IFF_UP;
}
} else {
if (ifp->if_flags & IFF_RUNNING)
iwm_stop(ifp, 1);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if (!ISSET(sc->sc_flags, IWM_FLAG_ATTACHED)) {
err = ENXIO;
break;
}
sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data);
err = (cmd == SIOCADDMULTI) ?
ether_addmulti(sa, &sc->sc_ec) :
ether_delmulti(sa, &sc->sc_ec);
if (err == ENETRESET)
err = 0;
break;
default:
if (!ISSET(sc->sc_flags, IWM_FLAG_ATTACHED)) {
err = ether_ioctl(ifp, cmd, data);
break;
}
err = ieee80211_ioctl(ic, cmd, data);
break;
}
if (err == ENETRESET) {
err = 0;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
iwm_stop(ifp, 0);
err = iwm_init(ifp);
}
}
splx(s);
return err;
}
/*
* Note: This structure is read from the device with IO accesses,
* and the reading already does the endian conversion. As it is
* read with uint32_t-sized accesses, any members with a different size
* need to be ordered correctly though!
*/
struct iwm_error_event_table {
uint32_t valid; /* (nonzero) valid, (0) log is empty */
uint32_t error_id; /* type of error */
uint32_t trm_hw_status0; /* TRM HW status */
uint32_t trm_hw_status1; /* TRM HW status */
uint32_t blink2; /* branch link */
uint32_t ilink1; /* interrupt link */
uint32_t ilink2; /* interrupt link */
uint32_t data1; /* error-specific data */
uint32_t data2; /* error-specific data */
uint32_t data3; /* error-specific data */
uint32_t bcon_time; /* beacon timer */
uint32_t tsf_low; /* network timestamp function timer */
uint32_t tsf_hi; /* network timestamp function timer */
uint32_t gp1; /* GP1 timer register */
uint32_t gp2; /* GP2 timer register */
uint32_t fw_rev_type; /* firmware revision type */
uint32_t major; /* uCode version major */
uint32_t minor; /* uCode version minor */
uint32_t hw_ver; /* HW Silicon version */
uint32_t brd_ver; /* HW board version */
uint32_t log_pc; /* log program counter */
uint32_t frame_ptr; /* frame pointer */
uint32_t stack_ptr; /* stack pointer */
uint32_t hcmd; /* last host command header */
uint32_t isr0; /* isr status register LMPM_NIC_ISR0:
* rxtx_flag */
uint32_t isr1; /* isr status register LMPM_NIC_ISR1:
* host_flag */
uint32_t isr2; /* isr status register LMPM_NIC_ISR2:
* enc_flag */
uint32_t isr3; /* isr status register LMPM_NIC_ISR3:
* time_flag */
uint32_t isr4; /* isr status register LMPM_NIC_ISR4:
* wico interrupt */
uint32_t last_cmd_id; /* last HCMD id handled by the firmware */
uint32_t wait_event; /* wait event() caller address */
uint32_t l2p_control; /* L2pControlField */
uint32_t l2p_duration; /* L2pDurationField */
uint32_t l2p_mhvalid; /* L2pMhValidBits */
uint32_t l2p_addr_match; /* L2pAddrMatchStat */
uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on
* (LMPM_PMG_SEL) */
uint32_t u_timestamp; /* indicate when the date and time of the
* compilation */
uint32_t flow_handler; /* FH read/write pointers, RX credit */
} __packed /* LOG_ERROR_TABLE_API_S_VER_3 */;
/*
* UMAC error struct - relevant starting from family 8000 chip.
* Note: This structure is read from the device with IO accesses,
* and the reading already does the endian conversion. As it is
* read with u32-sized accesses, any members with a different size
* need to be ordered correctly though!
*/
struct iwm_umac_error_event_table {
uint32_t valid; /* (nonzero) valid, (0) log is empty */
uint32_t error_id; /* type of error */
uint32_t blink1; /* branch link */
uint32_t blink2; /* branch link */
uint32_t ilink1; /* interrupt link */
uint32_t ilink2; /* interrupt link */
uint32_t data1; /* error-specific data */
uint32_t data2; /* error-specific data */
uint32_t data3; /* error-specific data */
uint32_t umac_major;
uint32_t umac_minor;
uint32_t frame_pointer; /* core register 27 */
uint32_t stack_pointer; /* core register 28 */
uint32_t cmd_header; /* latest host cmd sent to UMAC */
uint32_t nic_isr_pref; /* ISR status register */
} __packed;
#define ERROR_START_OFFSET (1 * sizeof(uint32_t))
#define ERROR_ELEM_SIZE (7 * sizeof(uint32_t))
#ifdef IWM_DEBUG
static const struct {
const char *name;
uint8_t num;
} advanced_lookup[] = {
{ "NMI_INTERRUPT_WDG", 0x34 },
{ "SYSASSERT", 0x35 },
{ "UCODE_VERSION_MISMATCH", 0x37 },
{ "BAD_COMMAND", 0x38 },
{ "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
{ "FATAL_ERROR", 0x3D },
{ "NMI_TRM_HW_ERR", 0x46 },
{ "NMI_INTERRUPT_TRM", 0x4C },
{ "NMI_INTERRUPT_BREAK_POINT", 0x54 },
{ "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
{ "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
{ "NMI_INTERRUPT_HOST", 0x66 },
{ "NMI_INTERRUPT_ACTION_PT", 0x7C },
{ "NMI_INTERRUPT_UNKNOWN", 0x84 },
{ "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
{ "ADVANCED_SYSASSERT", 0 },
};
static const char *
iwm_desc_lookup(uint32_t num)
{
int i;
for (i = 0; i < __arraycount(advanced_lookup) - 1; i++)
if (advanced_lookup[i].num == num)
return advanced_lookup[i].name;
/* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */
return advanced_lookup[i].name;
}
/*
* Support for dumping the error log seemed like a good idea ...
* but it's mostly hex junk and the only sensible thing is the
* hw/ucode revision (which we know anyway). Since it's here,
* I'll just leave it in, just in case e.g. the Intel guys want to
* help us decipher some "ADVANCED_SYSASSERT" later.
*/
static void
iwm_nic_error(struct iwm_softc *sc)
{
struct iwm_error_event_table t;
uint32_t base;
aprint_error_dev(sc->sc_dev, "dumping device error log\n");
base = sc->sc_uc.uc_error_event_table;
if (base < 0x800000) {
aprint_error_dev(sc->sc_dev,
"Invalid error log pointer 0x%08x\n", base);
return;
}
if (iwm_read_mem(sc, base, &t, sizeof(t)/sizeof(uint32_t))) {
aprint_error_dev(sc->sc_dev, "reading errlog failed\n");
return;
}
if (!t.valid) {
aprint_error_dev(sc->sc_dev, "errlog not found, skipping\n");
return;
}
if (ERROR_START_OFFSET <= t.valid * ERROR_ELEM_SIZE) {
aprint_error_dev(sc->sc_dev, "Start Error Log Dump:\n");
aprint_error_dev(sc->sc_dev, "Status: 0x%x, count: %d\n",
sc->sc_flags, t.valid);
}
aprint_error_dev(sc->sc_dev, "%08X | %-28s\n", t.error_id,
iwm_desc_lookup(t.error_id));
aprint_error_dev(sc->sc_dev, "%08X | trm_hw_status0\n",
t.trm_hw_status0);
aprint_error_dev(sc->sc_dev, "%08X | trm_hw_status1\n",
t.trm_hw_status1);
aprint_error_dev(sc->sc_dev, "%08X | branchlink2\n", t.blink2);
aprint_error_dev(sc->sc_dev, "%08X | interruptlink1\n", t.ilink1);
aprint_error_dev(sc->sc_dev, "%08X | interruptlink2\n", t.ilink2);
aprint_error_dev(sc->sc_dev, "%08X | data1\n", t.data1);
aprint_error_dev(sc->sc_dev, "%08X | data2\n", t.data2);
aprint_error_dev(sc->sc_dev, "%08X | data3\n", t.data3);
aprint_error_dev(sc->sc_dev, "%08X | beacon time\n", t.bcon_time);
aprint_error_dev(sc->sc_dev, "%08X | tsf low\n", t.tsf_low);
aprint_error_dev(sc->sc_dev, "%08X | tsf hi\n", t.tsf_hi);
aprint_error_dev(sc->sc_dev, "%08X | time gp1\n", t.gp1);
aprint_error_dev(sc->sc_dev, "%08X | time gp2\n", t.gp2);
aprint_error_dev(sc->sc_dev, "%08X | uCode revision type\n",
t.fw_rev_type);
aprint_error_dev(sc->sc_dev, "%08X | uCode version major\n",
t.major);
aprint_error_dev(sc->sc_dev, "%08X | uCode version minor\n",
t.minor);
aprint_error_dev(sc->sc_dev, "%08X | hw version\n", t.hw_ver);
aprint_error_dev(sc->sc_dev, "%08X | board version\n", t.brd_ver);
aprint_error_dev(sc->sc_dev, "%08X | hcmd\n", t.hcmd);
aprint_error_dev(sc->sc_dev, "%08X | isr0\n", t.isr0);
aprint_error_dev(sc->sc_dev, "%08X | isr1\n", t.isr1);
aprint_error_dev(sc->sc_dev, "%08X | isr2\n", t.isr2);
aprint_error_dev(sc->sc_dev, "%08X | isr3\n", t.isr3);
aprint_error_dev(sc->sc_dev, "%08X | isr4\n", t.isr4);
aprint_error_dev(sc->sc_dev, "%08X | last cmd Id\n", t.last_cmd_id);
aprint_error_dev(sc->sc_dev, "%08X | wait_event\n", t.wait_event);
aprint_error_dev(sc->sc_dev, "%08X | l2p_control\n", t.l2p_control);
aprint_error_dev(sc->sc_dev, "%08X | l2p_duration\n", t.l2p_duration);
aprint_error_dev(sc->sc_dev, "%08X | l2p_mhvalid\n", t.l2p_mhvalid);
aprint_error_dev(sc->sc_dev, "%08X | l2p_addr_match\n",
t.l2p_addr_match);
aprint_error_dev(sc->sc_dev, "%08X | lmpm_pmg_sel\n", t.lmpm_pmg_sel);
aprint_error_dev(sc->sc_dev, "%08X | timestamp\n", t.u_timestamp);
aprint_error_dev(sc->sc_dev, "%08X | flow_handler\n", t.flow_handler);
if (sc->sc_uc.uc_umac_error_event_table)
iwm_nic_umac_error(sc);
}
static void
iwm_nic_umac_error(struct iwm_softc *sc)
{
struct iwm_umac_error_event_table t;
uint32_t base;
base = sc->sc_uc.uc_umac_error_event_table;
if (base < 0x800000) {
aprint_error_dev(sc->sc_dev,
"Invalid error log pointer 0x%08x\n", base);
return;
}
if (iwm_read_mem(sc, base, &t, sizeof(t)/sizeof(uint32_t))) {
aprint_error_dev(sc->sc_dev, "reading errlog failed\n");
return;
}
if (ERROR_START_OFFSET <= t.valid * ERROR_ELEM_SIZE) {
aprint_error_dev(sc->sc_dev, "Start UMAC Error Log Dump:\n");
aprint_error_dev(sc->sc_dev, "Status: 0x%x, count: %d\n",
sc->sc_flags, t.valid);
}
aprint_error_dev(sc->sc_dev, "0x%08X | %s\n", t.error_id,
iwm_desc_lookup(t.error_id));
aprint_error_dev(sc->sc_dev, "0x%08X | umac branchlink1\n", t.blink1);
aprint_error_dev(sc->sc_dev, "0x%08X | umac branchlink2\n", t.blink2);
aprint_error_dev(sc->sc_dev, "0x%08X | umac interruptlink1\n",
t.ilink1);
aprint_error_dev(sc->sc_dev, "0x%08X | umac interruptlink2\n",
t.ilink2);
aprint_error_dev(sc->sc_dev, "0x%08X | umac data1\n", t.data1);
aprint_error_dev(sc->sc_dev, "0x%08X | umac data2\n", t.data2);
aprint_error_dev(sc->sc_dev, "0x%08X | umac data3\n", t.data3);
aprint_error_dev(sc->sc_dev, "0x%08X | umac major\n", t.umac_major);
aprint_error_dev(sc->sc_dev, "0x%08X | umac minor\n", t.umac_minor);
aprint_error_dev(sc->sc_dev, "0x%08X | frame pointer\n",
t.frame_pointer);
aprint_error_dev(sc->sc_dev, "0x%08X | stack pointer\n",
t.stack_pointer);
aprint_error_dev(sc->sc_dev, "0x%08X | last host cmd\n", t.cmd_header);
aprint_error_dev(sc->sc_dev, "0x%08X | isr status reg\n",
t.nic_isr_pref);
}
#endif
#define SYNC_RESP_STRUCT(_var_, _pkt_) \
do { \
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \
sizeof(*(_var_)), BUS_DMASYNC_POSTREAD); \
_var_ = (void *)((_pkt_)+1); \
} while (/*CONSTCOND*/0)
#define SYNC_RESP_PTR(_ptr_, _len_, _pkt_) \
do { \
bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \
sizeof(len), BUS_DMASYNC_POSTREAD); \
_ptr_ = (void *)((_pkt_)+1); \
} while (/*CONSTCOND*/0)
#define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT);
static void
iwm_notif_intr(struct iwm_softc *sc)
{
uint16_t hw;
bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map,
0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD);
hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff;
while (sc->rxq.cur != hw) {
struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur];
struct iwm_rx_packet *pkt;
struct iwm_cmd_response *cresp;
int orig_qid, qid, idx, code;
bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof(*pkt),
BUS_DMASYNC_POSTREAD);
pkt = mtod(data->m, struct iwm_rx_packet *);
orig_qid = pkt->hdr.qid;
qid = orig_qid & ~0x80;
idx = pkt->hdr.idx;
code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code);
/*
* randomly get these from the firmware, no idea why.
* they at least seem harmless, so just ignore them for now
*/
if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0)
|| pkt->len_n_flags == htole32(0x55550000))) {
ADVANCE_RXQ(sc);
continue;
}
switch (code) {
case IWM_REPLY_RX_PHY_CMD:
iwm_rx_rx_phy_cmd(sc, pkt, data);
break;
case IWM_REPLY_RX_MPDU_CMD:
iwm_rx_rx_mpdu(sc, pkt, data);
break;
case IWM_TX_CMD:
iwm_rx_tx_cmd(sc, pkt, data);
break;
case IWM_MISSED_BEACONS_NOTIFICATION:
iwm_rx_missed_beacons_notif(sc, pkt, data);
break;
case IWM_MFUART_LOAD_NOTIFICATION:
break;
case IWM_ALIVE: {
struct iwm_alive_resp_v1 *resp1;
struct iwm_alive_resp_v2 *resp2;
struct iwm_alive_resp_v3 *resp3;
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) {
SYNC_RESP_STRUCT(resp1, pkt);
sc->sc_uc.uc_error_event_table
= le32toh(resp1->error_event_table_ptr);
sc->sc_uc.uc_log_event_table
= le32toh(resp1->log_event_table_ptr);
sc->sched_base = le32toh(resp1->scd_base_ptr);
if (resp1->status == IWM_ALIVE_STATUS_OK)
sc->sc_uc.uc_ok = 1;
else
sc->sc_uc.uc_ok = 0;
}
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) {
SYNC_RESP_STRUCT(resp2, pkt);
sc->sc_uc.uc_error_event_table
= le32toh(resp2->error_event_table_ptr);
sc->sc_uc.uc_log_event_table
= le32toh(resp2->log_event_table_ptr);
sc->sched_base = le32toh(resp2->scd_base_ptr);
sc->sc_uc.uc_umac_error_event_table
= le32toh(resp2->error_info_addr);
if (resp2->status == IWM_ALIVE_STATUS_OK)
sc->sc_uc.uc_ok = 1;
else
sc->sc_uc.uc_ok = 0;
}
if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) {
SYNC_RESP_STRUCT(resp3, pkt);
sc->sc_uc.uc_error_event_table
= le32toh(resp3->error_event_table_ptr);
sc->sc_uc.uc_log_event_table
= le32toh(resp3->log_event_table_ptr);
sc->sched_base = le32toh(resp3->scd_base_ptr);
sc->sc_uc.uc_umac_error_event_table
= le32toh(resp3->error_info_addr);
if (resp3->status == IWM_ALIVE_STATUS_OK)
sc->sc_uc.uc_ok = 1;
else
sc->sc_uc.uc_ok = 0;
}
sc->sc_uc.uc_intr = 1;
wakeup(&sc->sc_uc);
break;
}
case IWM_CALIB_RES_NOTIF_PHY_DB: {
struct iwm_calib_res_notif_phy_db *phy_db_notif;
SYNC_RESP_STRUCT(phy_db_notif, pkt);
uint16_t size = le16toh(phy_db_notif->length);
bus_dmamap_sync(sc->sc_dmat, data->map,
sizeof(*pkt) + sizeof(*phy_db_notif),
size, BUS_DMASYNC_POSTREAD);
iwm_phy_db_set_section(sc, phy_db_notif, size);
break;
}
case IWM_STATISTICS_NOTIFICATION: {
struct iwm_notif_statistics *stats;
SYNC_RESP_STRUCT(stats, pkt);
memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats));
sc->sc_noise = iwm_get_noise(&stats->rx.general);
break;
}
case IWM_NVM_ACCESS_CMD:
case IWM_MCC_UPDATE_CMD:
if (sc->sc_wantresp == ((qid << 16) | idx)) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
sizeof(sc->sc_cmd_resp),
BUS_DMASYNC_POSTREAD);
memcpy(sc->sc_cmd_resp,
pkt, sizeof(sc->sc_cmd_resp));
}
break;
case IWM_MCC_CHUB_UPDATE_CMD: {
struct iwm_mcc_chub_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8;
sc->sc_fw_mcc[1] = notif->mcc & 0xff;
sc->sc_fw_mcc[2] = '\0';
break;
}
case IWM_DTS_MEASUREMENT_NOTIFICATION:
case IWM_WIDE_ID(IWM_PHY_OPS_GROUP,
IWM_DTS_MEASUREMENT_NOTIF_WIDE): {
struct iwm_dts_measurement_notif_v1 *notif1;
struct iwm_dts_measurement_notif_v2 *notif2;
if (iwm_rx_packet_payload_len(pkt) == sizeof(*notif1)) {
SYNC_RESP_STRUCT(notif1, pkt);
DPRINTF(("%s: DTS temp=%d \n",
DEVNAME(sc), notif1->temp));
break;
}
if (iwm_rx_packet_payload_len(pkt) == sizeof(*notif2)) {
SYNC_RESP_STRUCT(notif2, pkt);
DPRINTF(("%s: DTS temp=%d \n",
DEVNAME(sc), notif2->temp));
break;
}
break;
}
case IWM_PHY_CONFIGURATION_CMD:
case IWM_TX_ANT_CONFIGURATION_CMD:
case IWM_ADD_STA:
case IWM_MAC_CONTEXT_CMD:
case IWM_REPLY_SF_CFG_CMD:
case IWM_POWER_TABLE_CMD:
case IWM_PHY_CONTEXT_CMD:
case IWM_BINDING_CONTEXT_CMD:
case IWM_TIME_EVENT_CMD:
case IWM_SCAN_REQUEST_CMD:
case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD):
case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC):
case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_ABORT_UMAC):
case IWM_SCAN_OFFLOAD_REQUEST_CMD:
case IWM_SCAN_OFFLOAD_ABORT_CMD:
case IWM_REPLY_BEACON_FILTERING_CMD:
case IWM_MAC_PM_POWER_TABLE:
case IWM_TIME_QUOTA_CMD:
case IWM_REMOVE_STA:
case IWM_TXPATH_FLUSH:
case IWM_LQ_CMD:
case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_FW_PAGING_BLOCK_CMD):
case IWM_BT_CONFIG:
case IWM_REPLY_THERMAL_MNG_BACKOFF:
SYNC_RESP_STRUCT(cresp, pkt);
if (sc->sc_wantresp == ((qid << 16) | idx)) {
memcpy(sc->sc_cmd_resp,
pkt, sizeof(*pkt) + sizeof(*cresp));
}
break;
/* ignore */
case IWM_PHY_DB_CMD:
break;
case IWM_INIT_COMPLETE_NOTIF:
sc->sc_init_complete = 1;
wakeup(&sc->sc_init_complete);
break;
case IWM_SCAN_OFFLOAD_COMPLETE: {
struct iwm_periodic_scan_complete *notif;
SYNC_RESP_STRUCT(notif, pkt);
break;
}
case IWM_SCAN_ITERATION_COMPLETE: {
struct iwm_lmac_scan_complete_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
if (ISSET(sc->sc_flags, IWM_FLAG_SCANNING)) {
CLR(sc->sc_flags, IWM_FLAG_SCANNING);
iwm_endscan(sc);
}
break;
}
case IWM_SCAN_COMPLETE_UMAC: {
struct iwm_umac_scan_complete *notif;
SYNC_RESP_STRUCT(notif, pkt);
if (ISSET(sc->sc_flags, IWM_FLAG_SCANNING)) {
CLR(sc->sc_flags, IWM_FLAG_SCANNING);
iwm_endscan(sc);
}
break;
}
case IWM_SCAN_ITERATION_COMPLETE_UMAC: {
struct iwm_umac_scan_iter_complete_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
if (ISSET(sc->sc_flags, IWM_FLAG_SCANNING)) {
CLR(sc->sc_flags, IWM_FLAG_SCANNING);
iwm_endscan(sc);
}
break;
}
case IWM_REPLY_ERROR: {
struct iwm_error_resp *resp;
SYNC_RESP_STRUCT(resp, pkt);
aprint_error_dev(sc->sc_dev,
"firmware error 0x%x, cmd 0x%x\n",
le32toh(resp->error_type), resp->cmd_id);
break;
}
case IWM_TIME_EVENT_NOTIFICATION: {
struct iwm_time_event_notif *notif;
SYNC_RESP_STRUCT(notif, pkt);
break;
}
case IWM_DEBUG_LOG_MSG:
break;
case IWM_MCAST_FILTER_CMD:
break;
case IWM_SCD_QUEUE_CFG: {
struct iwm_scd_txq_cfg_rsp *rsp;
SYNC_RESP_STRUCT(rsp, pkt);
break;
}
default:
aprint_error_dev(sc->sc_dev,
"unhandled firmware response 0x%x 0x%x/0x%x "
"rx ring %d[%d]\n",
code, pkt->hdr.code, pkt->len_n_flags, qid, idx);
break;
}
/*
* uCode sets bit 0x80 when it originates the notification,
* i.e. when the notification is not a direct response to a
* command sent by the driver.
* For example, uCode issues IWM_REPLY_RX when it sends a
* received frame to the driver.
*/
if (!(orig_qid & (1 << 7))) {
iwm_cmd_done(sc, qid, idx);
}
ADVANCE_RXQ(sc);
}
/*
* Seems like the hardware gets upset unless we align the write by 8??
*/
hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1;
IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7);
}
static int
iwm_intr(void *arg)
{
struct iwm_softc *sc = arg;
/* Disable interrupts */
IWM_WRITE(sc, IWM_CSR_INT_MASK, 0);
softint_schedule(sc->sc_soft_ih);
return 1;
}
static void
iwm_softintr(void *arg)
{
struct iwm_softc *sc = arg;
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
uint32_t r1, r2;
int isperiodic = 0, s;
if (__predict_true(sc->sc_flags & IWM_FLAG_USE_ICT)) {
uint32_t *ict = sc->ict_dma.vaddr;
int tmp;
bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map,
0, sc->ict_dma.size, BUS_DMASYNC_POSTREAD);
tmp = htole32(ict[sc->ict_cur]);
if (tmp == 0)
goto out_ena; /* Interrupt not for us. */
/*
* ok, there was something. keep plowing until we have all.
*/
r1 = r2 = 0;
while (tmp) {
r1 |= tmp;
ict[sc->ict_cur] = 0; /* Acknowledge. */
sc->ict_cur = (sc->ict_cur + 1) % IWM_ICT_COUNT;
tmp = htole32(ict[sc->ict_cur]);
}
bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map,
0, sc->ict_dma.size, BUS_DMASYNC_PREWRITE);
/* this is where the fun begins. don't ask */
if (r1 == 0xffffffff)
r1 = 0;
/* i am not expected to understand this */
if (r1 & 0xc0000)
r1 |= 0x8000;
r1 = (0xff & r1) | ((0xff00 & r1) << 16);
} else {
r1 = IWM_READ(sc, IWM_CSR_INT);
if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0)
return; /* Hardware gone! */
r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS);
}
if (r1 == 0 && r2 == 0) {
goto out_ena; /* Interrupt not for us. */
}
/* Acknowledge interrupts. */
IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask);
if (__predict_false(!(sc->sc_flags & IWM_FLAG_USE_ICT)))
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, r2);
if (r1 & IWM_CSR_INT_BIT_SW_ERR) {
#ifdef IWM_DEBUG
int i;
iwm_nic_error(sc);
/* Dump driver status (TX and RX rings) while we're here. */
DPRINTF(("driver status:\n"));
for (i = 0; i < IWM_MAX_QUEUES; i++) {
struct iwm_tx_ring *ring = &sc->txq[i];
DPRINTF((" tx ring %2d: qid=%-2d cur=%-3d "
"queued=%-3d\n",
i, ring->qid, ring->cur, ring->queued));
}
DPRINTF((" rx ring: cur=%d\n", sc->rxq.cur));
DPRINTF((" 802.11 state %s\n",
ieee80211_state_name[sc->sc_ic.ic_state]));
#endif
aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
fatal:
s = splnet();
ifp->if_flags &= ~IFF_UP;
iwm_stop(ifp, 1);
splx(s);
/* Don't restore interrupt mask */
return;
}
if (r1 & IWM_CSR_INT_BIT_HW_ERR) {
aprint_error_dev(sc->sc_dev,
"hardware error, stopping device\n");
goto fatal;
}
/* firmware chunk loaded */
if (r1 & IWM_CSR_INT_BIT_FH_TX) {
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK);
sc->sc_fw_chunk_done = 1;
wakeup(&sc->sc_fw);
}
if (r1 & IWM_CSR_INT_BIT_RF_KILL) {
if (iwm_check_rfkill(sc) && (ifp->if_flags & IFF_UP))
goto fatal;
}
if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) {
IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC);
if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0)
IWM_WRITE_1(sc,
IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS);
isperiodic = 1;
}
if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) ||
isperiodic) {
IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK);
iwm_notif_intr(sc);
/* enable periodic interrupt, see above */
if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) &&
!isperiodic)
IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG,
IWM_CSR_INT_PERIODIC_ENA);
}
out_ena:
iwm_restore_interrupts(sc);
}
/*
* Autoconf glue-sniffing
*/
static const pci_product_id_t iwm_devices[] = {
PCI_PRODUCT_INTEL_WIFI_LINK_7260_1,
PCI_PRODUCT_INTEL_WIFI_LINK_7260_2,
PCI_PRODUCT_INTEL_WIFI_LINK_3160_1,
PCI_PRODUCT_INTEL_WIFI_LINK_3160_2,
PCI_PRODUCT_INTEL_WIFI_LINK_7265_1,
PCI_PRODUCT_INTEL_WIFI_LINK_7265_2,
PCI_PRODUCT_INTEL_WIFI_LINK_3165_1,
PCI_PRODUCT_INTEL_WIFI_LINK_3165_2,
PCI_PRODUCT_INTEL_WIFI_LINK_8260_1,
PCI_PRODUCT_INTEL_WIFI_LINK_8260_2,
PCI_PRODUCT_INTEL_WIFI_LINK_4165_1,
PCI_PRODUCT_INTEL_WIFI_LINK_4165_2,
};
static int
iwm_match(device_t parent, cfdata_t match __unused, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
return 0;
for (size_t i = 0; i < __arraycount(iwm_devices); i++)
if (PCI_PRODUCT(pa->pa_id) == iwm_devices[i])
return 1;
return 0;
}
static int
iwm_preinit(struct iwm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
int err;
if (ISSET(sc->sc_flags, IWM_FLAG_ATTACHED))
return 0;
err = iwm_start_hw(sc);
if (err) {
aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
return err;
}
err = iwm_run_init_mvm_ucode(sc, 1);
iwm_stop_device(sc);
if (err)
return err;
sc->sc_flags |= IWM_FLAG_ATTACHED;
aprint_normal_dev(sc->sc_dev, "hw rev 0x%x, fw ver %s, address %s\n",
sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK, sc->sc_fwver,
ether_sprintf(sc->sc_nvm.hw_addr));
#ifndef IEEE80211_NO_HT
if (sc->sc_nvm.sku_cap_11n_enable)
iwm_setup_ht_rates(sc);
#endif
/* not all hardware can do 5GHz band */
if (sc->sc_nvm.sku_cap_band_52GHz_enable)
ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
ieee80211_ifattach(ic);
ic->ic_node_alloc = iwm_node_alloc;
/* Override 802.11 state transition machine. */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = iwm_newstate;
ieee80211_media_init(ic, iwm_media_change, ieee80211_media_status);
ieee80211_announce(ic);
iwm_radiotap_attach(sc);
return 0;
}
static void
iwm_attach_hook(device_t dev)
{
struct iwm_softc *sc = device_private(dev);
iwm_preinit(sc);
}
static void
iwm_attach(device_t parent, device_t self, void *aux)
{
struct iwm_softc *sc = device_private(self);
struct pci_attach_args *pa = aux;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_ec.ec_if;
pcireg_t reg, memtype;
char intrbuf[PCI_INTRSTR_LEN];
const char *intrstr;
int err;
int txq_i;
const struct sysctlnode *node;
sc->sc_dev = self;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
sc->sc_dmat = pa->pa_dmat;
sc->sc_pciid = pa->pa_id;
pci_aprint_devinfo(pa, NULL);
if (workqueue_create(&sc->sc_nswq, "iwmns",
iwm_newstate_cb, sc, PRI_NONE, IPL_NET, 0))
panic("%s: could not create workqueue: newstate",
device_xname(self));
sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwm_softintr, sc);
if (sc->sc_soft_ih == NULL)
panic("%s: could not establish softint", device_xname(self));
/*
* Get the offset of the PCI Express Capability Structure in PCI
* Configuration Space.
*/
err = pci_get_capability(sc->sc_pct, sc->sc_pcitag,
PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL);
if (err == 0) {
aprint_error_dev(self,
"PCIe capability structure not found!\n");
return;
}
/* Clear device-specific "PCI retry timeout" register (41h). */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
/* Enable bus-mastering */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
reg |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START);
err = pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0,
&sc->sc_st, &sc->sc_sh, NULL, &sc->sc_sz);
if (err) {
aprint_error_dev(self, "can't map mem space\n");
return;
}
/* Install interrupt handler. */
err = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0);
if (err) {
aprint_error_dev(self, "can't allocate interrupt\n");
return;
}
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX)
CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE);
else
SET(reg, PCI_COMMAND_INTERRUPT_DISABLE);
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg);
intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf,
sizeof(intrbuf));
sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0],
IPL_NET, iwm_intr, sc, device_xname(self));
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "can't establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
sc->sc_wantresp = IWM_CMD_RESP_IDLE;
sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV);
switch (PCI_PRODUCT(sc->sc_pciid)) {
case PCI_PRODUCT_INTEL_WIFI_LINK_3160_1:
case PCI_PRODUCT_INTEL_WIFI_LINK_3160_2:
sc->sc_fwname = "iwlwifi-3160-17.ucode";
sc->host_interrupt_operation_mode = 1;
sc->apmg_wake_up_wa = 1;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
break;
case PCI_PRODUCT_INTEL_WIFI_LINK_3165_1:
case PCI_PRODUCT_INTEL_WIFI_LINK_3165_2:
sc->sc_fwname = "iwlwifi-7265D-22.ucode";
sc->host_interrupt_operation_mode = 0;
sc->apmg_wake_up_wa = 1;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
break;
case PCI_PRODUCT_INTEL_WIFI_LINK_3168:
sc->sc_fwname = "iwlwifi-3168-22.ucode";
sc->host_interrupt_operation_mode = 0;
sc->apmg_wake_up_wa = 1;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
break;
case PCI_PRODUCT_INTEL_WIFI_LINK_7260_1:
case PCI_PRODUCT_INTEL_WIFI_LINK_7260_2:
sc->sc_fwname = "iwlwifi-7260-17.ucode";
sc->host_interrupt_operation_mode = 1;
sc->apmg_wake_up_wa = 1;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
break;
case PCI_PRODUCT_INTEL_WIFI_LINK_7265_1:
case PCI_PRODUCT_INTEL_WIFI_LINK_7265_2:
sc->sc_fwname = (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) ==
IWM_CSR_HW_REV_TYPE_7265D ?
"iwlwifi-7265D-22.ucode": "iwlwifi-7265-17.ucode";
sc->host_interrupt_operation_mode = 0;
sc->apmg_wake_up_wa = 1;
sc->sc_device_family = IWM_DEVICE_FAMILY_7000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ;
break;
case PCI_PRODUCT_INTEL_WIFI_LINK_8260_1:
case PCI_PRODUCT_INTEL_WIFI_LINK_8260_2:
case PCI_PRODUCT_INTEL_WIFI_LINK_4165_1:
case PCI_PRODUCT_INTEL_WIFI_LINK_4165_2:
sc->sc_fwname = "iwlwifi-8000C-22.ucode";
sc->host_interrupt_operation_mode = 0;
sc->apmg_wake_up_wa = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
break;
case PCI_PRODUCT_INTEL_WIFI_LINK_8265:
sc->sc_fwname = "iwlwifi-8265-22.ucode";
sc->host_interrupt_operation_mode = 0;
sc->apmg_wake_up_wa = 0;
sc->sc_device_family = IWM_DEVICE_FAMILY_8000;
sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000;
break;
default:
aprint_error_dev(self, "unknown product %#x",
PCI_PRODUCT(sc->sc_pciid));
return;
}
DPRINTF(("%s: firmware=%s\n", DEVNAME(sc), sc->sc_fwname));
/*
* In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have
* changed, and now the revision step also includes bit 0-1 (no more
* "dash" value). To keep hw_rev backwards compatible - we'll store it
* in the old format.
*/
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000)
sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) |
(IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2);
if (iwm_prepare_card_hw(sc) != 0) {
aprint_error_dev(sc->sc_dev, "could not initialize hardware\n");
return;
}
if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) {
uint32_t hw_step;
/*
* In order to recognize C step the driver should read the
* chip version id located at the AUX bus MISC address.
*/
IWM_SETBITS(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
DELAY(2);
err = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
25000);
if (!err) {
aprint_error_dev(sc->sc_dev,
"failed to wake up the nic\n");
return;
}
if (iwm_nic_lock(sc)) {
hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG);
hw_step |= IWM_ENABLE_WFPM;
iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step);
hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG);
hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF;
if (hw_step == 0x3)
sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) |
(IWM_SILICON_C_STEP << 2);
iwm_nic_unlock(sc);
} else {
aprint_error_dev(sc->sc_dev,
"failed to lock the nic\n");
return;
}
}
/*
* Allocate DMA memory for firmware transfers.
* Must be aligned on a 16-byte boundary.
*/
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, sc->sc_fwdmasegsz,
16);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not allocate memory for firmware\n");
return;
}
/* Allocate "Keep Warm" page, used internally by the card. */
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not allocate keep warm page\n");
goto fail1;
}
/* Allocate interrupt cause table (ICT).*/
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, IWM_ICT_SIZE,
1 << IWM_ICT_PADDR_SHIFT);
if (err) {
aprint_error_dev(sc->sc_dev, "could not allocate ICT table\n");
goto fail2;
}
/* TX scheduler rings must be aligned on a 1KB boundary. */
err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma,
__arraycount(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not allocate TX scheduler rings\n");
goto fail3;
}
for (txq_i = 0; txq_i < __arraycount(sc->txq); txq_i++) {
err = iwm_alloc_tx_ring(sc, &sc->txq[txq_i], txq_i);
if (err) {
aprint_error_dev(sc->sc_dev,
"could not allocate TX ring %d\n", txq_i);
goto fail4;
}
}
err = iwm_alloc_rx_ring(sc, &sc->rxq);
if (err) {
aprint_error_dev(sc->sc_dev, "could not allocate RX ring\n");
goto fail4;
}
/* Clear pending interrupts. */
IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff);
if ((err = sysctl_createv(&sc->sc_clog, 0, NULL, &node,
0, CTLTYPE_NODE, device_xname(sc->sc_dev),
SYSCTL_DESCR("iwm per-controller controls"),
NULL, 0, NULL, 0,
CTL_HW, iwm_sysctl_root_num, CTL_CREATE,
CTL_EOL)) != 0) {
aprint_normal_dev(sc->sc_dev,
"couldn't create iwm per-controller sysctl node\n");
}
if (err == 0) {
int iwm_nodenum = node->sysctl_num;
/* Reload firmware sysctl node */
if ((err = sysctl_createv(&sc->sc_clog, 0, NULL, &node,
CTLFLAG_READWRITE, CTLTYPE_INT, "fw_loaded",
SYSCTL_DESCR("Reload firmware"),
iwm_sysctl_fw_loaded_handler, 0, (void *)sc, 0,
CTL_HW, iwm_sysctl_root_num, iwm_nodenum, CTL_CREATE,
CTL_EOL)) != 0) {
aprint_normal_dev(sc->sc_dev,
"couldn't create load_fw sysctl node\n");
}
}
/*
* Attach interface
*/
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* Set device capabilities. */
ic->ic_caps =
IEEE80211_C_WEP | /* WEP */
IEEE80211_C_WPA | /* 802.11i */
#ifdef notyet
IEEE80211_C_SCANALL | /* device scans all channels at once */
IEEE80211_C_SCANALLBAND | /* device scans all bands at once */
#endif
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SHPREAMBLE; /* short preamble supported */
#ifndef IEEE80211_NO_HT
ic->ic_htcaps = IEEE80211_HTCAP_SGI20;
ic->ic_htxcaps = 0;
ic->ic_txbfcaps = 0;
ic->ic_aselcaps = 0;
ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */);
#endif
/* all hardware can do 2.4GHz band */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
for (int i = 0; i < __arraycount(sc->sc_phyctxt); i++) {
sc->sc_phyctxt[i].id = i;
}
sc->sc_amrr.amrr_min_success_threshold = 1;
sc->sc_amrr.amrr_max_success_threshold = 15;
/* IBSS channel undefined for now. */
ic->ic_ibss_chan = &ic->ic_channels[1];
#if 0
ic->ic_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM;
#endif
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = iwm_init;
ifp->if_stop = iwm_stop;
ifp->if_ioctl = iwm_ioctl;
ifp->if_start = iwm_start;
ifp->if_watchdog = iwm_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
if_initialize(ifp);
#if 0
ieee80211_ifattach(ic);
#else
ether_ifattach(ifp, ic->ic_myaddr); /* XXX */
#endif
/* Use common softint-based if_input */
ifp->if_percpuq = if_percpuq_create(ifp);
if_register(ifp);
callout_init(&sc->sc_calib_to, 0);
callout_setfunc(&sc->sc_calib_to, iwm_calib_timeout, sc);
callout_init(&sc->sc_led_blink_to, 0);
callout_setfunc(&sc->sc_led_blink_to, iwm_led_blink_timeout, sc);
#ifndef IEEE80211_NO_HT
if (workqueue_create(&sc->sc_setratewq, "iwmsr",
iwm_setrates_task, sc, PRI_NONE, IPL_NET, 0))
panic("%s: could not create workqueue: setrates",
device_xname(self));
if (workqueue_create(&sc->sc_bawq, "iwmba",
iwm_ba_task, sc, PRI_NONE, IPL_NET, 0))
panic("%s: could not create workqueue: blockack",
device_xname(self));
if (workqueue_create(&sc->sc_htprowq, "iwmhtpro",
iwm_htprot_task, sc, PRI_NONE, IPL_NET, 0))
panic("%s: could not create workqueue: htprot",
device_xname(self));
#endif
if (pmf_device_register(self, NULL, NULL))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
/*
* We can't do normal attach before the file system is mounted
* because we cannot read the MAC address without loading the
* firmware from disk. So we postpone until mountroot is done.
* Notably, this will require a full driver unload/load cycle
* (or reboot) in case the firmware is not present when the
* hook runs.
*/
config_mountroot(self, iwm_attach_hook);
return;
fail4: while (--txq_i >= 0)
iwm_free_tx_ring(sc, &sc->txq[txq_i]);
iwm_free_rx_ring(sc, &sc->rxq);
iwm_dma_contig_free(&sc->sched_dma);
fail3: if (sc->ict_dma.vaddr != NULL)
iwm_dma_contig_free(&sc->ict_dma);
fail2: iwm_dma_contig_free(&sc->kw_dma);
fail1: iwm_dma_contig_free(&sc->fw_dma);
}
void
iwm_radiotap_attach(struct iwm_softc *sc)
{
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IWM_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IWM_TX_RADIOTAP_PRESENT);
}
#if 0
static void
iwm_init_task(void *arg)
{
struct iwm_softc *sc = arg;
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
int s;
rw_enter_write(&sc->ioctl_rwl);
s = splnet();
iwm_stop(ifp, 0);
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP)
iwm_init(ifp);
splx(s);
rw_exit(&sc->ioctl_rwl);
}
static void
iwm_wakeup(struct iwm_softc *sc)
{
pcireg_t reg;
/* Clear device-specific "PCI retry timeout" register (41h). */
reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40);
pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00);
iwm_init_task(sc);
}
static int
iwm_activate(device_t self, enum devact act)
{
struct iwm_softc *sc = device_private(self);
struct ifnet *ifp = IC2IFP(&sc->sc_ic);
switch (act) {
case DVACT_DEACTIVATE:
if (ifp->if_flags & IFF_RUNNING)
iwm_stop(ifp, 0);
return 0;
default:
return EOPNOTSUPP;
}
}
#endif
CFATTACH_DECL_NEW(iwm, sizeof(struct iwm_softc), iwm_match, iwm_attach,
NULL, NULL);
static int
iwm_sysctl_fw_loaded_handler(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct iwm_softc *sc;
int err, t;
node = *rnode;
sc = node.sysctl_data;
t = ISSET(sc->sc_flags, IWM_FLAG_FW_LOADED) ? 1 : 0;
node.sysctl_data = &t;
err = sysctl_lookup(SYSCTLFN_CALL(&node));
if (err || newp == NULL)
return err;
if (t == 0)
CLR(sc->sc_flags, IWM_FLAG_FW_LOADED);
return 0;
}
SYSCTL_SETUP(sysctl_iwm, "sysctl iwm(4) subtree setup")
{
const struct sysctlnode *rnode;
#ifdef IWM_DEBUG
const struct sysctlnode *cnode;
#endif /* IWM_DEBUG */
int rc;
if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "iwm",
SYSCTL_DESCR("iwm global controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
goto err;
iwm_sysctl_root_num = rnode->sysctl_num;
#ifdef IWM_DEBUG
/* control debugging printfs */
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &iwm_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
#endif /* IWM_DEBUG */
return;
err:
aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}