/* $NetBSD: if_iwm.c,v 1.71 2017/03/14 23:59:26 nonaka Exp $ */ /* OpenBSD: if_iwm.c,v 1.148 2016/11/19 21:07:08 stsp Exp */ #define IEEE80211_NO_HT /* * Copyright (c) 2014, 2016 genua gmbh * Author: Stefan Sperling * Copyright (c) 2014 Fixup Software Ltd. * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ /*- * Based on BSD-licensed source modules in the Linux iwlwifi driver, * which were used as the reference documentation for this implementation. * *********************************************************************** * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * Copyright(c) 2008 - 2014 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH * Copyright(c) 2016 Intel Deutschland GmbH * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, * USA * * The full GNU General Public License is included in this distribution * in the file called COPYING. * * Contact Information: * Intel Linux Wireless * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 * * BSD LICENSE * * Copyright(c) 2005 - 2014 Intel Corporation. All rights reserved. * Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH * Copyright(c) 2016 Intel Deutschland GmbH * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * * Neither the name Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2007-2010 Damien Bergamini * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include __KERNEL_RCSID(0, "$NetBSD: if_iwm.c,v 1.71 2017/03/14 23:59:26 nonaka Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define DEVNAME(_s) device_xname((_s)->sc_dev) #define IC2IFP(_ic_) ((_ic_)->ic_ifp) #define le16_to_cpup(_a_) (le16toh(*(const uint16_t *)(_a_))) #define le32_to_cpup(_a_) (le32toh(*(const uint32_t *)(_a_))) #ifdef IWM_DEBUG #define DPRINTF(x) do { if (iwm_debug > 0) printf x; } while (0) #define DPRINTFN(n, x) do { if (iwm_debug >= (n)) printf x; } while (0) int iwm_debug = 0; #else #define DPRINTF(x) do { ; } while (0) #define DPRINTFN(n, x) do { ; } while (0) #endif #include #include static const uint8_t iwm_nvm_channels[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165 }; static const uint8_t iwm_nvm_channels_8000[] = { /* 2.4 GHz */ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /* 5 GHz */ 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165, 169, 173, 177, 181 }; #define IWM_NUM_2GHZ_CHANNELS 14 static const struct iwm_rate { uint8_t rate; uint8_t plcp; uint8_t ht_plcp; } iwm_rates[] = { /* Legacy */ /* HT */ { 2, IWM_RATE_1M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP }, { 4, IWM_RATE_2M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP }, { 11, IWM_RATE_5M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP }, { 22, IWM_RATE_11M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP }, { 12, IWM_RATE_6M_PLCP, IWM_RATE_HT_SISO_MCS_0_PLCP }, { 18, IWM_RATE_9M_PLCP, IWM_RATE_HT_SISO_MCS_INV_PLCP }, { 24, IWM_RATE_12M_PLCP, IWM_RATE_HT_SISO_MCS_1_PLCP }, { 36, IWM_RATE_18M_PLCP, IWM_RATE_HT_SISO_MCS_2_PLCP }, { 48, IWM_RATE_24M_PLCP, IWM_RATE_HT_SISO_MCS_3_PLCP }, { 72, IWM_RATE_36M_PLCP, IWM_RATE_HT_SISO_MCS_4_PLCP }, { 96, IWM_RATE_48M_PLCP, IWM_RATE_HT_SISO_MCS_5_PLCP }, { 108, IWM_RATE_54M_PLCP, IWM_RATE_HT_SISO_MCS_6_PLCP }, { 128, IWM_RATE_INVM_PLCP, IWM_RATE_HT_SISO_MCS_7_PLCP }, }; #define IWM_RIDX_CCK 0 #define IWM_RIDX_OFDM 4 #define IWM_RIDX_MAX (__arraycount(iwm_rates)-1) #define IWM_RIDX_IS_CCK(_i_) ((_i_) < IWM_RIDX_OFDM) #define IWM_RIDX_IS_OFDM(_i_) ((_i_) >= IWM_RIDX_OFDM) #ifndef IEEE80211_NO_HT /* Convert an MCS index into an iwm_rates[] index. */ static const int iwm_mcs2ridx[] = { IWM_RATE_MCS_0_INDEX, IWM_RATE_MCS_1_INDEX, IWM_RATE_MCS_2_INDEX, IWM_RATE_MCS_3_INDEX, IWM_RATE_MCS_4_INDEX, IWM_RATE_MCS_5_INDEX, IWM_RATE_MCS_6_INDEX, IWM_RATE_MCS_7_INDEX, }; #endif struct iwm_nvm_section { uint16_t length; uint8_t *data; }; struct iwm_newstate_state { struct work ns_wk; enum ieee80211_state ns_nstate; int ns_arg; int ns_generation; }; static int iwm_store_cscheme(struct iwm_softc *, uint8_t *, size_t); static int iwm_firmware_store_section(struct iwm_softc *, enum iwm_ucode_type, uint8_t *, size_t); static int iwm_set_default_calib(struct iwm_softc *, const void *); static int iwm_read_firmware(struct iwm_softc *, enum iwm_ucode_type); static uint32_t iwm_read_prph(struct iwm_softc *, uint32_t); static void iwm_write_prph(struct iwm_softc *, uint32_t, uint32_t); #ifdef IWM_DEBUG static int iwm_read_mem(struct iwm_softc *, uint32_t, void *, int); #endif static int iwm_write_mem(struct iwm_softc *, uint32_t, const void *, int); static int iwm_write_mem32(struct iwm_softc *, uint32_t, uint32_t); static int iwm_poll_bit(struct iwm_softc *, int, uint32_t, uint32_t, int); static int iwm_nic_lock(struct iwm_softc *); static void iwm_nic_unlock(struct iwm_softc *); static void iwm_set_bits_mask_prph(struct iwm_softc *, uint32_t, uint32_t, uint32_t); static void iwm_set_bits_prph(struct iwm_softc *, uint32_t, uint32_t); static void iwm_clear_bits_prph(struct iwm_softc *, uint32_t, uint32_t); static int iwm_dma_contig_alloc(bus_dma_tag_t, struct iwm_dma_info *, bus_size_t, bus_size_t); static void iwm_dma_contig_free(struct iwm_dma_info *); static int iwm_alloc_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); static void iwm_disable_rx_dma(struct iwm_softc *); static void iwm_reset_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); static void iwm_free_rx_ring(struct iwm_softc *, struct iwm_rx_ring *); static int iwm_alloc_tx_ring(struct iwm_softc *, struct iwm_tx_ring *, int); static void iwm_reset_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); static void iwm_free_tx_ring(struct iwm_softc *, struct iwm_tx_ring *); static void iwm_enable_rfkill_int(struct iwm_softc *); static int iwm_check_rfkill(struct iwm_softc *); static void iwm_enable_interrupts(struct iwm_softc *); static void iwm_restore_interrupts(struct iwm_softc *); static void iwm_disable_interrupts(struct iwm_softc *); static void iwm_ict_reset(struct iwm_softc *); static int iwm_set_hw_ready(struct iwm_softc *); static int iwm_prepare_card_hw(struct iwm_softc *); static void iwm_apm_config(struct iwm_softc *); static int iwm_apm_init(struct iwm_softc *); static void iwm_apm_stop(struct iwm_softc *); static int iwm_allow_mcast(struct iwm_softc *); static int iwm_start_hw(struct iwm_softc *); static void iwm_stop_device(struct iwm_softc *); static void iwm_nic_config(struct iwm_softc *); static int iwm_nic_rx_init(struct iwm_softc *); static int iwm_nic_tx_init(struct iwm_softc *); static int iwm_nic_init(struct iwm_softc *); static int iwm_enable_txq(struct iwm_softc *, int, int, int); static int iwm_post_alive(struct iwm_softc *); static struct iwm_phy_db_entry * iwm_phy_db_get_section(struct iwm_softc *, enum iwm_phy_db_section_type, uint16_t); static int iwm_phy_db_set_section(struct iwm_softc *, struct iwm_calib_res_notif_phy_db *, uint16_t); static int iwm_is_valid_channel(uint16_t); static uint8_t iwm_ch_id_to_ch_index(uint16_t); static uint16_t iwm_channel_id_to_papd(uint16_t); static uint16_t iwm_channel_id_to_txp(struct iwm_softc *, uint16_t); static int iwm_phy_db_get_section_data(struct iwm_softc *, uint32_t, uint8_t **, uint16_t *, uint16_t); static int iwm_send_phy_db_cmd(struct iwm_softc *, uint16_t, uint16_t, void *); static int iwm_phy_db_send_all_channel_groups(struct iwm_softc *, enum iwm_phy_db_section_type, uint8_t); static int iwm_send_phy_db_data(struct iwm_softc *); static void iwm_te_v2_to_v1(const struct iwm_time_event_cmd_v2 *, struct iwm_time_event_cmd_v1 *); static int iwm_send_time_event_cmd(struct iwm_softc *, const struct iwm_time_event_cmd_v2 *); static void iwm_protect_session(struct iwm_softc *, struct iwm_node *, uint32_t, uint32_t); static int iwm_nvm_read_chunk(struct iwm_softc *, uint16_t, uint16_t, uint16_t, uint8_t *, uint16_t *); static int iwm_nvm_read_section(struct iwm_softc *, uint16_t, uint8_t *, uint16_t *, size_t); static void iwm_init_channel_map(struct iwm_softc *, const uint16_t * const, const uint8_t *, size_t); #ifndef IEEE80211_NO_HT static void iwm_setup_ht_rates(struct iwm_softc *); static void iwm_htprot_task(void *); static void iwm_update_htprot(struct ieee80211com *, struct ieee80211_node *); static int iwm_ampdu_rx_start(struct ieee80211com *, struct ieee80211_node *, uint8_t); static void iwm_ampdu_rx_stop(struct ieee80211com *, struct ieee80211_node *, uint8_t); static void iwm_sta_rx_agg(struct iwm_softc *, struct ieee80211_node *, uint8_t, uint16_t, int); #ifdef notyet static int iwm_ampdu_tx_start(struct ieee80211com *, struct ieee80211_node *, uint8_t); static void iwm_ampdu_tx_stop(struct ieee80211com *, struct ieee80211_node *, uint8_t); #endif static void iwm_ba_task(void *); #endif static int iwm_parse_nvm_data(struct iwm_softc *, const uint16_t *, const uint16_t *, const uint16_t *, const uint16_t *, const uint16_t *, const uint16_t *); static void iwm_set_hw_address_8000(struct iwm_softc *, struct iwm_nvm_data *, const uint16_t *, const uint16_t *); static int iwm_parse_nvm_sections(struct iwm_softc *, struct iwm_nvm_section *); static int iwm_nvm_init(struct iwm_softc *); static int iwm_firmware_load_sect(struct iwm_softc *, uint32_t, const uint8_t *, uint32_t); static int iwm_firmware_load_chunk(struct iwm_softc *, uint32_t, const uint8_t *, uint32_t); static int iwm_load_cpu_sections_7000(struct iwm_softc *, struct iwm_fw_sects *, int , int *); static int iwm_load_firmware_7000(struct iwm_softc *, enum iwm_ucode_type); static int iwm_load_cpu_sections_8000(struct iwm_softc *, struct iwm_fw_sects *, int , int *); static int iwm_load_firmware_8000(struct iwm_softc *, enum iwm_ucode_type); static int iwm_load_firmware(struct iwm_softc *, enum iwm_ucode_type); static int iwm_start_fw(struct iwm_softc *, enum iwm_ucode_type); static int iwm_send_tx_ant_cfg(struct iwm_softc *, uint8_t); static int iwm_send_phy_cfg_cmd(struct iwm_softc *); static int iwm_load_ucode_wait_alive(struct iwm_softc *, enum iwm_ucode_type); static int iwm_run_init_mvm_ucode(struct iwm_softc *, int); static int iwm_rx_addbuf(struct iwm_softc *, int, int); static int iwm_calc_rssi(struct iwm_softc *, struct iwm_rx_phy_info *); static int iwm_get_signal_strength(struct iwm_softc *, struct iwm_rx_phy_info *); static void iwm_rx_rx_phy_cmd(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_rx_data *); static int iwm_get_noise(const struct iwm_statistics_rx_non_phy *); static void iwm_rx_rx_mpdu(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_rx_data *); static void iwm_rx_tx_cmd_single(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_node *); static void iwm_rx_tx_cmd(struct iwm_softc *, struct iwm_rx_packet *, struct iwm_rx_data *); static int iwm_binding_cmd(struct iwm_softc *, struct iwm_node *, uint32_t); #if 0 static int iwm_binding_update(struct iwm_softc *, struct iwm_node *, int); static int iwm_binding_add_vif(struct iwm_softc *, struct iwm_node *); #endif static void iwm_phy_ctxt_cmd_hdr(struct iwm_softc *, struct iwm_phy_ctxt *, struct iwm_phy_context_cmd *, uint32_t, uint32_t); static void iwm_phy_ctxt_cmd_data(struct iwm_softc *, struct iwm_phy_context_cmd *, struct ieee80211_channel *, uint8_t, uint8_t); static int iwm_phy_ctxt_cmd(struct iwm_softc *, struct iwm_phy_ctxt *, uint8_t, uint8_t, uint32_t, uint32_t); static int iwm_send_cmd(struct iwm_softc *, struct iwm_host_cmd *); static int iwm_send_cmd_pdu(struct iwm_softc *, uint32_t, uint32_t, uint16_t, const void *); static int iwm_send_cmd_status(struct iwm_softc *, struct iwm_host_cmd *, uint32_t *); static int iwm_send_cmd_pdu_status(struct iwm_softc *, uint32_t, uint16_t, const void *, uint32_t *); static void iwm_free_resp(struct iwm_softc *, struct iwm_host_cmd *); static void iwm_cmd_done(struct iwm_softc *, int qid, int idx); #if 0 static void iwm_update_sched(struct iwm_softc *, int, int, uint8_t, uint16_t); #endif static const struct iwm_rate * iwm_tx_fill_cmd(struct iwm_softc *, struct iwm_node *, struct ieee80211_frame *, struct iwm_tx_cmd *); static int iwm_tx(struct iwm_softc *, struct mbuf *, struct ieee80211_node *, int); static void iwm_led_enable(struct iwm_softc *); static void iwm_led_disable(struct iwm_softc *); static int iwm_led_is_enabled(struct iwm_softc *); static void iwm_led_blink_timeout(void *); static void iwm_led_blink_start(struct iwm_softc *); static void iwm_led_blink_stop(struct iwm_softc *); static int iwm_beacon_filter_send_cmd(struct iwm_softc *, struct iwm_beacon_filter_cmd *); static void iwm_beacon_filter_set_cqm_params(struct iwm_softc *, struct iwm_node *, struct iwm_beacon_filter_cmd *); static int iwm_update_beacon_abort(struct iwm_softc *, struct iwm_node *, int); static void iwm_power_build_cmd(struct iwm_softc *, struct iwm_node *, struct iwm_mac_power_cmd *); static int iwm_power_mac_update_mode(struct iwm_softc *, struct iwm_node *); static int iwm_power_update_device(struct iwm_softc *); #ifdef notyet static int iwm_enable_beacon_filter(struct iwm_softc *, struct iwm_node *); #endif static int iwm_disable_beacon_filter(struct iwm_softc *); static int iwm_add_sta_cmd(struct iwm_softc *, struct iwm_node *, int); static int iwm_add_aux_sta(struct iwm_softc *); static uint16_t iwm_scan_rx_chain(struct iwm_softc *); static uint32_t iwm_scan_rate_n_flags(struct iwm_softc *, int, int); #ifdef notyet static uint16_t iwm_get_active_dwell(struct iwm_softc *, int, int); static uint16_t iwm_get_passive_dwell(struct iwm_softc *, int); #endif static uint8_t iwm_lmac_scan_fill_channels(struct iwm_softc *, struct iwm_scan_channel_cfg_lmac *, int); static int iwm_fill_probe_req(struct iwm_softc *, struct iwm_scan_probe_req *); static int iwm_lmac_scan(struct iwm_softc *); static int iwm_config_umac_scan(struct iwm_softc *); static int iwm_umac_scan(struct iwm_softc *); static uint8_t iwm_ridx2rate(struct ieee80211_rateset *, int); static void iwm_ack_rates(struct iwm_softc *, struct iwm_node *, int *, int *); static void iwm_mac_ctxt_cmd_common(struct iwm_softc *, struct iwm_node *, struct iwm_mac_ctx_cmd *, uint32_t, int); static void iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *, struct iwm_node *, struct iwm_mac_data_sta *, int); static int iwm_mac_ctxt_cmd(struct iwm_softc *, struct iwm_node *, uint32_t, int); static int iwm_update_quotas(struct iwm_softc *, struct iwm_node *); static int iwm_auth(struct iwm_softc *); static int iwm_assoc(struct iwm_softc *); static void iwm_calib_timeout(void *); #ifndef IEEE80211_NO_HT static void iwm_setrates_task(void *); static int iwm_setrates(struct iwm_node *); #endif static int iwm_media_change(struct ifnet *); static int iwm_do_newstate(struct ieee80211com *, enum ieee80211_state, int); static void iwm_newstate_cb(struct work *, void *); static int iwm_newstate(struct ieee80211com *, enum ieee80211_state, int); static void iwm_endscan(struct iwm_softc *); static void iwm_fill_sf_command(struct iwm_softc *, struct iwm_sf_cfg_cmd *, struct ieee80211_node *); static int iwm_sf_config(struct iwm_softc *, int); static int iwm_send_bt_init_conf(struct iwm_softc *); static int iwm_send_update_mcc_cmd(struct iwm_softc *, const char *); static void iwm_tt_tx_backoff(struct iwm_softc *, uint32_t); static int iwm_init_hw(struct iwm_softc *); static int iwm_init(struct ifnet *); static void iwm_start(struct ifnet *); static void iwm_stop(struct ifnet *, int); static void iwm_watchdog(struct ifnet *); static int iwm_ioctl(struct ifnet *, u_long, void *); #ifdef IWM_DEBUG static const char *iwm_desc_lookup(uint32_t); static void iwm_nic_error(struct iwm_softc *); static void iwm_nic_umac_error(struct iwm_softc *); #endif static void iwm_notif_intr(struct iwm_softc *); static int iwm_intr(void *); static void iwm_softintr(void *); static int iwm_preinit(struct iwm_softc *); static void iwm_attach_hook(device_t); static void iwm_attach(device_t, device_t, void *); #if 0 static void iwm_init_task(void *); static int iwm_activate(device_t, enum devact); static void iwm_wakeup(struct iwm_softc *); #endif static void iwm_radiotap_attach(struct iwm_softc *); static int iwm_sysctl_fw_loaded_handler(SYSCTLFN_PROTO); static int iwm_sysctl_root_num; static int iwm_lar_disable; #ifndef IWM_DEFAULT_MCC #define IWM_DEFAULT_MCC "ZZ" #endif static char iwm_default_mcc[3] = IWM_DEFAULT_MCC; static int iwm_firmload(struct iwm_softc *sc) { struct iwm_fw_info *fw = &sc->sc_fw; firmware_handle_t fwh; int err; if (ISSET(sc->sc_flags, IWM_FLAG_FW_LOADED)) return 0; /* Open firmware image. */ err = firmware_open("if_iwm", sc->sc_fwname, &fwh); if (err) { aprint_error_dev(sc->sc_dev, "could not get firmware handle %s\n", sc->sc_fwname); return err; } if (fw->fw_rawdata != NULL && fw->fw_rawsize > 0) { kmem_free(fw->fw_rawdata, fw->fw_rawsize); fw->fw_rawdata = NULL; } fw->fw_rawsize = firmware_get_size(fwh); /* * Well, this is how the Linux driver checks it .... */ if (fw->fw_rawsize < sizeof(uint32_t)) { aprint_error_dev(sc->sc_dev, "firmware too short: %zd bytes\n", fw->fw_rawsize); err = EINVAL; goto out; } /* Read the firmware. */ fw->fw_rawdata = kmem_alloc(fw->fw_rawsize, KM_SLEEP); if (fw->fw_rawdata == NULL) { aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware %s\n", sc->sc_fwname); err = ENOMEM; goto out; } err = firmware_read(fwh, 0, fw->fw_rawdata, fw->fw_rawsize); if (err) { aprint_error_dev(sc->sc_dev, "could not read firmware %s\n", sc->sc_fwname); goto out; } SET(sc->sc_flags, IWM_FLAG_FW_LOADED); out: /* caller will release memory, if necessary */ firmware_close(fwh); return err; } /* * just maintaining status quo. */ static void iwm_fix_channel(struct iwm_softc *sc, struct mbuf *m) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; uint8_t subtype; wh = mtod(m, struct ieee80211_frame *); if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT) return; subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype != IEEE80211_FC0_SUBTYPE_BEACON && subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP) return; int chan = le32toh(sc->sc_last_phy_info.channel); if (chan < __arraycount(ic->ic_channels)) ic->ic_curchan = &ic->ic_channels[chan]; } static int iwm_store_cscheme(struct iwm_softc *sc, uint8_t *data, size_t dlen) { struct iwm_fw_cscheme_list *l = (struct iwm_fw_cscheme_list *)data; if (dlen < sizeof(*l) || dlen < sizeof(l->size) + l->size * sizeof(*l->cs)) return EINVAL; /* we don't actually store anything for now, always use s/w crypto */ return 0; } static int iwm_firmware_store_section(struct iwm_softc *sc, enum iwm_ucode_type type, uint8_t *data, size_t dlen) { struct iwm_fw_sects *fws; struct iwm_fw_onesect *fwone; if (type >= IWM_UCODE_TYPE_MAX) return EINVAL; if (dlen < sizeof(uint32_t)) return EINVAL; fws = &sc->sc_fw.fw_sects[type]; if (fws->fw_count >= IWM_UCODE_SECT_MAX) return EINVAL; fwone = &fws->fw_sect[fws->fw_count]; /* first 32bit are device load offset */ memcpy(&fwone->fws_devoff, data, sizeof(uint32_t)); /* rest is data */ fwone->fws_data = data + sizeof(uint32_t); fwone->fws_len = dlen - sizeof(uint32_t); /* for freeing the buffer during driver unload */ fwone->fws_alloc = data; fwone->fws_allocsize = dlen; fws->fw_count++; fws->fw_totlen += fwone->fws_len; return 0; } struct iwm_tlv_calib_data { uint32_t ucode_type; struct iwm_tlv_calib_ctrl calib; } __packed; static int iwm_set_default_calib(struct iwm_softc *sc, const void *data) { const struct iwm_tlv_calib_data *def_calib = data; uint32_t ucode_type = le32toh(def_calib->ucode_type); if (ucode_type >= IWM_UCODE_TYPE_MAX) { DPRINTF(("%s: Wrong ucode_type %u for default calibration.\n", DEVNAME(sc), ucode_type)); return EINVAL; } sc->sc_default_calib[ucode_type].flow_trigger = def_calib->calib.flow_trigger; sc->sc_default_calib[ucode_type].event_trigger = def_calib->calib.event_trigger; return 0; } static int iwm_read_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { struct iwm_fw_info *fw = &sc->sc_fw; struct iwm_tlv_ucode_header *uhdr; struct iwm_ucode_tlv tlv; enum iwm_ucode_tlv_type tlv_type; uint8_t *data; int err, status; size_t len; if (ucode_type != IWM_UCODE_TYPE_INIT && fw->fw_status == IWM_FW_STATUS_DONE) return 0; if (fw->fw_status == IWM_FW_STATUS_NONE) { fw->fw_status = IWM_FW_STATUS_INPROGRESS; } else { while (fw->fw_status == IWM_FW_STATUS_INPROGRESS) tsleep(&sc->sc_fw, 0, "iwmfwp", 0); } status = fw->fw_status; if (status == IWM_FW_STATUS_DONE) return 0; err = iwm_firmload(sc); if (err) { aprint_error_dev(sc->sc_dev, "could not read firmware %s (error %d)\n", sc->sc_fwname, err); goto out; } sc->sc_capaflags = 0; sc->sc_capa_n_scan_channels = IWM_MAX_NUM_SCAN_CHANNELS; memset(sc->sc_enabled_capa, 0, sizeof(sc->sc_enabled_capa)); memset(sc->sc_fw_mcc, 0, sizeof(sc->sc_fw_mcc)); uhdr = (void *)fw->fw_rawdata; if (*(uint32_t *)fw->fw_rawdata != 0 || le32toh(uhdr->magic) != IWM_TLV_UCODE_MAGIC) { aprint_error_dev(sc->sc_dev, "invalid firmware %s\n", sc->sc_fwname); err = EINVAL; goto out; } snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d (API ver %d)", IWM_UCODE_MAJOR(le32toh(uhdr->ver)), IWM_UCODE_MINOR(le32toh(uhdr->ver)), IWM_UCODE_API(le32toh(uhdr->ver))); data = uhdr->data; len = fw->fw_rawsize - sizeof(*uhdr); while (len >= sizeof(tlv)) { size_t tlv_len; void *tlv_data; memcpy(&tlv, data, sizeof(tlv)); tlv_len = le32toh(tlv.length); tlv_type = le32toh(tlv.type); len -= sizeof(tlv); data += sizeof(tlv); tlv_data = data; if (len < tlv_len) { aprint_error_dev(sc->sc_dev, "firmware too short: %zu bytes\n", len); err = EINVAL; goto parse_out; } switch (tlv_type) { case IWM_UCODE_TLV_PROBE_MAX_LEN: if (tlv_len < sizeof(uint32_t)) { err = EINVAL; goto parse_out; } sc->sc_capa_max_probe_len = le32toh(*(uint32_t *)tlv_data); /* limit it to something sensible */ if (sc->sc_capa_max_probe_len > IWM_SCAN_OFFLOAD_PROBE_REQ_SIZE) { err = EINVAL; goto parse_out; } break; case IWM_UCODE_TLV_PAN: if (tlv_len) { err = EINVAL; goto parse_out; } sc->sc_capaflags |= IWM_UCODE_TLV_FLAGS_PAN; break; case IWM_UCODE_TLV_FLAGS: if (tlv_len < sizeof(uint32_t)) { err = EINVAL; goto parse_out; } if (tlv_len % sizeof(uint32_t)) { err = EINVAL; goto parse_out; } /* * Apparently there can be many flags, but Linux driver * parses only the first one, and so do we. * * XXX: why does this override IWM_UCODE_TLV_PAN? * Intentional or a bug? Observations from * current firmware file: * 1) TLV_PAN is parsed first * 2) TLV_FLAGS contains TLV_FLAGS_PAN * ==> this resets TLV_PAN to itself... hnnnk */ sc->sc_capaflags = le32toh(*(uint32_t *)tlv_data); break; case IWM_UCODE_TLV_CSCHEME: err = iwm_store_cscheme(sc, tlv_data, tlv_len); if (err) goto parse_out; break; case IWM_UCODE_TLV_NUM_OF_CPU: { uint32_t num_cpu; if (tlv_len != sizeof(uint32_t)) { err = EINVAL; goto parse_out; } num_cpu = le32toh(*(uint32_t *)tlv_data); if (num_cpu == 2) { fw->fw_sects[IWM_UCODE_TYPE_REGULAR].is_dual_cpus = true; fw->fw_sects[IWM_UCODE_TYPE_INIT].is_dual_cpus = true; fw->fw_sects[IWM_UCODE_TYPE_WOW].is_dual_cpus = true; } else if (num_cpu < 1 || num_cpu > 2) { err = EINVAL; goto parse_out; } break; } case IWM_UCODE_TLV_SEC_RT: err = iwm_firmware_store_section(sc, IWM_UCODE_TYPE_REGULAR, tlv_data, tlv_len); if (err) goto parse_out; break; case IWM_UCODE_TLV_SEC_INIT: err = iwm_firmware_store_section(sc, IWM_UCODE_TYPE_INIT, tlv_data, tlv_len); if (err) goto parse_out; break; case IWM_UCODE_TLV_SEC_WOWLAN: err = iwm_firmware_store_section(sc, IWM_UCODE_TYPE_WOW, tlv_data, tlv_len); if (err) goto parse_out; break; case IWM_UCODE_TLV_DEF_CALIB: if (tlv_len != sizeof(struct iwm_tlv_calib_data)) { err = EINVAL; goto parse_out; } err = iwm_set_default_calib(sc, tlv_data); if (err) goto parse_out; break; case IWM_UCODE_TLV_PHY_SKU: if (tlv_len != sizeof(uint32_t)) { err = EINVAL; goto parse_out; } sc->sc_fw_phy_config = le32toh(*(uint32_t *)tlv_data); break; case IWM_UCODE_TLV_API_CHANGES_SET: { struct iwm_ucode_api *api; uint32_t idx, bits; int i; if (tlv_len != sizeof(*api)) { err = EINVAL; goto parse_out; } api = (struct iwm_ucode_api *)tlv_data; idx = le32toh(api->api_index); bits = le32toh(api->api_flags); if (idx >= howmany(IWM_NUM_UCODE_TLV_API, 32)) { err = EINVAL; goto parse_out; } for (i = 0; i < 32; i++) { if (!ISSET(bits, __BIT(i))) continue; setbit(sc->sc_ucode_api, i + (32 * idx)); } break; } case IWM_UCODE_TLV_ENABLED_CAPABILITIES: { struct iwm_ucode_capa *capa; uint32_t idx, bits; int i; if (tlv_len != sizeof(*capa)) { err = EINVAL; goto parse_out; } capa = (struct iwm_ucode_capa *)tlv_data; idx = le32toh(capa->api_index); bits = le32toh(capa->api_capa); if (idx >= howmany(IWM_NUM_UCODE_TLV_CAPA, 32)) { err = EINVAL; goto parse_out; } for (i = 0; i < 32; i++) { if (!ISSET(bits, __BIT(i))) continue; setbit(sc->sc_enabled_capa, i + (32 * idx)); } break; } case IWM_UCODE_TLV_FW_UNDOCUMENTED1: case IWM_UCODE_TLV_SDIO_ADMA_ADDR: case IWM_UCODE_TLV_FW_GSCAN_CAPA: case IWM_UCODE_TLV_FW_MEM_SEG: /* ignore, not used by current driver */ break; case IWM_UCODE_TLV_SEC_RT_USNIFFER: err = iwm_firmware_store_section(sc, IWM_UCODE_TYPE_REGULAR_USNIFFER, tlv_data, tlv_len); if (err) goto parse_out; break; case IWM_UCODE_TLV_PAGING: { uint32_t paging_mem_size; if (tlv_len != sizeof(paging_mem_size)) { err = EINVAL; goto parse_out; } paging_mem_size = le32toh(*(uint32_t *)tlv_data); if (paging_mem_size > IWM_MAX_PAGING_IMAGE_SIZE) { err = EINVAL; goto parse_out; } if (paging_mem_size & (IWM_FW_PAGING_SIZE - 1)) { err = EINVAL; goto parse_out; } fw->fw_sects[IWM_UCODE_TYPE_REGULAR].paging_mem_size = paging_mem_size; fw->fw_sects[IWM_UCODE_TYPE_REGULAR_USNIFFER].paging_mem_size = paging_mem_size; break; } case IWM_UCODE_TLV_N_SCAN_CHANNELS: if (tlv_len != sizeof(uint32_t)) { err = EINVAL; goto parse_out; } sc->sc_capa_n_scan_channels = le32toh(*(uint32_t *)tlv_data); break; case IWM_UCODE_TLV_FW_VERSION: if (tlv_len != sizeof(uint32_t) * 3) { err = EINVAL; goto parse_out; } snprintf(sc->sc_fwver, sizeof(sc->sc_fwver), "%d.%d.%d", le32toh(((uint32_t *)tlv_data)[0]), le32toh(((uint32_t *)tlv_data)[1]), le32toh(((uint32_t *)tlv_data)[2])); break; default: DPRINTF(("%s: unknown firmware section %d, abort\n", DEVNAME(sc), tlv_type)); err = EINVAL; goto parse_out; } len -= roundup(tlv_len, 4); data += roundup(tlv_len, 4); } KASSERT(err == 0); parse_out: if (err) { aprint_error_dev(sc->sc_dev, "firmware parse error, section type %d\n", tlv_type); } if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_PM_CMD_SUPPORT)) { aprint_error_dev(sc->sc_dev, "device uses unsupported power ops\n"); err = ENOTSUP; } out: if (err) fw->fw_status = IWM_FW_STATUS_NONE; else fw->fw_status = IWM_FW_STATUS_DONE; wakeup(&sc->sc_fw); if (err && fw->fw_rawdata != NULL) { kmem_free(fw->fw_rawdata, fw->fw_rawsize); fw->fw_rawdata = NULL; CLR(sc->sc_flags, IWM_FLAG_FW_LOADED); /* don't touch fw->fw_status */ memset(fw->fw_sects, 0, sizeof(fw->fw_sects)); } return err; } static uint32_t iwm_read_prph(struct iwm_softc *sc, uint32_t addr) { IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_RADDR, ((addr & 0x000fffff) | (3 << 24))); IWM_BARRIER_READ_WRITE(sc); return IWM_READ(sc, IWM_HBUS_TARG_PRPH_RDAT); } static void iwm_write_prph(struct iwm_softc *sc, uint32_t addr, uint32_t val) { IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_WADDR, ((addr & 0x000fffff) | (3 << 24))); IWM_BARRIER_WRITE(sc); IWM_WRITE(sc, IWM_HBUS_TARG_PRPH_WDAT, val); } #ifdef IWM_DEBUG static int iwm_read_mem(struct iwm_softc *sc, uint32_t addr, void *buf, int dwords) { int offs; uint32_t *vals = buf; if (iwm_nic_lock(sc)) { IWM_WRITE(sc, IWM_HBUS_TARG_MEM_RADDR, addr); for (offs = 0; offs < dwords; offs++) vals[offs] = IWM_READ(sc, IWM_HBUS_TARG_MEM_RDAT); iwm_nic_unlock(sc); return 0; } return EBUSY; } #endif static int iwm_write_mem(struct iwm_softc *sc, uint32_t addr, const void *buf, int dwords) { int offs; const uint32_t *vals = buf; if (iwm_nic_lock(sc)) { IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WADDR, addr); /* WADDR auto-increments */ for (offs = 0; offs < dwords; offs++) { uint32_t val = vals ? vals[offs] : 0; IWM_WRITE(sc, IWM_HBUS_TARG_MEM_WDAT, val); } iwm_nic_unlock(sc); return 0; } return EBUSY; } static int iwm_write_mem32(struct iwm_softc *sc, uint32_t addr, uint32_t val) { return iwm_write_mem(sc, addr, &val, 1); } static int iwm_poll_bit(struct iwm_softc *sc, int reg, uint32_t bits, uint32_t mask, int timo) { for (;;) { if ((IWM_READ(sc, reg) & mask) == (bits & mask)) { return 1; } if (timo < 10) { return 0; } timo -= 10; DELAY(10); } } static int iwm_nic_lock(struct iwm_softc *sc) { int rv = 0; if (sc->sc_cmd_hold_nic_awake) return 1; IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) DELAY(2); if (iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP, 15000)) { rv = 1; } else { DPRINTF(("%s: resetting device via NMI\n", DEVNAME(sc))); IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_FORCE_NMI); } return rv; } static void iwm_nic_unlock(struct iwm_softc *sc) { if (sc->sc_cmd_hold_nic_awake) return; IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); } static void iwm_set_bits_mask_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits, uint32_t mask) { uint32_t val; /* XXX: no error path? */ if (iwm_nic_lock(sc)) { val = iwm_read_prph(sc, reg) & mask; val |= bits; iwm_write_prph(sc, reg, val); iwm_nic_unlock(sc); } } static void iwm_set_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits) { iwm_set_bits_mask_prph(sc, reg, bits, ~0); } static void iwm_clear_bits_prph(struct iwm_softc *sc, uint32_t reg, uint32_t bits) { iwm_set_bits_mask_prph(sc, reg, 0, ~bits); } static int iwm_dma_contig_alloc(bus_dma_tag_t tag, struct iwm_dma_info *dma, bus_size_t size, bus_size_t alignment) { int nsegs, err; void *va; dma->tag = tag; dma->size = size; err = bus_dmamap_create(tag, size, 1, size, 0, BUS_DMA_NOWAIT, &dma->map); if (err) goto fail; err = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs, BUS_DMA_NOWAIT); if (err) goto fail; err = bus_dmamem_map(tag, &dma->seg, 1, size, &va, BUS_DMA_NOWAIT); if (err) goto fail; dma->vaddr = va; err = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, BUS_DMA_NOWAIT); if (err) goto fail; memset(dma->vaddr, 0, size); bus_dmamap_sync(tag, dma->map, 0, size, BUS_DMASYNC_PREWRITE); dma->paddr = dma->map->dm_segs[0].ds_addr; return 0; fail: iwm_dma_contig_free(dma); return err; } static void iwm_dma_contig_free(struct iwm_dma_info *dma) { if (dma->map != NULL) { if (dma->vaddr != NULL) { bus_dmamap_sync(dma->tag, dma->map, 0, dma->size, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(dma->tag, dma->map); bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size); bus_dmamem_free(dma->tag, &dma->seg, 1); dma->vaddr = NULL; } bus_dmamap_destroy(dma->tag, dma->map); dma->map = NULL; } } static int iwm_alloc_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) { bus_size_t size; int i, err; ring->cur = 0; /* Allocate RX descriptors (256-byte aligned). */ size = IWM_RX_RING_COUNT * sizeof(uint32_t); err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); if (err) { aprint_error_dev(sc->sc_dev, "could not allocate RX ring DMA memory\n"); goto fail; } ring->desc = ring->desc_dma.vaddr; /* Allocate RX status area (16-byte aligned). */ err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->stat_dma, sizeof(*ring->stat), 16); if (err) { aprint_error_dev(sc->sc_dev, "could not allocate RX status DMA memory\n"); goto fail; } ring->stat = ring->stat_dma.vaddr; for (i = 0; i < IWM_RX_RING_COUNT; i++) { struct iwm_rx_data *data = &ring->data[i]; memset(data, 0, sizeof(*data)); err = bus_dmamap_create(sc->sc_dmat, IWM_RBUF_SIZE, 1, IWM_RBUF_SIZE, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &data->map); if (err) { aprint_error_dev(sc->sc_dev, "could not create RX buf DMA map\n"); goto fail; } err = iwm_rx_addbuf(sc, IWM_RBUF_SIZE, i); if (err) goto fail; } return 0; fail: iwm_free_rx_ring(sc, ring); return err; } static void iwm_disable_rx_dma(struct iwm_softc *sc) { int ntries; if (iwm_nic_lock(sc)) { IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, 0); for (ntries = 0; ntries < 1000; ntries++) { if (IWM_READ(sc, IWM_FH_MEM_RSSR_RX_STATUS_REG) & IWM_FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE) break; DELAY(10); } iwm_nic_unlock(sc); } } void iwm_reset_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) { ring->cur = 0; memset(ring->stat, 0, sizeof(*ring->stat)); bus_dmamap_sync(sc->sc_dmat, ring->stat_dma.map, 0, ring->stat_dma.size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); } static void iwm_free_rx_ring(struct iwm_softc *sc, struct iwm_rx_ring *ring) { int i; iwm_dma_contig_free(&ring->desc_dma); iwm_dma_contig_free(&ring->stat_dma); for (i = 0; i < IWM_RX_RING_COUNT; i++) { struct iwm_rx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTREAD); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) { bus_dmamap_destroy(sc->sc_dmat, data->map); data->map = NULL; } } } static int iwm_alloc_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring, int qid) { bus_addr_t paddr; bus_size_t size; int i, err, nsegs; ring->qid = qid; ring->queued = 0; ring->cur = 0; /* Allocate TX descriptors (256-byte aligned). */ size = IWM_TX_RING_COUNT * sizeof (struct iwm_tfd); err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma, size, 256); if (err) { aprint_error_dev(sc->sc_dev, "could not allocate TX ring DMA memory\n"); goto fail; } ring->desc = ring->desc_dma.vaddr; /* * We only use rings 0 through 9 (4 EDCA + cmd) so there is no need * to allocate commands space for other rings. */ if (qid > IWM_CMD_QUEUE) return 0; size = IWM_TX_RING_COUNT * sizeof(struct iwm_device_cmd); err = iwm_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma, size, 4); if (err) { aprint_error_dev(sc->sc_dev, "could not allocate TX cmd DMA memory\n"); goto fail; } ring->cmd = ring->cmd_dma.vaddr; paddr = ring->cmd_dma.paddr; for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; size_t mapsize; data->cmd_paddr = paddr; data->scratch_paddr = paddr + sizeof(struct iwm_cmd_header) + offsetof(struct iwm_tx_cmd, scratch); paddr += sizeof(struct iwm_device_cmd); /* FW commands may require more mapped space than packets. */ if (qid == IWM_CMD_QUEUE) { mapsize = IWM_RBUF_SIZE; nsegs = 1; } else { mapsize = MCLBYTES; nsegs = IWM_NUM_OF_TBS - 2; } err = bus_dmamap_create(sc->sc_dmat, mapsize, nsegs, mapsize, 0, BUS_DMA_NOWAIT, &data->map); if (err) { aprint_error_dev(sc->sc_dev, "could not create TX buf DMA map\n"); goto fail; } } KASSERT(paddr == ring->cmd_dma.paddr + size); return 0; fail: iwm_free_tx_ring(sc, ring); return err; } static void iwm_clear_cmd_in_flight(struct iwm_softc *sc) { if (!sc->apmg_wake_up_wa) return; if (!sc->sc_cmd_hold_nic_awake) { aprint_error_dev(sc->sc_dev, "cmd_hold_nic_awake not set\n"); return; } sc->sc_cmd_hold_nic_awake = 0; IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); } static int iwm_set_cmd_in_flight(struct iwm_softc *sc) { int ret; /* * wake up the NIC to make sure that the firmware will see the host * command - we will let the NIC sleep once all the host commands * returned. This needs to be done only on NICs that have * apmg_wake_up_wa set. */ if (sc->apmg_wake_up_wa && !sc->sc_cmd_hold_nic_awake) { IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); ret = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN, (IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY | IWM_CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000); if (ret == 0) { IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); aprint_error_dev(sc->sc_dev, "failed to wake NIC for hcmd\n"); return EIO; } sc->sc_cmd_hold_nic_awake = 1; } return 0; } static void iwm_reset_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) { int i; for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } } /* Clear TX descriptors. */ memset(ring->desc, 0, ring->desc_dma.size); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, 0, ring->desc_dma.size, BUS_DMASYNC_PREWRITE); sc->qfullmsk &= ~(1 << ring->qid); ring->queued = 0; ring->cur = 0; if (ring->qid == IWM_CMD_QUEUE && sc->sc_cmd_hold_nic_awake) iwm_clear_cmd_in_flight(sc); } static void iwm_free_tx_ring(struct iwm_softc *sc, struct iwm_tx_ring *ring) { int i; iwm_dma_contig_free(&ring->desc_dma); iwm_dma_contig_free(&ring->cmd_dma); for (i = 0; i < IWM_TX_RING_COUNT; i++) { struct iwm_tx_data *data = &ring->data[i]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } if (data->map != NULL) { bus_dmamap_destroy(sc->sc_dmat, data->map); data->map = NULL; } } } static void iwm_enable_rfkill_int(struct iwm_softc *sc) { sc->sc_intmask = IWM_CSR_INT_BIT_RF_KILL; IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } static int iwm_check_rfkill(struct iwm_softc *sc) { uint32_t v; int s; int rv; s = splnet(); /* * "documentation" is not really helpful here: * 27: HW_RF_KILL_SW * Indicates state of (platform's) hardware RF-Kill switch * * But apparently when it's off, it's on ... */ v = IWM_READ(sc, IWM_CSR_GP_CNTRL); rv = (v & IWM_CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW) == 0; if (rv) { sc->sc_flags |= IWM_FLAG_RFKILL; } else { sc->sc_flags &= ~IWM_FLAG_RFKILL; } splx(s); return rv; } static void iwm_enable_interrupts(struct iwm_softc *sc) { sc->sc_intmask = IWM_CSR_INI_SET_MASK; IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } static void iwm_restore_interrupts(struct iwm_softc *sc) { IWM_WRITE(sc, IWM_CSR_INT_MASK, sc->sc_intmask); } static void iwm_disable_interrupts(struct iwm_softc *sc) { int s = splnet(); IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); /* acknowledge all interrupts */ IWM_WRITE(sc, IWM_CSR_INT, ~0); IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, ~0); splx(s); } static void iwm_ict_reset(struct iwm_softc *sc) { iwm_disable_interrupts(sc); memset(sc->ict_dma.vaddr, 0, IWM_ICT_SIZE); bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, IWM_ICT_SIZE, BUS_DMASYNC_PREWRITE); sc->ict_cur = 0; /* Set physical address of ICT (4KB aligned). */ IWM_WRITE(sc, IWM_CSR_DRAM_INT_TBL_REG, IWM_CSR_DRAM_INT_TBL_ENABLE | IWM_CSR_DRAM_INIT_TBL_WRAP_CHECK | IWM_CSR_DRAM_INIT_TBL_WRITE_POINTER | sc->ict_dma.paddr >> IWM_ICT_PADDR_SHIFT); /* Switch to ICT interrupt mode in driver. */ sc->sc_flags |= IWM_FLAG_USE_ICT; IWM_WRITE(sc, IWM_CSR_INT, ~0); iwm_enable_interrupts(sc); } #define IWM_HW_READY_TIMEOUT 50 static int iwm_set_hw_ready(struct iwm_softc *sc) { int ready; IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG, IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY); ready = iwm_poll_bit(sc, IWM_CSR_HW_IF_CONFIG_REG, IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, IWM_CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, IWM_HW_READY_TIMEOUT); if (ready) IWM_SETBITS(sc, IWM_CSR_MBOX_SET_REG, IWM_CSR_MBOX_SET_REG_OS_ALIVE); return ready; } #undef IWM_HW_READY_TIMEOUT static int iwm_prepare_card_hw(struct iwm_softc *sc) { int t = 0; if (iwm_set_hw_ready(sc)) return 0; DELAY(100); /* If HW is not ready, prepare the conditions to check again */ IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG, IWM_CSR_HW_IF_CONFIG_REG_PREPARE); do { if (iwm_set_hw_ready(sc)) return 0; DELAY(200); t += 200; } while (t < 150000); return ETIMEDOUT; } static void iwm_apm_config(struct iwm_softc *sc) { pcireg_t reg; reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, sc->sc_cap_off + PCIE_LCSR); if (reg & PCIE_LCSR_ASPM_L1) { /* Um the Linux driver prints "Disabling L0S for this one ... */ IWM_SETBITS(sc, IWM_CSR_GIO_REG, IWM_CSR_GIO_REG_VAL_L0S_ENABLED); } else { /* ... and "Enabling" here */ IWM_CLRBITS(sc, IWM_CSR_GIO_REG, IWM_CSR_GIO_REG_VAL_L0S_ENABLED); } } /* * Start up NIC's basic functionality after it has been reset * e.g. after platform boot or shutdown. * NOTE: This does not load uCode nor start the embedded processor */ static int iwm_apm_init(struct iwm_softc *sc) { int err = 0; /* Disable L0S exit timer (platform NMI workaround) */ if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) { IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS, IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER); } /* * Disable L0s without affecting L1; * don't wait for ICH L0s (ICH bug W/A) */ IWM_SETBITS(sc, IWM_CSR_GIO_CHICKEN_BITS, IWM_CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX); /* Set FH wait threshold to maximum (HW error during stress W/A) */ IWM_SETBITS(sc, IWM_CSR_DBG_HPET_MEM_REG, IWM_CSR_DBG_HPET_MEM_REG_VAL); /* * Enable HAP INTA (interrupt from management bus) to * wake device's PCI Express link L1a -> L0s */ IWM_SETBITS(sc, IWM_CSR_HW_IF_CONFIG_REG, IWM_CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A); iwm_apm_config(sc); #if 0 /* not for 7k/8k */ /* Configure analog phase-lock-loop before activating to D0A */ if (trans->cfg->base_params->pll_cfg_val) IWM_SETBITS(trans, IWM_CSR_ANA_PLL_CFG, trans->cfg->base_params->pll_cfg_val); #endif /* * Set "initialization complete" bit to move adapter from * D0U* --> D0A* (powered-up active) state. */ IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); /* * Wait for clock stabilization; once stabilized, access to * device-internal resources is supported, e.g. iwm_write_prph() * and accesses to uCode SRAM. */ if (!iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000)) { aprint_error_dev(sc->sc_dev, "timeout waiting for clock stabilization\n"); err = ETIMEDOUT; goto out; } if (sc->host_interrupt_operation_mode) { /* * This is a bit of an abuse - This is needed for 7260 / 3160 * only check host_interrupt_operation_mode even if this is * not related to host_interrupt_operation_mode. * * Enable the oscillator to count wake up time for L1 exit. This * consumes slightly more power (100uA) - but allows to be sure * that we wake up from L1 on time. * * This looks weird: read twice the same register, discard the * value, set a bit, and yet again, read that same register * just to discard the value. But that's the way the hardware * seems to like it. */ iwm_read_prph(sc, IWM_OSC_CLK); iwm_read_prph(sc, IWM_OSC_CLK); iwm_set_bits_prph(sc, IWM_OSC_CLK, IWM_OSC_CLK_FORCE_CONTROL); iwm_read_prph(sc, IWM_OSC_CLK); iwm_read_prph(sc, IWM_OSC_CLK); } /* * Enable DMA clock and wait for it to stabilize. * * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits * do not disable clocks. This preserves any hardware bits already * set by default in "CLK_CTRL_REG" after reset. */ if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { iwm_write_prph(sc, IWM_APMG_CLK_EN_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT); DELAY(20); /* Disable L1-Active */ iwm_set_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG, IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS); /* Clear the interrupt in APMG if the NIC is in RFKILL */ iwm_write_prph(sc, IWM_APMG_RTC_INT_STT_REG, IWM_APMG_RTC_INT_STT_RFKILL); } out: if (err) aprint_error_dev(sc->sc_dev, "apm init error %d\n", err); return err; } static void iwm_apm_stop(struct iwm_softc *sc) { /* stop device's busmaster DMA activity */ IWM_SETBITS(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_STOP_MASTER); if (!iwm_poll_bit(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED, IWM_CSR_RESET_REG_FLAG_MASTER_DISABLED, 100)) aprint_error_dev(sc->sc_dev, "timeout waiting for master\n"); DPRINTF(("iwm apm stop\n")); } static int iwm_start_hw(struct iwm_softc *sc) { int err; err = iwm_prepare_card_hw(sc); if (err) return err; /* Reset the entire device */ IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET); DELAY(10); err = iwm_apm_init(sc); if (err) return err; iwm_enable_rfkill_int(sc); iwm_check_rfkill(sc); return 0; } static void iwm_stop_device(struct iwm_softc *sc) { int chnl, ntries; int qid; iwm_disable_interrupts(sc); sc->sc_flags &= ~IWM_FLAG_USE_ICT; /* Deactivate TX scheduler. */ iwm_write_prph(sc, IWM_SCD_TXFACT, 0); /* Stop all DMA channels. */ if (iwm_nic_lock(sc)) { for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), 0); for (ntries = 0; ntries < 200; ntries++) { uint32_t r; r = IWM_READ(sc, IWM_FH_TSSR_TX_STATUS_REG); if (r & IWM_FH_TSSR_TX_STATUS_REG_MSK_CHNL_IDLE( chnl)) break; DELAY(20); } } iwm_nic_unlock(sc); } iwm_disable_rx_dma(sc); iwm_reset_rx_ring(sc, &sc->rxq); for (qid = 0; qid < __arraycount(sc->txq); qid++) iwm_reset_tx_ring(sc, &sc->txq[qid]); if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { /* Power-down device's busmaster DMA clocks */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_APMG_CLK_DIS_REG, IWM_APMG_CLK_VAL_DMA_CLK_RQT); DELAY(5); iwm_nic_unlock(sc); } } /* Make sure (redundant) we've released our request to stay awake */ IWM_CLRBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ); /* Stop the device, and put it in low power state */ iwm_apm_stop(sc); /* * Upon stop, the APM issues an interrupt if HW RF kill is set. * Clean again the interrupt here */ iwm_disable_interrupts(sc); /* Reset the on-board processor. */ IWM_WRITE(sc, IWM_CSR_RESET, IWM_CSR_RESET_REG_FLAG_SW_RESET); /* Even though we stop the HW we still want the RF kill interrupt. */ iwm_enable_rfkill_int(sc); iwm_check_rfkill(sc); } static void iwm_nic_config(struct iwm_softc *sc) { uint8_t radio_cfg_type, radio_cfg_step, radio_cfg_dash; uint32_t reg_val = 0; radio_cfg_type = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_TYPE) >> IWM_FW_PHY_CFG_RADIO_TYPE_POS; radio_cfg_step = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_STEP) >> IWM_FW_PHY_CFG_RADIO_STEP_POS; radio_cfg_dash = (sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RADIO_DASH) >> IWM_FW_PHY_CFG_RADIO_DASH_POS; reg_val |= IWM_CSR_HW_REV_STEP(sc->sc_hw_rev) << IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_STEP; reg_val |= IWM_CSR_HW_REV_DASH(sc->sc_hw_rev) << IWM_CSR_HW_IF_CONFIG_REG_POS_MAC_DASH; /* radio configuration */ reg_val |= radio_cfg_type << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE; reg_val |= radio_cfg_step << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_STEP; reg_val |= radio_cfg_dash << IWM_CSR_HW_IF_CONFIG_REG_POS_PHY_DASH; IWM_WRITE(sc, IWM_CSR_HW_IF_CONFIG_REG, reg_val); DPRINTF(("Radio type=0x%x-0x%x-0x%x\n", radio_cfg_type, radio_cfg_step, radio_cfg_dash)); /* * W/A : NIC is stuck in a reset state after Early PCIe power off * (PCIe power is lost before PERST# is asserted), causing ME FW * to lose ownership and not being able to obtain it back. */ if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG, IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS, ~IWM_APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS); } } static int iwm_nic_rx_init(struct iwm_softc *sc) { if (!iwm_nic_lock(sc)) return EBUSY; memset(sc->rxq.stat, 0, sizeof(*sc->rxq.stat)); bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 0, sc->rxq.stat_dma.size, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); iwm_disable_rx_dma(sc); IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0); IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0); IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RDPTR, 0); IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0); /* Set physical address of RX ring (256-byte aligned). */ IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_RBDCB_BASE_REG, sc->rxq.desc_dma.paddr >> 8); /* Set physical address of RX status (16-byte aligned). */ IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_STTS_WPTR_REG, sc->rxq.stat_dma.paddr >> 4); /* Enable RX. */ IWM_WRITE(sc, IWM_FH_MEM_RCSR_CHNL0_CONFIG_REG, IWM_FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL | IWM_FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY | /* HW bug */ IWM_FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL | IWM_FH_RCSR_CHNL0_RX_CONFIG_SINGLE_FRAME_MSK | IWM_FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K | (IWM_RX_RB_TIMEOUT << IWM_FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS) | IWM_RX_QUEUE_SIZE_LOG << IWM_FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS); IWM_WRITE_1(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_TIMEOUT_DEF); /* W/A for interrupt coalescing bug in 7260 and 3160 */ if (sc->host_interrupt_operation_mode) IWM_SETBITS(sc, IWM_CSR_INT_COALESCING, IWM_HOST_INT_OPER_MODE); /* * This value should initially be 0 (before preparing any RBs), * and should be 8 after preparing the first 8 RBs (for example). */ IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, 8); iwm_nic_unlock(sc); return 0; } static int iwm_nic_tx_init(struct iwm_softc *sc) { int qid; if (!iwm_nic_lock(sc)) return EBUSY; /* Deactivate TX scheduler. */ iwm_write_prph(sc, IWM_SCD_TXFACT, 0); /* Set physical address of "keep warm" page (16-byte aligned). */ IWM_WRITE(sc, IWM_FH_KW_MEM_ADDR_REG, sc->kw_dma.paddr >> 4); for (qid = 0; qid < __arraycount(sc->txq); qid++) { struct iwm_tx_ring *txq = &sc->txq[qid]; /* Set physical address of TX ring (256-byte aligned). */ IWM_WRITE(sc, IWM_FH_MEM_CBBC_QUEUE(qid), txq->desc_dma.paddr >> 8); DPRINTF(("loading ring %d descriptors (%p) at %"PRIxMAX"\n", qid, txq->desc, (uintmax_t)(txq->desc_dma.paddr >> 8))); } iwm_write_prph(sc, IWM_SCD_GP_CTRL, IWM_SCD_GP_CTRL_AUTO_ACTIVE_MODE); iwm_nic_unlock(sc); return 0; } static int iwm_nic_init(struct iwm_softc *sc) { int err; iwm_apm_init(sc); if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { iwm_set_bits_mask_prph(sc, IWM_APMG_PS_CTRL_REG, IWM_APMG_PS_CTRL_VAL_PWR_SRC_VMAIN, ~IWM_APMG_PS_CTRL_MSK_PWR_SRC); } iwm_nic_config(sc); err = iwm_nic_rx_init(sc); if (err) return err; err = iwm_nic_tx_init(sc); if (err) return err; DPRINTF(("shadow registers enabled\n")); IWM_SETBITS(sc, IWM_CSR_MAC_SHADOW_REG_CTRL, 0x800fffff); return 0; } static const uint8_t iwm_ac_to_tx_fifo[] = { IWM_TX_FIFO_VO, IWM_TX_FIFO_VI, IWM_TX_FIFO_BE, IWM_TX_FIFO_BK, }; static int iwm_enable_txq(struct iwm_softc *sc, int sta_id, int qid, int fifo) { if (!iwm_nic_lock(sc)) { DPRINTF(("%s: cannot enable txq %d\n", DEVNAME(sc), qid)); return EBUSY; } IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, qid << 8 | 0); if (qid == IWM_CMD_QUEUE) { iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), (0 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | (1 << IWM_SCD_QUEUE_STTS_REG_POS_SCD_ACT_EN)); iwm_nic_unlock(sc); iwm_clear_bits_prph(sc, IWM_SCD_AGGR_SEL, (1 << qid)); if (!iwm_nic_lock(sc)) return EBUSY; iwm_write_prph(sc, IWM_SCD_QUEUE_RDPTR(qid), 0); iwm_nic_unlock(sc); iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid), 0); /* Set scheduler window size and frame limit. */ iwm_write_mem32(sc, sc->sched_base + IWM_SCD_CONTEXT_QUEUE_OFFSET(qid) + sizeof(uint32_t), ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_POS) & IWM_SCD_QUEUE_CTX_REG2_WIN_SIZE_MSK) | ((IWM_FRAME_LIMIT << IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_POS) & IWM_SCD_QUEUE_CTX_REG2_FRAME_LIMIT_MSK)); if (!iwm_nic_lock(sc)) return EBUSY; iwm_write_prph(sc, IWM_SCD_QUEUE_STATUS_BITS(qid), (1 << IWM_SCD_QUEUE_STTS_REG_POS_ACTIVE) | (fifo << IWM_SCD_QUEUE_STTS_REG_POS_TXF) | (1 << IWM_SCD_QUEUE_STTS_REG_POS_WSL) | IWM_SCD_QUEUE_STTS_REG_MSK); } else { struct iwm_scd_txq_cfg_cmd cmd; int err; iwm_nic_unlock(sc); memset(&cmd, 0, sizeof(cmd)); cmd.scd_queue = qid; cmd.enable = 1; cmd.sta_id = sta_id; cmd.tx_fifo = fifo; cmd.aggregate = 0; cmd.window = IWM_FRAME_LIMIT; err = iwm_send_cmd_pdu(sc, IWM_SCD_QUEUE_CFG, 0, sizeof(cmd), &cmd); if (err) return err; if (!iwm_nic_lock(sc)) return EBUSY; } iwm_write_prph(sc, IWM_SCD_EN_CTRL, iwm_read_prph(sc, IWM_SCD_EN_CTRL) | qid); iwm_nic_unlock(sc); DPRINTF(("enabled txq %d FIFO %d\n", qid, fifo)); return 0; } static int iwm_post_alive(struct iwm_softc *sc) { int nwords = (IWM_SCD_TRANS_TBL_MEM_UPPER_BOUND - IWM_SCD_CONTEXT_MEM_LOWER_BOUND) / sizeof(uint32_t); int err, chnl; uint32_t base; if (!iwm_nic_lock(sc)) return EBUSY; base = iwm_read_prph(sc, IWM_SCD_SRAM_BASE_ADDR); if (sc->sched_base != base) { DPRINTF(("%s: sched addr mismatch: 0x%08x != 0x%08x\n", DEVNAME(sc), sc->sched_base, base)); sc->sched_base = base; } iwm_nic_unlock(sc); iwm_ict_reset(sc); /* Clear TX scheduler state in SRAM. */ err = iwm_write_mem(sc, sc->sched_base + IWM_SCD_CONTEXT_MEM_LOWER_BOUND, NULL, nwords); if (err) return err; if (!iwm_nic_lock(sc)) return EBUSY; /* Set physical address of TX scheduler rings (1KB aligned). */ iwm_write_prph(sc, IWM_SCD_DRAM_BASE_ADDR, sc->sched_dma.paddr >> 10); iwm_write_prph(sc, IWM_SCD_CHAINEXT_EN, 0); iwm_nic_unlock(sc); /* enable command channel */ err = iwm_enable_txq(sc, 0 /* unused */, IWM_CMD_QUEUE, 7); if (err) return err; if (!iwm_nic_lock(sc)) return EBUSY; /* Activate TX scheduler. */ iwm_write_prph(sc, IWM_SCD_TXFACT, 0xff); /* Enable DMA channels. */ for (chnl = 0; chnl < IWM_FH_TCSR_CHNL_NUM; chnl++) { IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(chnl), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_ENABLE); } IWM_SETBITS(sc, IWM_FH_TX_CHICKEN_BITS_REG, IWM_FH_TX_CHICKEN_BITS_SCD_AUTO_RETRY_EN); /* Enable L1-Active */ if (sc->sc_device_family != IWM_DEVICE_FAMILY_8000) { iwm_clear_bits_prph(sc, IWM_APMG_PCIDEV_STT_REG, IWM_APMG_PCIDEV_STT_VAL_L1_ACT_DIS); } iwm_nic_unlock(sc); return 0; } static struct iwm_phy_db_entry * iwm_phy_db_get_section(struct iwm_softc *sc, enum iwm_phy_db_section_type type, uint16_t chg_id) { struct iwm_phy_db *phy_db = &sc->sc_phy_db; if (type >= IWM_PHY_DB_MAX) return NULL; switch (type) { case IWM_PHY_DB_CFG: return &phy_db->cfg; case IWM_PHY_DB_CALIB_NCH: return &phy_db->calib_nch; case IWM_PHY_DB_CALIB_CHG_PAPD: if (chg_id >= IWM_NUM_PAPD_CH_GROUPS) return NULL; return &phy_db->calib_ch_group_papd[chg_id]; case IWM_PHY_DB_CALIB_CHG_TXP: if (chg_id >= IWM_NUM_TXP_CH_GROUPS) return NULL; return &phy_db->calib_ch_group_txp[chg_id]; default: return NULL; } return NULL; } static int iwm_phy_db_set_section(struct iwm_softc *sc, struct iwm_calib_res_notif_phy_db *phy_db_notif, uint16_t size) { struct iwm_phy_db_entry *entry; enum iwm_phy_db_section_type type = le16toh(phy_db_notif->type); uint16_t chg_id = 0; if (type == IWM_PHY_DB_CALIB_CHG_PAPD || type == IWM_PHY_DB_CALIB_CHG_TXP) chg_id = le16toh(*(uint16_t *)phy_db_notif->data); entry = iwm_phy_db_get_section(sc, type, chg_id); if (!entry) return EINVAL; if (entry->data) kmem_intr_free(entry->data, entry->size); entry->data = kmem_intr_alloc(size, KM_NOSLEEP); if (!entry->data) { entry->size = 0; return ENOMEM; } memcpy(entry->data, phy_db_notif->data, size); entry->size = size; DPRINTFN(10, ("%s(%d): [PHYDB]SET: Type %d, Size: %d, data: %p\n", __func__, __LINE__, type, size, entry->data)); return 0; } static int iwm_is_valid_channel(uint16_t ch_id) { if (ch_id <= 14 || (36 <= ch_id && ch_id <= 64 && ch_id % 4 == 0) || (100 <= ch_id && ch_id <= 140 && ch_id % 4 == 0) || (145 <= ch_id && ch_id <= 165 && ch_id % 4 == 1)) return 1; return 0; } static uint8_t iwm_ch_id_to_ch_index(uint16_t ch_id) { if (!iwm_is_valid_channel(ch_id)) return 0xff; if (ch_id <= 14) return ch_id - 1; if (ch_id <= 64) return (ch_id + 20) / 4; if (ch_id <= 140) return (ch_id - 12) / 4; return (ch_id - 13) / 4; } static uint16_t iwm_channel_id_to_papd(uint16_t ch_id) { if (!iwm_is_valid_channel(ch_id)) return 0xff; if (1 <= ch_id && ch_id <= 14) return 0; if (36 <= ch_id && ch_id <= 64) return 1; if (100 <= ch_id && ch_id <= 140) return 2; return 3; } static uint16_t iwm_channel_id_to_txp(struct iwm_softc *sc, uint16_t ch_id) { struct iwm_phy_db *phy_db = &sc->sc_phy_db; struct iwm_phy_db_chg_txp *txp_chg; int i; uint8_t ch_index = iwm_ch_id_to_ch_index(ch_id); if (ch_index == 0xff) return 0xff; for (i = 0; i < IWM_NUM_TXP_CH_GROUPS; i++) { txp_chg = (void *)phy_db->calib_ch_group_txp[i].data; if (!txp_chg) return 0xff; /* * Looking for the first channel group the max channel * of which is higher than the requested channel. */ if (le16toh(txp_chg->max_channel_idx) >= ch_index) return i; } return 0xff; } static int iwm_phy_db_get_section_data(struct iwm_softc *sc, uint32_t type, uint8_t **data, uint16_t *size, uint16_t ch_id) { struct iwm_phy_db_entry *entry; uint16_t ch_group_id = 0; if (type == IWM_PHY_DB_CALIB_CHG_PAPD) ch_group_id = iwm_channel_id_to_papd(ch_id); else if (type == IWM_PHY_DB_CALIB_CHG_TXP) ch_group_id = iwm_channel_id_to_txp(sc, ch_id); entry = iwm_phy_db_get_section(sc, type, ch_group_id); if (!entry) return EINVAL; *data = entry->data; *size = entry->size; DPRINTFN(10, ("%s(%d): [PHYDB] GET: Type %d , Size: %d\n", __func__, __LINE__, type, *size)); return 0; } static int iwm_send_phy_db_cmd(struct iwm_softc *sc, uint16_t type, uint16_t length, void *data) { struct iwm_phy_db_cmd phy_db_cmd; struct iwm_host_cmd cmd = { .id = IWM_PHY_DB_CMD, .flags = IWM_CMD_ASYNC, }; DPRINTFN(10, ("Sending PHY-DB hcmd of type %d, of length %d\n", type, length)); phy_db_cmd.type = le16toh(type); phy_db_cmd.length = le16toh(length); cmd.data[0] = &phy_db_cmd; cmd.len[0] = sizeof(struct iwm_phy_db_cmd); cmd.data[1] = data; cmd.len[1] = length; return iwm_send_cmd(sc, &cmd); } static int iwm_phy_db_send_all_channel_groups(struct iwm_softc *sc, enum iwm_phy_db_section_type type, uint8_t max_ch_groups) { uint16_t i; int err; struct iwm_phy_db_entry *entry; /* Send all the channel-specific groups to operational fw */ for (i = 0; i < max_ch_groups; i++) { entry = iwm_phy_db_get_section(sc, type, i); if (!entry) return EINVAL; if (!entry->size) continue; err = iwm_send_phy_db_cmd(sc, type, entry->size, entry->data); if (err) { DPRINTF(("%s: Can't SEND phy_db section %d (%d), " "err %d\n", DEVNAME(sc), type, i, err)); return err; } DPRINTFN(10, ("%s: Sent PHY_DB HCMD, type = %d num = %d\n", DEVNAME(sc), type, i)); DELAY(1000); } return 0; } static int iwm_send_phy_db_data(struct iwm_softc *sc) { uint8_t *data = NULL; uint16_t size = 0; int err; err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CFG, &data, &size, 0); if (err) return err; err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CFG, size, data); if (err) return err; err = iwm_phy_db_get_section_data(sc, IWM_PHY_DB_CALIB_NCH, &data, &size, 0); if (err) return err; err = iwm_send_phy_db_cmd(sc, IWM_PHY_DB_CALIB_NCH, size, data); if (err) return err; err = iwm_phy_db_send_all_channel_groups(sc, IWM_PHY_DB_CALIB_CHG_PAPD, IWM_NUM_PAPD_CH_GROUPS); if (err) return err; err = iwm_phy_db_send_all_channel_groups(sc, IWM_PHY_DB_CALIB_CHG_TXP, IWM_NUM_TXP_CH_GROUPS); if (err) return err; return 0; } /* * For the high priority TE use a time event type that has similar priority to * the FW's action scan priority. */ #define IWM_ROC_TE_TYPE_NORMAL IWM_TE_P2P_DEVICE_DISCOVERABLE #define IWM_ROC_TE_TYPE_MGMT_TX IWM_TE_P2P_CLIENT_ASSOC /* used to convert from time event API v2 to v1 */ #define IWM_TE_V2_DEP_POLICY_MSK (IWM_TE_V2_DEP_OTHER | IWM_TE_V2_DEP_TSF |\ IWM_TE_V2_EVENT_SOCIOPATHIC) static inline uint16_t iwm_te_v2_get_notify(uint16_t policy) { return le16toh(policy) & IWM_TE_V2_NOTIF_MSK; } static inline uint16_t iwm_te_v2_get_dep_policy(uint16_t policy) { return (le16toh(policy) & IWM_TE_V2_DEP_POLICY_MSK) >> IWM_TE_V2_PLACEMENT_POS; } static inline uint16_t iwm_te_v2_get_absence(uint16_t policy) { return (le16toh(policy) & IWM_TE_V2_ABSENCE) >> IWM_TE_V2_ABSENCE_POS; } static void iwm_te_v2_to_v1(const struct iwm_time_event_cmd_v2 *cmd_v2, struct iwm_time_event_cmd_v1 *cmd_v1) { cmd_v1->id_and_color = cmd_v2->id_and_color; cmd_v1->action = cmd_v2->action; cmd_v1->id = cmd_v2->id; cmd_v1->apply_time = cmd_v2->apply_time; cmd_v1->max_delay = cmd_v2->max_delay; cmd_v1->depends_on = cmd_v2->depends_on; cmd_v1->interval = cmd_v2->interval; cmd_v1->duration = cmd_v2->duration; if (cmd_v2->repeat == IWM_TE_V2_REPEAT_ENDLESS) cmd_v1->repeat = htole32(IWM_TE_V1_REPEAT_ENDLESS); else cmd_v1->repeat = htole32(cmd_v2->repeat); cmd_v1->max_frags = htole32(cmd_v2->max_frags); cmd_v1->interval_reciprocal = 0; /* unused */ cmd_v1->dep_policy = htole32(iwm_te_v2_get_dep_policy(cmd_v2->policy)); cmd_v1->is_present = htole32(!iwm_te_v2_get_absence(cmd_v2->policy)); cmd_v1->notify = htole32(iwm_te_v2_get_notify(cmd_v2->policy)); } static int iwm_send_time_event_cmd(struct iwm_softc *sc, const struct iwm_time_event_cmd_v2 *cmd) { struct iwm_time_event_cmd_v1 cmd_v1; if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_TIME_EVENT_API_V2) return iwm_send_cmd_pdu(sc, IWM_TIME_EVENT_CMD, 0, sizeof(*cmd), cmd); iwm_te_v2_to_v1(cmd, &cmd_v1); return iwm_send_cmd_pdu(sc, IWM_TIME_EVENT_CMD, 0, sizeof(cmd_v1), &cmd_v1); } static void iwm_protect_session(struct iwm_softc *sc, struct iwm_node *in, uint32_t duration, uint32_t max_delay) { struct iwm_time_event_cmd_v2 time_cmd; memset(&time_cmd, 0, sizeof(time_cmd)); time_cmd.action = htole32(IWM_FW_CTXT_ACTION_ADD); time_cmd.id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); time_cmd.id = htole32(IWM_TE_BSS_STA_AGGRESSIVE_ASSOC); time_cmd.apply_time = htole32(0); time_cmd.max_frags = IWM_TE_V2_FRAG_NONE; time_cmd.max_delay = htole32(max_delay); /* TODO: why do we need to interval = bi if it is not periodic? */ time_cmd.interval = htole32(1); time_cmd.duration = htole32(duration); time_cmd.repeat = 1; time_cmd.policy = htole16(IWM_TE_V2_NOTIF_HOST_EVENT_START | IWM_TE_V2_NOTIF_HOST_EVENT_END | IWM_T2_V2_START_IMMEDIATELY); iwm_send_time_event_cmd(sc, &time_cmd); } /* * NVM read access and content parsing. We do not support * external NVM or writing NVM. */ /* list of NVM sections we are allowed/need to read */ static const int iwm_nvm_to_read[] = { IWM_NVM_SECTION_TYPE_HW, IWM_NVM_SECTION_TYPE_SW, IWM_NVM_SECTION_TYPE_REGULATORY, IWM_NVM_SECTION_TYPE_CALIBRATION, IWM_NVM_SECTION_TYPE_PRODUCTION, IWM_NVM_SECTION_TYPE_HW_8000, IWM_NVM_SECTION_TYPE_MAC_OVERRIDE, IWM_NVM_SECTION_TYPE_PHY_SKU, }; /* Default NVM size to read */ #define IWM_NVM_DEFAULT_CHUNK_SIZE (2*1024) #define IWM_MAX_NVM_SECTION_SIZE_7000 (16 * 512 * sizeof(uint16_t)) /*16 KB*/ #define IWM_MAX_NVM_SECTION_SIZE_8000 (32 * 512 * sizeof(uint16_t)) /*32 KB*/ #define IWM_NVM_WRITE_OPCODE 1 #define IWM_NVM_READ_OPCODE 0 static int iwm_nvm_read_chunk(struct iwm_softc *sc, uint16_t section, uint16_t offset, uint16_t length, uint8_t *data, uint16_t *len) { offset = 0; struct iwm_nvm_access_cmd nvm_access_cmd = { .offset = htole16(offset), .length = htole16(length), .type = htole16(section), .op_code = IWM_NVM_READ_OPCODE, }; struct iwm_nvm_access_resp *nvm_resp; struct iwm_rx_packet *pkt; struct iwm_host_cmd cmd = { .id = IWM_NVM_ACCESS_CMD, .flags = (IWM_CMD_WANT_SKB | IWM_CMD_SEND_IN_RFKILL), .data = { &nvm_access_cmd, }, }; int err, offset_read; size_t bytes_read; uint8_t *resp_data; cmd.len[0] = sizeof(struct iwm_nvm_access_cmd); err = iwm_send_cmd(sc, &cmd); if (err) { DPRINTF(("%s: Could not send NVM_ACCESS command (error=%d)\n", DEVNAME(sc), err)); return err; } pkt = cmd.resp_pkt; if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) { err = EIO; goto exit; } /* Extract NVM response */ nvm_resp = (void *)pkt->data; err = le16toh(nvm_resp->status); bytes_read = le16toh(nvm_resp->length); offset_read = le16toh(nvm_resp->offset); resp_data = nvm_resp->data; if (err) { err = EINVAL; goto exit; } if (offset_read != offset) { err = EINVAL; goto exit; } if (bytes_read > length) { err = EINVAL; goto exit; } memcpy(data + offset, resp_data, bytes_read); *len = bytes_read; exit: iwm_free_resp(sc, &cmd); return err; } /* * Reads an NVM section completely. * NICs prior to 7000 family doesn't have a real NVM, but just read * section 0 which is the EEPROM. Because the EEPROM reading is unlimited * by uCode, we need to manually check in this case that we don't * overflow and try to read more than the EEPROM size. */ static int iwm_nvm_read_section(struct iwm_softc *sc, uint16_t section, uint8_t *data, uint16_t *len, size_t max_len) { uint16_t chunklen, seglen; int err; chunklen = seglen = IWM_NVM_DEFAULT_CHUNK_SIZE; *len = 0; /* Read NVM chunks until exhausted (reading less than requested) */ while (seglen == chunklen && *len < max_len) { err = iwm_nvm_read_chunk(sc, section, *len, chunklen, data, &seglen); if (err) { DPRINTF(("%s: Cannot read NVM from section %d " "offset %d, length %d\n", DEVNAME(sc), section, *len, chunklen)); return err; } *len += seglen; } DPRINTFN(4, ("NVM section %d read completed\n", section)); return 0; } static uint8_t iwm_fw_valid_tx_ant(struct iwm_softc *sc) { uint8_t tx_ant; tx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_TX_CHAIN) >> IWM_FW_PHY_CFG_TX_CHAIN_POS); if (sc->sc_nvm.valid_tx_ant) tx_ant &= sc->sc_nvm.valid_tx_ant; return tx_ant; } static uint8_t iwm_fw_valid_rx_ant(struct iwm_softc *sc) { uint8_t rx_ant; rx_ant = ((sc->sc_fw_phy_config & IWM_FW_PHY_CFG_RX_CHAIN) >> IWM_FW_PHY_CFG_RX_CHAIN_POS); if (sc->sc_nvm.valid_rx_ant) rx_ant &= sc->sc_nvm.valid_rx_ant; return rx_ant; } static void iwm_init_channel_map(struct iwm_softc *sc, const uint16_t * const nvm_ch_flags, const uint8_t *nvm_channels, size_t nchan) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_nvm_data *data = &sc->sc_nvm; int ch_idx; struct ieee80211_channel *channel; uint16_t ch_flags; int is_5ghz; int flags, hw_value; for (ch_idx = 0; ch_idx < nchan; ch_idx++) { ch_flags = le16_to_cpup(nvm_ch_flags + ch_idx); aprint_debug_dev(sc->sc_dev, "Ch. %d: %svalid %cibss %s %cradar %cdfs" " %cwide %c40MHz %c80MHz %c160MHz\n", nvm_channels[ch_idx], ch_flags & IWM_NVM_CHANNEL_VALID ? "" : "in", ch_flags & IWM_NVM_CHANNEL_IBSS ? '+' : '-', ch_flags & IWM_NVM_CHANNEL_ACTIVE ? "active" : "passive", ch_flags & IWM_NVM_CHANNEL_RADAR ? '+' : '-', ch_flags & IWM_NVM_CHANNEL_DFS ? '+' : '-', ch_flags & IWM_NVM_CHANNEL_WIDE ? '+' : '-', ch_flags & IWM_NVM_CHANNEL_40MHZ ? '+' : '-', ch_flags & IWM_NVM_CHANNEL_80MHZ ? '+' : '-', ch_flags & IWM_NVM_CHANNEL_160MHZ ? '+' : '-'); if (ch_idx >= IWM_NUM_2GHZ_CHANNELS && !data->sku_cap_band_52GHz_enable) ch_flags &= ~IWM_NVM_CHANNEL_VALID; if (!(ch_flags & IWM_NVM_CHANNEL_VALID)) { DPRINTF(("Ch. %d Flags %x [%sGHz] - No traffic\n", nvm_channels[ch_idx], ch_flags, (ch_idx >= IWM_NUM_2GHZ_CHANNELS) ? "5" : "2.4")); continue; } hw_value = nvm_channels[ch_idx]; channel = &ic->ic_channels[hw_value]; is_5ghz = ch_idx >= IWM_NUM_2GHZ_CHANNELS; if (!is_5ghz) { flags = IEEE80211_CHAN_2GHZ; channel->ic_flags = IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; } else { flags = IEEE80211_CHAN_5GHZ; channel->ic_flags = IEEE80211_CHAN_A; } channel->ic_freq = ieee80211_ieee2mhz(hw_value, flags); if (!(ch_flags & IWM_NVM_CHANNEL_ACTIVE)) channel->ic_flags |= IEEE80211_CHAN_PASSIVE; #ifndef IEEE80211_NO_HT if (data->sku_cap_11n_enable) channel->ic_flags |= IEEE80211_CHAN_HT; #endif } } #ifndef IEEE80211_NO_HT static void iwm_setup_ht_rates(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; /* TX is supported with the same MCS as RX. */ ic->ic_tx_mcs_set = IEEE80211_TX_MCS_SET_DEFINED; ic->ic_sup_mcs[0] = 0xff; /* MCS 0-7 */ #ifdef notyet if (sc->sc_nvm.sku_cap_mimo_disable) return; if (iwm_fw_valid_rx_ant(sc) > 1) ic->ic_sup_mcs[1] = 0xff; /* MCS 8-15 */ if (iwm_fw_valid_rx_ant(sc) > 2) ic->ic_sup_mcs[2] = 0xff; /* MCS 16-23 */ #endif } #define IWM_MAX_RX_BA_SESSIONS 16 static void iwm_sta_rx_agg(struct iwm_softc *sc, struct ieee80211_node *ni, uint8_t tid, uint16_t ssn, int start) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_add_sta_cmd_v7 cmd; struct iwm_node *in = (struct iwm_node *)ni; int err, s; uint32_t status; if (start && sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS) { ieee80211_addba_req_refuse(ic, ni, tid); return; } memset(&cmd, 0, sizeof(cmd)); cmd.sta_id = IWM_STATION_ID; cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); cmd.add_modify = IWM_STA_MODE_MODIFY; if (start) { cmd.add_immediate_ba_tid = (uint8_t)tid; cmd.add_immediate_ba_ssn = ssn; } else { cmd.remove_immediate_ba_tid = (uint8_t)tid; } cmd.modify_mask = start ? IWM_STA_MODIFY_ADD_BA_TID : IWM_STA_MODIFY_REMOVE_BA_TID; status = IWM_ADD_STA_SUCCESS; err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd), &cmd, &status); s = splnet(); if (err == 0 && status == IWM_ADD_STA_SUCCESS) { if (start) { sc->sc_rx_ba_sessions++; ieee80211_addba_req_accept(ic, ni, tid); } else if (sc->sc_rx_ba_sessions > 0) sc->sc_rx_ba_sessions--; } else if (start) ieee80211_addba_req_refuse(ic, ni, tid); splx(s); } static void iwm_htprot_task(void *arg) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct iwm_node *in = (struct iwm_node *)ic->ic_bss; int err; /* This call updates HT protection based on in->in_ni.ni_htop1. */ err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 1); if (err) aprint_error_dev(sc->sc_dev, "could not change HT protection: error %d\n", err); } /* * This function is called by upper layer when HT protection settings in * beacons have changed. */ static void iwm_update_htprot(struct ieee80211com *ic, struct ieee80211_node *ni) { struct iwm_softc *sc = ic->ic_softc; /* assumes that ni == ic->ic_bss */ task_add(systq, &sc->htprot_task); } static void iwm_ba_task(void *arg) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; if (sc->ba_start) iwm_sta_rx_agg(sc, ni, sc->ba_tid, sc->ba_ssn, 1); else iwm_sta_rx_agg(sc, ni, sc->ba_tid, 0, 0); } /* * This function is called by upper layer when an ADDBA request is received * from another STA and before the ADDBA response is sent. */ static int iwm_ampdu_rx_start(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct ieee80211_rx_ba *ba = &ni->ni_rx_ba[tid]; struct iwm_softc *sc = IC2IFP(ic)->if_softc; if (sc->sc_rx_ba_sessions >= IWM_MAX_RX_BA_SESSIONS) return ENOSPC; sc->ba_start = 1; sc->ba_tid = tid; sc->ba_ssn = htole16(ba->ba_winstart); task_add(systq, &sc->ba_task); return EBUSY; } /* * This function is called by upper layer on teardown of an HT-immediate * Block Ack agreement (eg. upon receipt of a DELBA frame). */ static void iwm_ampdu_rx_stop(struct ieee80211com *ic, struct ieee80211_node *ni, uint8_t tid) { struct iwm_softc *sc = IC2IFP(ic)->if_softc; sc->ba_start = 0; sc->ba_tid = tid; task_add(systq, &sc->ba_task); } #endif static void iwm_free_fw_paging(struct iwm_softc *sc) { int i; if (sc->fw_paging_db[0].fw_paging_block.vaddr == NULL) return; for (i = 0; i < IWM_NUM_OF_FW_PAGING_BLOCKS; i++) { iwm_dma_contig_free(&sc->fw_paging_db[i].fw_paging_block); } memset(sc->fw_paging_db, 0, sizeof(sc->fw_paging_db)); } static int iwm_fill_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *fws) { int sec_idx, idx; uint32_t offset = 0; /* * find where is the paging image start point: * if CPU2 exist and it's in paging format, then the image looks like: * CPU1 sections (2 or more) * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between CPU1 to CPU2 * CPU2 sections (not paged) * PAGING_SEPARATOR_SECTION delimiter - separate between CPU2 * non paged to CPU2 paging sec * CPU2 paging CSS * CPU2 paging image (including instruction and data) */ for (sec_idx = 0; sec_idx < IWM_UCODE_SECT_MAX; sec_idx++) { if (fws->fw_sect[sec_idx].fws_devoff == IWM_PAGING_SEPARATOR_SECTION) { sec_idx++; break; } } /* * If paging is enabled there should be at least 2 more sections left * (one for CSS and one for Paging data) */ if (sec_idx >= __arraycount(fws->fw_sect) - 1) { aprint_verbose_dev(sc->sc_dev, "Paging: Missing CSS and/or paging sections\n"); iwm_free_fw_paging(sc); return EINVAL; } /* copy the CSS block to the dram */ DPRINTF(("%s: Paging: load paging CSS to FW, sec = %d\n", DEVNAME(sc), sec_idx)); memcpy(sc->fw_paging_db[0].fw_paging_block.vaddr, fws->fw_sect[sec_idx].fws_data, sc->fw_paging_db[0].fw_paging_size); DPRINTF(("%s: Paging: copied %d CSS bytes to first block\n", DEVNAME(sc), sc->fw_paging_db[0].fw_paging_size)); sec_idx++; /* * copy the paging blocks to the dram * loop index start from 1 since that CSS block already copied to dram * and CSS index is 0. * loop stop at num_of_paging_blk since that last block is not full. */ for (idx = 1; idx < sc->num_of_paging_blk; idx++) { memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr, (const char *)fws->fw_sect[sec_idx].fws_data + offset, sc->fw_paging_db[idx].fw_paging_size); DPRINTF(("%s: Paging: copied %d paging bytes to block %d\n", DEVNAME(sc), sc->fw_paging_db[idx].fw_paging_size, idx)); offset += sc->fw_paging_db[idx].fw_paging_size; } /* copy the last paging block */ if (sc->num_of_pages_in_last_blk > 0) { memcpy(sc->fw_paging_db[idx].fw_paging_block.vaddr, (const char *)fws->fw_sect[sec_idx].fws_data + offset, IWM_FW_PAGING_SIZE * sc->num_of_pages_in_last_blk); DPRINTF(("%s: Paging: copied %d pages in the last block %d\n", DEVNAME(sc), sc->num_of_pages_in_last_blk, idx)); } return 0; } static int iwm_alloc_fw_paging_mem(struct iwm_softc *sc, const struct iwm_fw_sects *fws) { int blk_idx = 0; int error, num_of_pages; bus_dmamap_t dmap; if (sc->fw_paging_db[0].fw_paging_block.vaddr != NULL) { int i; /* Device got reset, and we setup firmware paging again */ for (i = 0; i < sc->num_of_paging_blk + 1; i++) { dmap = sc->fw_paging_db[i].fw_paging_block.map; bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); } return 0; } /* ensure IWM_BLOCK_2_EXP_SIZE is power of 2 of IWM_PAGING_BLOCK_SIZE */ CTASSERT(__BIT(IWM_BLOCK_2_EXP_SIZE) == IWM_PAGING_BLOCK_SIZE); num_of_pages = fws->paging_mem_size / IWM_FW_PAGING_SIZE; sc->num_of_paging_blk = howmany(num_of_pages, IWM_NUM_OF_PAGE_PER_GROUP); sc->num_of_pages_in_last_blk = num_of_pages - IWM_NUM_OF_PAGE_PER_GROUP * (sc->num_of_paging_blk - 1); DPRINTF(("%s: Paging: allocating mem for %d paging blocks, " "each block holds 8 pages, last block holds %d pages\n", DEVNAME(sc), sc->num_of_paging_blk, sc->num_of_pages_in_last_blk)); /* allocate block of 4Kbytes for paging CSS */ error = iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_paging_db[blk_idx].fw_paging_block, IWM_FW_PAGING_SIZE, 4096); if (error) { /* free all the previous pages since we failed */ iwm_free_fw_paging(sc); return ENOMEM; } sc->fw_paging_db[blk_idx].fw_paging_size = IWM_FW_PAGING_SIZE; DPRINTF(("%s: Paging: allocated 4K(CSS) bytes for firmware paging.\n", DEVNAME(sc))); /* * allocate blocks in dram. * since that CSS allocated in fw_paging_db[0] loop start from index 1 */ for (blk_idx = 1; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) { /* allocate block of IWM_PAGING_BLOCK_SIZE (32K) */ /* XXX Use iwm_dma_contig_alloc for allocating */ error = iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_paging_db[blk_idx].fw_paging_block, IWM_PAGING_BLOCK_SIZE, 4096); if (error) { /* free all the previous pages since we failed */ iwm_free_fw_paging(sc); return ENOMEM; } sc->fw_paging_db[blk_idx].fw_paging_size = IWM_PAGING_BLOCK_SIZE; DPRINTF(("%s: Paging: allocated 32K bytes for firmware " "paging.\n", DEVNAME(sc))); } return 0; } static int iwm_save_fw_paging(struct iwm_softc *sc, const struct iwm_fw_sects *fws) { int err; err = iwm_alloc_fw_paging_mem(sc, fws); if (err) return err; return iwm_fill_paging_mem(sc, fws); } static bool iwm_has_new_tx_api(struct iwm_softc *sc) { /* XXX */ return false; } /* send paging cmd to FW in case CPU2 has paging image */ static int iwm_send_paging_cmd(struct iwm_softc *sc, const struct iwm_fw_sects *fws) { struct iwm_fw_paging_cmd fw_paging_cmd = { .flags = htole32(IWM_PAGING_CMD_IS_SECURED | IWM_PAGING_CMD_IS_ENABLED | (sc->num_of_pages_in_last_blk << IWM_PAGING_CMD_NUM_OF_PAGES_IN_LAST_GRP_POS)), .block_size = htole32(IWM_BLOCK_2_EXP_SIZE), .block_num = htole32(sc->num_of_paging_blk), }; size_t size = sizeof(fw_paging_cmd); int blk_idx; bus_dmamap_t dmap; if (!iwm_has_new_tx_api(sc)) size -= (sizeof(uint64_t) - sizeof(uint32_t)) * IWM_NUM_OF_FW_PAGING_BLOCKS; /* loop for for all paging blocks + CSS block */ for (blk_idx = 0; blk_idx < sc->num_of_paging_blk + 1; blk_idx++) { bus_addr_t dev_phy_addr = sc->fw_paging_db[blk_idx].fw_paging_block.paddr; if (iwm_has_new_tx_api(sc)) { fw_paging_cmd.device_phy_addr.addr64[blk_idx] = htole64(dev_phy_addr); } else { dev_phy_addr = dev_phy_addr >> IWM_PAGE_2_EXP_SIZE; fw_paging_cmd.device_phy_addr.addr32[blk_idx] = htole32(dev_phy_addr); } dmap = sc->fw_paging_db[blk_idx].fw_paging_block.map, bus_dmamap_sync(sc->sc_dmat, dmap, 0, dmap->dm_mapsize, BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); } return iwm_send_cmd_pdu(sc, iwm_cmd_id(IWM_FW_PAGING_BLOCK_CMD, IWM_ALWAYS_LONG_GROUP, 0), 0, size, &fw_paging_cmd); } static void iwm_set_hw_address_8000(struct iwm_softc *sc, struct iwm_nvm_data *data, const uint16_t *mac_override, const uint16_t *nvm_hw) { static const uint8_t reserved_mac[ETHER_ADDR_LEN] = { 0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00 }; static const u_int8_t etheranyaddr[ETHER_ADDR_LEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; const uint8_t *hw_addr; if (mac_override) { hw_addr = (const uint8_t *)(mac_override + IWM_MAC_ADDRESS_OVERRIDE_8000); /* * Store the MAC address from MAO section. * No byte swapping is required in MAO section */ memcpy(data->hw_addr, hw_addr, ETHER_ADDR_LEN); /* * Force the use of the OTP MAC address in case of reserved MAC * address in the NVM, or if address is given but invalid. */ if (memcmp(reserved_mac, hw_addr, ETHER_ADDR_LEN) != 0 && (memcmp(etherbroadcastaddr, data->hw_addr, sizeof(etherbroadcastaddr)) != 0) && (memcmp(etheranyaddr, data->hw_addr, sizeof(etheranyaddr)) != 0) && !ETHER_IS_MULTICAST(data->hw_addr)) return; } if (nvm_hw) { /* Read the mac address from WFMP registers. */ uint32_t mac_addr0 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_0)); uint32_t mac_addr1 = htole32(iwm_read_prph(sc, IWM_WFMP_MAC_ADDR_1)); hw_addr = (const uint8_t *)&mac_addr0; data->hw_addr[0] = hw_addr[3]; data->hw_addr[1] = hw_addr[2]; data->hw_addr[2] = hw_addr[1]; data->hw_addr[3] = hw_addr[0]; hw_addr = (const uint8_t *)&mac_addr1; data->hw_addr[4] = hw_addr[1]; data->hw_addr[5] = hw_addr[0]; return; } aprint_error_dev(sc->sc_dev, "mac address not found\n"); memset(data->hw_addr, 0, sizeof(data->hw_addr)); } static int iwm_parse_nvm_data(struct iwm_softc *sc, const uint16_t *nvm_hw, const uint16_t *nvm_sw, const uint16_t *nvm_calib, const uint16_t *mac_override, const uint16_t *phy_sku, const uint16_t *regulatory) { struct iwm_nvm_data *data = &sc->sc_nvm; uint8_t hw_addr[ETHER_ADDR_LEN]; uint32_t sku; if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { uint16_t radio_cfg = le16_to_cpup(nvm_sw + IWM_RADIO_CFG); data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK(radio_cfg); data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK(radio_cfg); data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK(radio_cfg); data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK(radio_cfg); data->nvm_version = le16_to_cpup(nvm_sw + IWM_NVM_VERSION); sku = le16_to_cpup(nvm_sw + IWM_SKU); } else { uint32_t radio_cfg = le32_to_cpup(phy_sku + IWM_RADIO_CFG_8000); data->radio_cfg_type = IWM_NVM_RF_CFG_TYPE_MSK_8000(radio_cfg); data->radio_cfg_step = IWM_NVM_RF_CFG_STEP_MSK_8000(radio_cfg); data->radio_cfg_dash = IWM_NVM_RF_CFG_DASH_MSK_8000(radio_cfg); data->radio_cfg_pnum = IWM_NVM_RF_CFG_PNUM_MSK_8000(radio_cfg); data->valid_tx_ant = IWM_NVM_RF_CFG_TX_ANT_MSK_8000(radio_cfg); data->valid_rx_ant = IWM_NVM_RF_CFG_RX_ANT_MSK_8000(radio_cfg); data->nvm_version = le32_to_cpup(nvm_sw + IWM_NVM_VERSION_8000); sku = le32_to_cpup(phy_sku + IWM_SKU_8000); } data->sku_cap_band_24GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_24GHZ; data->sku_cap_band_52GHz_enable = sku & IWM_NVM_SKU_CAP_BAND_52GHZ; data->sku_cap_11n_enable = sku & IWM_NVM_SKU_CAP_11N_ENABLE; data->sku_cap_mimo_disable = sku & IWM_NVM_SKU_CAP_MIMO_DISABLE; data->n_hw_addrs = le16_to_cpup(nvm_sw + IWM_N_HW_ADDRS); if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { memcpy(hw_addr, nvm_hw + IWM_HW_ADDR, ETHER_ADDR_LEN); data->hw_addr[0] = hw_addr[1]; data->hw_addr[1] = hw_addr[0]; data->hw_addr[2] = hw_addr[3]; data->hw_addr[3] = hw_addr[2]; data->hw_addr[4] = hw_addr[5]; data->hw_addr[5] = hw_addr[4]; } else iwm_set_hw_address_8000(sc, data, mac_override, nvm_hw); if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) { uint16_t lar_offset, lar_config; lar_offset = data->nvm_version < 0xE39 ? IWM_NVM_LAR_OFFSET_8000_OLD : IWM_NVM_LAR_OFFSET_8000; lar_config = le16_to_cpup(regulatory + lar_offset); data->lar_enabled = !!(lar_config & IWM_NVM_LAR_ENABLED_8000); } if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) iwm_init_channel_map(sc, &nvm_sw[IWM_NVM_CHANNELS], iwm_nvm_channels, __arraycount(iwm_nvm_channels)); else iwm_init_channel_map(sc, ®ulatory[IWM_NVM_CHANNELS_8000], iwm_nvm_channels_8000, __arraycount(iwm_nvm_channels_8000)); data->calib_version = 255; /* TODO: this value will prevent some checks from failing, we need to check if this field is still needed, and if it does, where is it in the NVM */ return 0; } static int iwm_parse_nvm_sections(struct iwm_softc *sc, struct iwm_nvm_section *sections) { const uint16_t *hw, *sw, *calib, *mac_override = NULL, *phy_sku = NULL; const uint16_t *regulatory = NULL; /* Checking for required sections */ if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) { if (!sections[IWM_NVM_SECTION_TYPE_SW].data || !sections[IWM_NVM_SECTION_TYPE_HW].data) { return ENOENT; } hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW].data; } else if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) { /* SW and REGULATORY sections are mandatory */ if (!sections[IWM_NVM_SECTION_TYPE_SW].data || !sections[IWM_NVM_SECTION_TYPE_REGULATORY].data) { return ENOENT; } /* MAC_OVERRIDE or at least HW section must exist */ if (!sections[IWM_NVM_SECTION_TYPE_HW_8000].data && !sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data) { return ENOENT; } /* PHY_SKU section is mandatory in B0 */ if (!sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data) { return ENOENT; } regulatory = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_REGULATORY].data; hw = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_HW_8000].data; mac_override = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_MAC_OVERRIDE].data; phy_sku = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_PHY_SKU].data; } else { panic("unknown device family %d\n", sc->sc_device_family); } sw = (const uint16_t *)sections[IWM_NVM_SECTION_TYPE_SW].data; calib = (const uint16_t *) sections[IWM_NVM_SECTION_TYPE_CALIBRATION].data; return iwm_parse_nvm_data(sc, hw, sw, calib, mac_override, phy_sku, regulatory); } static int iwm_nvm_init(struct iwm_softc *sc) { struct iwm_nvm_section nvm_sections[IWM_NVM_NUM_OF_SECTIONS]; int i, section, err; uint16_t len; uint8_t *buf; const size_t bufsz = (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) ? IWM_MAX_NVM_SECTION_SIZE_8000 : IWM_MAX_NVM_SECTION_SIZE_7000; /* Read From FW NVM */ DPRINTF(("Read NVM\n")); memset(nvm_sections, 0, sizeof(nvm_sections)); buf = kmem_alloc(bufsz, KM_SLEEP); if (buf == NULL) return ENOMEM; for (i = 0; i < __arraycount(iwm_nvm_to_read); i++) { section = iwm_nvm_to_read[i]; KASSERT(section <= IWM_NVM_NUM_OF_SECTIONS); err = iwm_nvm_read_section(sc, section, buf, &len, bufsz); if (err) { err = 0; continue; } nvm_sections[section].data = kmem_alloc(len, KM_SLEEP); if (nvm_sections[section].data == NULL) { err = ENOMEM; break; } memcpy(nvm_sections[section].data, buf, len); nvm_sections[section].length = len; } kmem_free(buf, bufsz); if (err == 0) err = iwm_parse_nvm_sections(sc, nvm_sections); for (i = 0; i < IWM_NVM_NUM_OF_SECTIONS; i++) { if (nvm_sections[i].data != NULL) kmem_free(nvm_sections[i].data, nvm_sections[i].length); } return err; } static int iwm_firmware_load_sect(struct iwm_softc *sc, uint32_t dst_addr, const uint8_t *section, uint32_t byte_cnt) { int err = EINVAL; uint32_t chunk_sz, offset; chunk_sz = MIN(IWM_FH_MEM_TB_MAX_LENGTH, byte_cnt); for (offset = 0; offset < byte_cnt; offset += chunk_sz) { uint32_t addr, len; const uint8_t *data; bool is_extended = false; addr = dst_addr + offset; len = MIN(chunk_sz, byte_cnt - offset); data = section + offset; if (addr >= IWM_FW_MEM_EXTENDED_START && addr <= IWM_FW_MEM_EXTENDED_END) is_extended = true; if (is_extended) iwm_set_bits_prph(sc, IWM_LMPM_CHICK, IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); err = iwm_firmware_load_chunk(sc, addr, data, len); if (is_extended) iwm_clear_bits_prph(sc, IWM_LMPM_CHICK, IWM_LMPM_CHICK_EXTENDED_ADDR_SPACE); if (err) break; } return err; } static int iwm_firmware_load_chunk(struct iwm_softc *sc, uint32_t dst_addr, const uint8_t *section, uint32_t byte_cnt) { struct iwm_dma_info *dma = &sc->fw_dma; int err; /* Copy firmware chunk into pre-allocated DMA-safe memory. */ memcpy(dma->vaddr, section, byte_cnt); bus_dmamap_sync(sc->sc_dmat, dma->map, 0, byte_cnt, BUS_DMASYNC_PREWRITE); sc->sc_fw_chunk_done = 0; if (!iwm_nic_lock(sc)) return EBUSY; IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE); IWM_WRITE(sc, IWM_FH_SRVC_CHNL_SRAM_ADDR_REG(IWM_FH_SRVC_CHNL), dst_addr); IWM_WRITE(sc, IWM_FH_TFDIB_CTRL0_REG(IWM_FH_SRVC_CHNL), dma->paddr & IWM_FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK); IWM_WRITE(sc, IWM_FH_TFDIB_CTRL1_REG(IWM_FH_SRVC_CHNL), (iwm_get_dma_hi_addr(dma->paddr) << IWM_FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt); IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_BUF_STS_REG(IWM_FH_SRVC_CHNL), 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM | 1 << IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX | IWM_FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID); IWM_WRITE(sc, IWM_FH_TCSR_CHNL_TX_CONFIG_REG(IWM_FH_SRVC_CHNL), IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE | IWM_FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD); iwm_nic_unlock(sc); /* Wait for this segment to load. */ err = 0; while (!sc->sc_fw_chunk_done) { err = tsleep(&sc->sc_fw, 0, "iwmfw", mstohz(5000)); if (err) break; } if (!sc->sc_fw_chunk_done) { DPRINTF(("%s: fw chunk addr 0x%x len %d failed to load\n", DEVNAME(sc), dst_addr, byte_cnt)); } return err; } static int iwm_load_cpu_sections_7000(struct iwm_softc *sc, struct iwm_fw_sects *fws, int cpu, int *first_ucode_section) { int i, err = 0; uint32_t last_read_idx = 0; void *data; uint32_t dlen; uint32_t offset; if (cpu == 1) { *first_ucode_section = 0; } else { (*first_ucode_section)++; } for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) { last_read_idx = i; data = fws->fw_sect[i].fws_data; dlen = fws->fw_sect[i].fws_len; offset = fws->fw_sect[i].fws_devoff; /* * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between * CPU1 to CPU2. * PAGING_SEPARATOR_SECTION delimiter - separate between * CPU2 non paged to CPU2 paging sec. */ if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || offset == IWM_PAGING_SEPARATOR_SECTION) break; if (dlen > sc->sc_fwdmasegsz) { err = EFBIG; } else err = iwm_firmware_load_sect(sc, offset, data, dlen); if (err) { DPRINTF(("%s: could not load firmware chunk %d " "(error %d)\n", DEVNAME(sc), i, err)); return err; } } *first_ucode_section = last_read_idx; return 0; } static int iwm_load_firmware_7000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { struct iwm_fw_sects *fws; int err = 0; int first_ucode_section; fws = &sc->sc_fw.fw_sects[ucode_type]; DPRINTF(("%s: working with %s CPU\n", DEVNAME(sc), fws->is_dual_cpus ? "dual" : "single")); /* load to FW the binary Secured sections of CPU1 */ err = iwm_load_cpu_sections_7000(sc, fws, 1, &first_ucode_section); if (err) return err; if (fws->is_dual_cpus) { /* set CPU2 header address */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, IWM_LMPM_SECURE_CPU2_HDR_MEM_SPACE); iwm_nic_unlock(sc); } /* load to FW the binary sections of CPU2 */ err = iwm_load_cpu_sections_7000(sc, fws, 2, &first_ucode_section); if (err) return err; } /* release CPU reset */ IWM_WRITE(sc, IWM_CSR_RESET, 0); return 0; } static int iwm_load_cpu_sections_8000(struct iwm_softc *sc, struct iwm_fw_sects *fws, int cpu, int *first_ucode_section) { int shift_param; int i, err = 0, sec_num = 0x1; uint32_t val, last_read_idx = 0; void *data; uint32_t dlen; uint32_t offset; if (cpu == 1) { shift_param = 0; *first_ucode_section = 0; } else { shift_param = 16; (*first_ucode_section)++; } for (i = *first_ucode_section; i < IWM_UCODE_SECT_MAX; i++) { last_read_idx = i; data = fws->fw_sect[i].fws_data; dlen = fws->fw_sect[i].fws_len; offset = fws->fw_sect[i].fws_devoff; /* * CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between * CPU1 to CPU2. * PAGING_SEPARATOR_SECTION delimiter - separate between * CPU2 non paged to CPU2 paging sec. */ if (!data || offset == IWM_CPU1_CPU2_SEPARATOR_SECTION || offset == IWM_PAGING_SEPARATOR_SECTION) break; if (dlen > sc->sc_fwdmasegsz) { err = EFBIG; } else err = iwm_firmware_load_sect(sc, offset, data, dlen); if (err) { DPRINTF(("%s: could not load firmware chunk %d " "(error %d)\n", DEVNAME(sc), i, err)); return err; } /* Notify the ucode of the loaded section number and status */ if (iwm_nic_lock(sc)) { val = IWM_READ(sc, IWM_FH_UCODE_LOAD_STATUS); val = val | (sec_num << shift_param); IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, val); sec_num = (sec_num << 1) | 0x1; iwm_nic_unlock(sc); /* * The firmware won't load correctly without this delay. */ DELAY(8000); } } *first_ucode_section = last_read_idx; if (iwm_nic_lock(sc)) { if (cpu == 1) IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFF); else IWM_WRITE(sc, IWM_FH_UCODE_LOAD_STATUS, 0xFFFFFFFF); iwm_nic_unlock(sc); } return 0; } static int iwm_load_firmware_8000(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { struct iwm_fw_sects *fws; int err = 0; int first_ucode_section; fws = &sc->sc_fw.fw_sects[ucode_type]; /* configure the ucode to be ready to get the secured image */ /* release CPU reset */ if (iwm_nic_lock(sc)) { iwm_write_prph(sc, IWM_RELEASE_CPU_RESET, IWM_RELEASE_CPU_RESET_BIT); iwm_nic_unlock(sc); } /* load to FW the binary Secured sections of CPU1 */ err = iwm_load_cpu_sections_8000(sc, fws, 1, &first_ucode_section); if (err) return err; /* load to FW the binary sections of CPU2 */ return iwm_load_cpu_sections_8000(sc, fws, 2, &first_ucode_section); } static int iwm_load_firmware(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { int err, w; sc->sc_uc.uc_intr = 0; if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) err = iwm_load_firmware_8000(sc, ucode_type); else err = iwm_load_firmware_7000(sc, ucode_type); if (err) return err; /* wait for the firmware to load */ for (w = 0; !sc->sc_uc.uc_intr && w < 10; w++) err = tsleep(&sc->sc_uc, 0, "iwmuc", mstohz(100)); if (err || !sc->sc_uc.uc_ok) { aprint_error_dev(sc->sc_dev, "could not load firmware (error %d, ok %d)\n", err, sc->sc_uc.uc_ok); if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) { aprint_error_dev(sc->sc_dev, "cpu1 status: 0x%x\n", iwm_read_prph(sc, IWM_SB_CPU_1_STATUS)); aprint_error_dev(sc->sc_dev, "cpu2 status: 0x%x\n", iwm_read_prph(sc, IWM_SB_CPU_2_STATUS)); } } return err; } static int iwm_start_fw(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { int err; IWM_WRITE(sc, IWM_CSR_INT, ~0); err = iwm_nic_init(sc); if (err) { aprint_error_dev(sc->sc_dev, "Unable to init nic\n"); return err; } /* make sure rfkill handshake bits are cleared */ IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED); /* clear (again), then enable host interrupts */ IWM_WRITE(sc, IWM_CSR_INT, ~0); iwm_enable_interrupts(sc); /* really make sure rfkill handshake bits are cleared */ /* maybe we should write a few times more? just to make sure */ IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); IWM_WRITE(sc, IWM_CSR_UCODE_DRV_GP1_CLR, IWM_CSR_UCODE_SW_BIT_RFKILL); return iwm_load_firmware(sc, ucode_type); } static int iwm_send_tx_ant_cfg(struct iwm_softc *sc, uint8_t valid_tx_ant) { struct iwm_tx_ant_cfg_cmd tx_ant_cmd = { .valid = htole32(valid_tx_ant), }; return iwm_send_cmd_pdu(sc, IWM_TX_ANT_CONFIGURATION_CMD, 0, sizeof(tx_ant_cmd), &tx_ant_cmd); } static int iwm_send_phy_cfg_cmd(struct iwm_softc *sc) { struct iwm_phy_cfg_cmd phy_cfg_cmd; enum iwm_ucode_type ucode_type = sc->sc_uc_current; phy_cfg_cmd.phy_cfg = htole32(sc->sc_fw_phy_config); phy_cfg_cmd.calib_control.event_trigger = sc->sc_default_calib[ucode_type].event_trigger; phy_cfg_cmd.calib_control.flow_trigger = sc->sc_default_calib[ucode_type].flow_trigger; DPRINTFN(10, ("Sending Phy CFG command: 0x%x\n", phy_cfg_cmd.phy_cfg)); return iwm_send_cmd_pdu(sc, IWM_PHY_CONFIGURATION_CMD, 0, sizeof(phy_cfg_cmd), &phy_cfg_cmd); } static int iwm_load_ucode_wait_alive(struct iwm_softc *sc, enum iwm_ucode_type ucode_type) { struct iwm_fw_sects *fws; enum iwm_ucode_type old_type = sc->sc_uc_current; int err; err = iwm_read_firmware(sc, ucode_type); if (err) return err; sc->sc_uc_current = ucode_type; err = iwm_start_fw(sc, ucode_type); if (err) { sc->sc_uc_current = old_type; return err; } err = iwm_post_alive(sc); if (err) return err; fws = &sc->sc_fw.fw_sects[ucode_type]; if (fws->paging_mem_size) { err = iwm_save_fw_paging(sc, fws); if (err) return err; err = iwm_send_paging_cmd(sc, fws); if (err) { iwm_free_fw_paging(sc); return err; } } return 0; } static int iwm_run_init_mvm_ucode(struct iwm_softc *sc, int justnvm) { int err; if ((sc->sc_flags & IWM_FLAG_RFKILL) && !justnvm) { aprint_error_dev(sc->sc_dev, "radio is disabled by hardware switch\n"); return EPERM; } sc->sc_init_complete = 0; err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_INIT); if (err) { DPRINTF(("%s: failed to load init firmware\n", DEVNAME(sc))); return err; } if (justnvm) { err = iwm_nvm_init(sc); if (err) { aprint_error_dev(sc->sc_dev, "failed to read nvm\n"); return err; } memcpy(&sc->sc_ic.ic_myaddr, &sc->sc_nvm.hw_addr, ETHER_ADDR_LEN); return 0; } err = iwm_send_bt_init_conf(sc); if (err) return err; err = iwm_sf_config(sc, IWM_SF_INIT_OFF); if (err) return err; err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc)); if (err) return err; /* * Send phy configurations command to init uCode * to start the 16.0 uCode init image internal calibrations. */ err = iwm_send_phy_cfg_cmd(sc); if (err) return err; /* * Nothing to do but wait for the init complete notification * from the firmware */ while (!sc->sc_init_complete) { err = tsleep(&sc->sc_init_complete, 0, "iwminit", mstohz(2000)); if (err) break; } return err; } static int iwm_rx_addbuf(struct iwm_softc *sc, int size, int idx) { struct iwm_rx_ring *ring = &sc->rxq; struct iwm_rx_data *data = &ring->data[idx]; struct mbuf *m; int err; int fatal = 0; m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == NULL) return ENOBUFS; if (size <= MCLBYTES) { MCLGET(m, M_DONTWAIT); } else { MEXTMALLOC(m, IWM_RBUF_SIZE, M_DONTWAIT); } if ((m->m_flags & M_EXT) == 0) { m_freem(m); return ENOBUFS; } if (data->m != NULL) { bus_dmamap_unload(sc->sc_dmat, data->map); fatal = 1; } m->m_len = m->m_pkthdr.len = m->m_ext.ext_size; err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_READ|BUS_DMA_NOWAIT); if (err) { /* XXX */ if (fatal) panic("iwm: could not load RX mbuf"); m_freem(m); return err; } data->m = m; bus_dmamap_sync(sc->sc_dmat, data->map, 0, size, BUS_DMASYNC_PREREAD); /* Update RX descriptor. */ ring->desc[idx] = htole32(data->map->dm_segs[0].ds_addr >> 8); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, idx * sizeof(uint32_t), sizeof(uint32_t), BUS_DMASYNC_PREWRITE); return 0; } #define IWM_RSSI_OFFSET 50 static int iwm_calc_rssi(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) { int rssi_a, rssi_b, rssi_a_dbm, rssi_b_dbm, max_rssi_dbm; uint32_t agc_a, agc_b; uint32_t val; val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_AGC_IDX]); agc_a = (val & IWM_OFDM_AGC_A_MSK) >> IWM_OFDM_AGC_A_POS; agc_b = (val & IWM_OFDM_AGC_B_MSK) >> IWM_OFDM_AGC_B_POS; val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_RSSI_AB_IDX]); rssi_a = (val & IWM_OFDM_RSSI_INBAND_A_MSK) >> IWM_OFDM_RSSI_A_POS; rssi_b = (val & IWM_OFDM_RSSI_INBAND_B_MSK) >> IWM_OFDM_RSSI_B_POS; /* * dBm = rssi dB - agc dB - constant. * Higher AGC (higher radio gain) means lower signal. */ rssi_a_dbm = rssi_a - IWM_RSSI_OFFSET - agc_a; rssi_b_dbm = rssi_b - IWM_RSSI_OFFSET - agc_b; max_rssi_dbm = MAX(rssi_a_dbm, rssi_b_dbm); DPRINTF(("Rssi In A %d B %d Max %d AGCA %d AGCB %d\n", rssi_a_dbm, rssi_b_dbm, max_rssi_dbm, agc_a, agc_b)); return max_rssi_dbm; } /* * RSSI values are reported by the FW as positive values - need to negate * to obtain their dBM. Account for missing antennas by replacing 0 * values by -256dBm: practically 0 power and a non-feasible 8 bit value. */ static int iwm_get_signal_strength(struct iwm_softc *sc, struct iwm_rx_phy_info *phy_info) { int energy_a, energy_b, energy_c, max_energy; uint32_t val; val = le32toh(phy_info->non_cfg_phy[IWM_RX_INFO_ENERGY_ANT_ABC_IDX]); energy_a = (val & IWM_RX_INFO_ENERGY_ANT_A_MSK) >> IWM_RX_INFO_ENERGY_ANT_A_POS; energy_a = energy_a ? -energy_a : -256; energy_b = (val & IWM_RX_INFO_ENERGY_ANT_B_MSK) >> IWM_RX_INFO_ENERGY_ANT_B_POS; energy_b = energy_b ? -energy_b : -256; energy_c = (val & IWM_RX_INFO_ENERGY_ANT_C_MSK) >> IWM_RX_INFO_ENERGY_ANT_C_POS; energy_c = energy_c ? -energy_c : -256; max_energy = MAX(energy_a, energy_b); max_energy = MAX(max_energy, energy_c); DPRINTFN(12, ("energy In A %d B %d C %d, and max %d\n", energy_a, energy_b, energy_c, max_energy)); return max_energy; } static void iwm_rx_rx_phy_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_rx_data *data) { struct iwm_rx_phy_info *phy_info = (void *)pkt->data; DPRINTFN(20, ("received PHY stats\n")); bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt), sizeof(*phy_info), BUS_DMASYNC_POSTREAD); memcpy(&sc->sc_last_phy_info, phy_info, sizeof(sc->sc_last_phy_info)); } /* * Retrieve the average noise (in dBm) among receivers. */ static int iwm_get_noise(const struct iwm_statistics_rx_non_phy *stats) { int i, total, nbant, noise; total = nbant = noise = 0; for (i = 0; i < 3; i++) { noise = le32toh(stats->beacon_silence_rssi[i]) & 0xff; if (noise) { total += noise; nbant++; } } /* There should be at least one antenna but check anyway. */ return (nbant == 0) ? -127 : (total / nbant) - 107; } static void iwm_rx_rx_mpdu(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_rx_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh; struct ieee80211_node *ni; struct ieee80211_channel *c = NULL; struct mbuf *m; struct iwm_rx_phy_info *phy_info; struct iwm_rx_mpdu_res_start *rx_res; int device_timestamp; uint32_t len; uint32_t rx_pkt_status; int rssi; int s; bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE, BUS_DMASYNC_POSTREAD); phy_info = &sc->sc_last_phy_info; rx_res = (struct iwm_rx_mpdu_res_start *)pkt->data; wh = (struct ieee80211_frame *)(pkt->data + sizeof(*rx_res)); len = le16toh(rx_res->byte_count); rx_pkt_status = le32toh(*(uint32_t *)(pkt->data + sizeof(*rx_res) + len)); m = data->m; m->m_data = pkt->data + sizeof(*rx_res); m->m_pkthdr.len = m->m_len = len; if (__predict_false(phy_info->cfg_phy_cnt > 20)) { DPRINTF(("dsp size out of range [0,20]: %d\n", phy_info->cfg_phy_cnt)); return; } if (!(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_CRC_OK) || !(rx_pkt_status & IWM_RX_MPDU_RES_STATUS_OVERRUN_OK)) { DPRINTF(("Bad CRC or FIFO: 0x%08X.\n", rx_pkt_status)); return; /* drop */ } device_timestamp = le32toh(phy_info->system_timestamp); if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_RX_ENERGY_API) { rssi = iwm_get_signal_strength(sc, phy_info); } else { rssi = iwm_calc_rssi(sc, phy_info); } rssi = -rssi; if (ic->ic_state == IEEE80211_S_SCAN) iwm_fix_channel(sc, m); if (iwm_rx_addbuf(sc, IWM_RBUF_SIZE, sc->rxq.cur) != 0) return; m_set_rcvif(m, IC2IFP(ic)); if (le32toh(phy_info->channel) < __arraycount(ic->ic_channels)) c = &ic->ic_channels[le32toh(phy_info->channel)]; s = splnet(); ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh); if (c) ni->ni_chan = c; if (__predict_false(sc->sc_drvbpf != NULL)) { struct iwm_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_flags = 0; if (phy_info->phy_flags & htole16(IWM_PHY_INFO_FLAG_SHPREAMBLE)) tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE; tap->wr_chan_freq = htole16(ic->ic_channels[phy_info->channel].ic_freq); tap->wr_chan_flags = htole16(ic->ic_channels[phy_info->channel].ic_flags); tap->wr_dbm_antsignal = (int8_t)rssi; tap->wr_dbm_antnoise = (int8_t)sc->sc_noise; tap->wr_tsft = phy_info->system_timestamp; if (phy_info->phy_flags & htole16(IWM_RX_RES_PHY_FLAGS_OFDM_HT)) { uint8_t mcs = (phy_info->rate_n_flags & htole32(IWM_RATE_HT_MCS_RATE_CODE_MSK | IWM_RATE_HT_MCS_NSS_MSK)); tap->wr_rate = (0x80 | mcs); } else { uint8_t rate = (phy_info->rate_n_flags & htole32(IWM_RATE_LEGACY_RATE_MSK)); switch (rate) { /* CCK rates. */ case 10: tap->wr_rate = 2; break; case 20: tap->wr_rate = 4; break; case 55: tap->wr_rate = 11; break; case 110: tap->wr_rate = 22; break; /* OFDM rates. */ case 0xd: tap->wr_rate = 12; break; case 0xf: tap->wr_rate = 18; break; case 0x5: tap->wr_rate = 24; break; case 0x7: tap->wr_rate = 36; break; case 0x9: tap->wr_rate = 48; break; case 0xb: tap->wr_rate = 72; break; case 0x1: tap->wr_rate = 96; break; case 0x3: tap->wr_rate = 108; break; /* Unknown rate: should not happen. */ default: tap->wr_rate = 0; } } bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m); } ieee80211_input(ic, m, ni, rssi, device_timestamp); ieee80211_free_node(ni); splx(s); } static void iwm_rx_tx_cmd_single(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_node *in) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); struct iwm_tx_resp *tx_resp = (void *)pkt->data; int status = le16toh(tx_resp->status.status) & IWM_TX_STATUS_MSK; int failack = tx_resp->failure_frame; KASSERT(tx_resp->frame_count == 1); /* Update rate control statistics. */ in->in_amn.amn_txcnt++; if (failack > 0) { in->in_amn.amn_retrycnt++; } if (status != IWM_TX_STATUS_SUCCESS && status != IWM_TX_STATUS_DIRECT_DONE) ifp->if_oerrors++; else ifp->if_opackets++; } static void iwm_rx_tx_cmd(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_rx_data *data) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = IC2IFP(ic); struct iwm_cmd_header *cmd_hdr = &pkt->hdr; int idx = cmd_hdr->idx; int qid = cmd_hdr->qid; struct iwm_tx_ring *ring = &sc->txq[qid]; struct iwm_tx_data *txd = &ring->data[idx]; struct iwm_node *in = txd->in; int s; s = splnet(); if (txd->done) { DPRINTF(("%s: got tx interrupt that's already been handled!\n", DEVNAME(sc))); splx(s); return; } bus_dmamap_sync(sc->sc_dmat, data->map, 0, IWM_RBUF_SIZE, BUS_DMASYNC_POSTREAD); sc->sc_tx_timer = 0; iwm_rx_tx_cmd_single(sc, pkt, in); bus_dmamap_sync(sc->sc_dmat, txd->map, 0, txd->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, txd->map); m_freem(txd->m); DPRINTFN(8, ("free txd %p, in %p\n", txd, txd->in)); KASSERT(txd->done == 0); txd->done = 1; KASSERT(txd->in); txd->m = NULL; txd->in = NULL; ieee80211_free_node(&in->in_ni); if (--ring->queued < IWM_TX_RING_LOMARK) { sc->qfullmsk &= ~(1 << qid); if (sc->qfullmsk == 0 && (ifp->if_flags & IFF_OACTIVE)) { ifp->if_flags &= ~IFF_OACTIVE; KASSERT(KERNEL_LOCKED_P()); iwm_start(ifp); } } splx(s); } static int iwm_binding_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action) { struct iwm_binding_cmd cmd; struct iwm_phy_ctxt *phyctxt = in->in_phyctxt; int i, err; uint32_t status; memset(&cmd, 0, sizeof(cmd)); cmd.id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color)); cmd.action = htole32(action); cmd.phy = htole32(IWM_FW_CMD_ID_AND_COLOR(phyctxt->id, phyctxt->color)); cmd.macs[0] = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); for (i = 1; i < IWM_MAX_MACS_IN_BINDING; i++) cmd.macs[i] = htole32(IWM_FW_CTXT_INVALID); status = 0; err = iwm_send_cmd_pdu_status(sc, IWM_BINDING_CONTEXT_CMD, sizeof(cmd), &cmd, &status); if (err == 0 && status != 0) err = EIO; return err; } static void iwm_phy_ctxt_cmd_hdr(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt, struct iwm_phy_context_cmd *cmd, uint32_t action, uint32_t apply_time) { memset(cmd, 0, sizeof(struct iwm_phy_context_cmd)); cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(ctxt->id, ctxt->color)); cmd->action = htole32(action); cmd->apply_time = htole32(apply_time); } static void iwm_phy_ctxt_cmd_data(struct iwm_softc *sc, struct iwm_phy_context_cmd *cmd, struct ieee80211_channel *chan, uint8_t chains_static, uint8_t chains_dynamic) { struct ieee80211com *ic = &sc->sc_ic; uint8_t active_cnt, idle_cnt; cmd->ci.band = IEEE80211_IS_CHAN_2GHZ(chan) ? IWM_PHY_BAND_24 : IWM_PHY_BAND_5; cmd->ci.channel = ieee80211_chan2ieee(ic, chan); cmd->ci.width = IWM_PHY_VHT_CHANNEL_MODE20; cmd->ci.ctrl_pos = IWM_PHY_VHT_CTRL_POS_1_BELOW; /* Set rx the chains */ idle_cnt = chains_static; active_cnt = chains_dynamic; cmd->rxchain_info = htole32(iwm_fw_valid_rx_ant(sc) << IWM_PHY_RX_CHAIN_VALID_POS); cmd->rxchain_info |= htole32(idle_cnt << IWM_PHY_RX_CHAIN_CNT_POS); cmd->rxchain_info |= htole32(active_cnt << IWM_PHY_RX_CHAIN_MIMO_CNT_POS); cmd->txchain_info = htole32(iwm_fw_valid_tx_ant(sc)); } static int iwm_phy_ctxt_cmd(struct iwm_softc *sc, struct iwm_phy_ctxt *ctxt, uint8_t chains_static, uint8_t chains_dynamic, uint32_t action, uint32_t apply_time) { struct iwm_phy_context_cmd cmd; iwm_phy_ctxt_cmd_hdr(sc, ctxt, &cmd, action, apply_time); iwm_phy_ctxt_cmd_data(sc, &cmd, ctxt->channel, chains_static, chains_dynamic); return iwm_send_cmd_pdu(sc, IWM_PHY_CONTEXT_CMD, 0, sizeof(struct iwm_phy_context_cmd), &cmd); } static int iwm_send_cmd(struct iwm_softc *sc, struct iwm_host_cmd *hcmd) { struct iwm_tx_ring *ring = &sc->txq[IWM_CMD_QUEUE]; struct iwm_tfd *desc; struct iwm_tx_data *txdata; struct iwm_device_cmd *cmd; struct mbuf *m; bus_addr_t paddr; uint32_t addr_lo; int err = 0, i, paylen, off, s; int code; int async, wantresp; int group_id; size_t hdrlen, datasz; uint8_t *data; code = hcmd->id; async = hcmd->flags & IWM_CMD_ASYNC; wantresp = hcmd->flags & IWM_CMD_WANT_SKB; for (i = 0, paylen = 0; i < __arraycount(hcmd->len); i++) { paylen += hcmd->len[i]; } /* if the command wants an answer, busy sc_cmd_resp */ if (wantresp) { KASSERT(!async); while (sc->sc_wantresp != IWM_CMD_RESP_IDLE) tsleep(&sc->sc_wantresp, 0, "iwmcmdsl", 0); sc->sc_wantresp = ring->qid << 16 | ring->cur; } /* * Is the hardware still available? (after e.g. above wait). */ s = splnet(); if (sc->sc_flags & IWM_FLAG_STOPPED) { err = ENXIO; goto out; } desc = &ring->desc[ring->cur]; txdata = &ring->data[ring->cur]; group_id = iwm_cmd_groupid(code); if (group_id != 0) { hdrlen = sizeof(cmd->hdr_wide); datasz = sizeof(cmd->data_wide); } else { hdrlen = sizeof(cmd->hdr); datasz = sizeof(cmd->data); } if (paylen > datasz) { /* Command is too large to fit in pre-allocated space. */ size_t totlen = hdrlen + paylen; if (paylen > IWM_MAX_CMD_PAYLOAD_SIZE) { aprint_error_dev(sc->sc_dev, "firmware command too long (%zd bytes)\n", totlen); err = EINVAL; goto out; } m = m_gethdr(M_DONTWAIT, MT_DATA); if (m == NULL) { err = ENOMEM; goto out; } MEXTMALLOC(m, IWM_RBUF_SIZE, M_DONTWAIT); if (!(m->m_flags & M_EXT)) { aprint_error_dev(sc->sc_dev, "could not get fw cmd mbuf (%zd bytes)\n", totlen); m_freem(m); err = ENOMEM; goto out; } cmd = mtod(m, struct iwm_device_cmd *); err = bus_dmamap_load(sc->sc_dmat, txdata->map, cmd, totlen, NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (err) { aprint_error_dev(sc->sc_dev, "could not load fw cmd mbuf (%zd bytes)\n", totlen); m_freem(m); goto out; } txdata->m = m; paddr = txdata->map->dm_segs[0].ds_addr; } else { cmd = &ring->cmd[ring->cur]; paddr = txdata->cmd_paddr; } if (group_id != 0) { cmd->hdr_wide.opcode = iwm_cmd_opcode(code); cmd->hdr_wide.group_id = group_id; cmd->hdr_wide.qid = ring->qid; cmd->hdr_wide.idx = ring->cur; cmd->hdr_wide.length = htole16(paylen); cmd->hdr_wide.version = iwm_cmd_version(code); data = cmd->data_wide; } else { cmd->hdr.code = code; cmd->hdr.flags = 0; cmd->hdr.qid = ring->qid; cmd->hdr.idx = ring->cur; data = cmd->data; } for (i = 0, off = 0; i < __arraycount(hcmd->data); i++) { if (hcmd->len[i] == 0) continue; memcpy(data + off, hcmd->data[i], hcmd->len[i]); off += hcmd->len[i]; } KASSERT(off == paylen); /* lo field is not aligned */ addr_lo = htole32((uint32_t)paddr); memcpy(&desc->tbs[0].lo, &addr_lo, sizeof(uint32_t)); desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(paddr) | ((hdrlen + paylen) << 4)); desc->num_tbs = 1; DPRINTFN(8, ("iwm_send_cmd 0x%x size=%zu %s\n", code, hdrlen + paylen, async ? " (async)" : "")); if (paylen > datasz) { bus_dmamap_sync(sc->sc_dmat, txdata->map, 0, hdrlen + paylen, BUS_DMASYNC_PREWRITE); } else { bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, (uint8_t *)cmd - (uint8_t *)ring->cmd, hdrlen + paylen, BUS_DMASYNC_PREWRITE); } bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, (uint8_t *)desc - (uint8_t *)ring->desc, sizeof(*desc), BUS_DMASYNC_PREWRITE); err = iwm_set_cmd_in_flight(sc); if (err) goto out; ring->queued++; #if 0 iwm_update_sched(sc, ring->qid, ring->cur, 0, 0); #endif DPRINTF(("sending command 0x%x qid %d, idx %d\n", code, ring->qid, ring->cur)); /* Kick command ring. */ ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT; IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); if (!async) { int generation = sc->sc_generation; err = tsleep(desc, PCATCH, "iwmcmd", mstohz(2000)); if (err == 0) { /* if hardware is no longer up, return error */ if (generation != sc->sc_generation) { err = ENXIO; } else { hcmd->resp_pkt = (void *)sc->sc_cmd_resp; } } } out: if (wantresp && err) { iwm_free_resp(sc, hcmd); } splx(s); return err; } static int iwm_send_cmd_pdu(struct iwm_softc *sc, uint32_t id, uint32_t flags, uint16_t len, const void *data) { struct iwm_host_cmd cmd = { .id = id, .len = { len, }, .data = { data, }, .flags = flags, }; return iwm_send_cmd(sc, &cmd); } static int iwm_send_cmd_status(struct iwm_softc *sc, struct iwm_host_cmd *cmd, uint32_t *status) { struct iwm_rx_packet *pkt; struct iwm_cmd_response *resp; int err, resp_len; KASSERT((cmd->flags & IWM_CMD_WANT_SKB) == 0); cmd->flags |= IWM_CMD_WANT_SKB; err = iwm_send_cmd(sc, cmd); if (err) return err; pkt = cmd->resp_pkt; /* Can happen if RFKILL is asserted */ if (!pkt) { err = 0; goto out_free_resp; } if (pkt->hdr.flags & IWM_CMD_FAILED_MSK) { err = EIO; goto out_free_resp; } resp_len = iwm_rx_packet_payload_len(pkt); if (resp_len != sizeof(*resp)) { err = EIO; goto out_free_resp; } resp = (void *)pkt->data; *status = le32toh(resp->status); out_free_resp: iwm_free_resp(sc, cmd); return err; } static int iwm_send_cmd_pdu_status(struct iwm_softc *sc, uint32_t id, uint16_t len, const void *data, uint32_t *status) { struct iwm_host_cmd cmd = { .id = id, .len = { len, }, .data = { data, }, }; return iwm_send_cmd_status(sc, &cmd, status); } static void iwm_free_resp(struct iwm_softc *sc, struct iwm_host_cmd *hcmd) { KASSERT(sc->sc_wantresp != IWM_CMD_RESP_IDLE); KASSERT((hcmd->flags & IWM_CMD_WANT_SKB) == IWM_CMD_WANT_SKB); sc->sc_wantresp = IWM_CMD_RESP_IDLE; wakeup(&sc->sc_wantresp); } static void iwm_cmd_done(struct iwm_softc *sc, int qid, int idx) { struct iwm_tx_ring *ring = &sc->txq[IWM_CMD_QUEUE]; struct iwm_tx_data *data; int s; if (qid != IWM_CMD_QUEUE) { return; /* Not a command ack. */ } s = splnet(); data = &ring->data[idx]; if (data->m != NULL) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->sc_dmat, data->map); m_freem(data->m); data->m = NULL; } wakeup(&ring->desc[idx]); if (((idx + ring->queued) % IWM_TX_RING_COUNT) != ring->cur) { aprint_error_dev(sc->sc_dev, "Some HCMDs skipped?: idx=%d queued=%d cur=%d\n", idx, ring->queued, ring->cur); } KASSERT(ring->queued > 0); if (--ring->queued == 0) iwm_clear_cmd_in_flight(sc); splx(s); } #if 0 /* * necessary only for block ack mode */ void iwm_update_sched(struct iwm_softc *sc, int qid, int idx, uint8_t sta_id, uint16_t len) { struct iwm_agn_scd_bc_tbl *scd_bc_tbl; uint16_t w_val; scd_bc_tbl = sc->sched_dma.vaddr; len += 8; /* magic numbers came naturally from paris */ if (sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DW_BC_TABLE) len = roundup(len, 4) / 4; w_val = htole16(sta_id << 12 | len); /* Update TX scheduler. */ scd_bc_tbl[qid].tfd_offset[idx] = w_val; bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, (char *)(void *)w - (char *)(void *)sc->sched_dma.vaddr, sizeof(uint16_t), BUS_DMASYNC_PREWRITE); /* I really wonder what this is ?!? */ if (idx < IWM_TFD_QUEUE_SIZE_BC_DUP) { scd_bc_tbl[qid].tfd_offset[IWM_TFD_QUEUE_SIZE_MAX + idx] = w_val; bus_dmamap_sync(sc->sc_dmat, sc->sched_dma.map, (char *)(void *)(w + IWM_TFD_QUEUE_SIZE_MAX) - (char *)(void *)sc->sched_dma.vaddr, sizeof (uint16_t), BUS_DMASYNC_PREWRITE); } } #endif /* * Fill in various bit for management frames, and leave them * unfilled for data frames (firmware takes care of that). * Return the selected TX rate. */ static const struct iwm_rate * iwm_tx_fill_cmd(struct iwm_softc *sc, struct iwm_node *in, struct ieee80211_frame *wh, struct iwm_tx_cmd *tx) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = &in->in_ni; const struct iwm_rate *rinfo; int type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; int ridx, rate_flags, i, ind; int nrates = ni->ni_rates.rs_nrates; tx->rts_retry_limit = IWM_RTS_DFAULT_RETRY_LIMIT; tx->data_retry_limit = IWM_DEFAULT_TX_RETRY; if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) { /* for non-data, use the lowest supported rate */ ridx = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ? IWM_RIDX_OFDM : IWM_RIDX_CCK; tx->data_retry_limit = IWM_MGMT_DFAULT_RETRY_LIMIT; #ifndef IEEE80211_NO_HT } else if (ic->ic_fixed_mcs != -1) { ridx = sc->sc_fixed_ridx; #endif } else if (ic->ic_fixed_rate != -1) { ridx = sc->sc_fixed_ridx; } else { /* for data frames, use RS table */ tx->initial_rate_index = 0; tx->tx_flags |= htole32(IWM_TX_CMD_FLG_STA_RATE); DPRINTFN(12, ("start with txrate %d\n", tx->initial_rate_index)); #ifndef IEEE80211_NO_HT if (ni->ni_flags & IEEE80211_NODE_HT) { ridx = iwm_mcs2ridx[ni->ni_txmcs]; return &iwm_rates[ridx]; } #endif ridx = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ? IWM_RIDX_OFDM : IWM_RIDX_CCK; for (i = 0; i < nrates; i++) { if (iwm_rates[i].rate == (ni->ni_txrate & IEEE80211_RATE_VAL)) { ridx = i; break; } } return &iwm_rates[ridx]; } rinfo = &iwm_rates[ridx]; for (i = 0, ind = sc->sc_mgmt_last_antenna; i < IWM_RATE_MCS_ANT_NUM; i++) { ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM; if (iwm_fw_valid_tx_ant(sc) & (1 << ind)) { sc->sc_mgmt_last_antenna = ind; break; } } rate_flags = (1 << sc->sc_mgmt_last_antenna) << IWM_RATE_MCS_ANT_POS; if (IWM_RIDX_IS_CCK(ridx)) rate_flags |= IWM_RATE_MCS_CCK_MSK; #ifndef IEEE80211_NO_HT if ((ni->ni_flags & IEEE80211_NODE_HT) && rinfo->ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP) { rate_flags |= IWM_RATE_MCS_HT_MSK; tx->rate_n_flags = htole32(rate_flags | rinfo->ht_plcp); } else #endif tx->rate_n_flags = htole32(rate_flags | rinfo->plcp); return rinfo; } #define TB0_SIZE 16 static int iwm_tx(struct iwm_softc *sc, struct mbuf *m, struct ieee80211_node *ni, int ac) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_node *in = (struct iwm_node *)ni; struct iwm_tx_ring *ring; struct iwm_tx_data *data; struct iwm_tfd *desc; struct iwm_device_cmd *cmd; struct iwm_tx_cmd *tx; struct ieee80211_frame *wh; struct ieee80211_key *k = NULL; struct mbuf *m1; const struct iwm_rate *rinfo; uint32_t flags; u_int hdrlen; bus_dma_segment_t *seg; uint8_t tid, type; int i, totlen, err, pad; wh = mtod(m, struct ieee80211_frame *); hdrlen = ieee80211_anyhdrsize(wh); type = wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK; tid = 0; ring = &sc->txq[ac]; desc = &ring->desc[ring->cur]; memset(desc, 0, sizeof(*desc)); data = &ring->data[ring->cur]; cmd = &ring->cmd[ring->cur]; cmd->hdr.code = IWM_TX_CMD; cmd->hdr.flags = 0; cmd->hdr.qid = ring->qid; cmd->hdr.idx = ring->cur; tx = (void *)cmd->data; memset(tx, 0, sizeof(*tx)); rinfo = iwm_tx_fill_cmd(sc, in, wh, tx); if (__predict_false(sc->sc_drvbpf != NULL)) { struct iwm_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_flags = 0; tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags); #ifndef IEEE80211_NO_HT if ((ni->ni_flags & IEEE80211_NODE_HT) && !IEEE80211_IS_MULTICAST(wh->i_addr1) && type == IEEE80211_FC0_TYPE_DATA && rinfo->plcp == IWM_RATE_INVM_PLCP) { tap->wt_rate = (0x80 | rinfo->ht_plcp); } else #endif tap->wt_rate = rinfo->rate; tap->wt_hwqueue = ac; if (wh->i_fc[1] & IEEE80211_FC1_WEP) tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP; bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m); } /* Encrypt the frame if need be. */ if (wh->i_fc[1] & IEEE80211_FC1_WEP) { k = ieee80211_crypto_encap(ic, ni, m); if (k == NULL) { m_freem(m); return ENOBUFS; } /* Packet header may have moved, reset our local pointer. */ wh = mtod(m, struct ieee80211_frame *); } totlen = m->m_pkthdr.len; flags = 0; if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { flags |= IWM_TX_CMD_FLG_ACK; } if (type == IEEE80211_FC0_TYPE_DATA && !IEEE80211_IS_MULTICAST(wh->i_addr1) && (totlen + IEEE80211_CRC_LEN > ic->ic_rtsthreshold || (ic->ic_flags & IEEE80211_F_USEPROT))) flags |= IWM_TX_CMD_FLG_PROT_REQUIRE; if (IEEE80211_IS_MULTICAST(wh->i_addr1) || type != IEEE80211_FC0_TYPE_DATA) tx->sta_id = IWM_AUX_STA_ID; else tx->sta_id = IWM_STATION_ID; if (type == IEEE80211_FC0_TYPE_MGT) { uint8_t subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK; if (subtype == IEEE80211_FC0_SUBTYPE_ASSOC_REQ || subtype == IEEE80211_FC0_SUBTYPE_REASSOC_REQ) tx->pm_frame_timeout = htole16(IWM_PM_FRAME_ASSOC); else tx->pm_frame_timeout = htole16(IWM_PM_FRAME_MGMT); } else { tx->pm_frame_timeout = htole16(IWM_PM_FRAME_NONE); } if (hdrlen & 3) { /* First segment length must be a multiple of 4. */ flags |= IWM_TX_CMD_FLG_MH_PAD; pad = 4 - (hdrlen & 3); } else pad = 0; tx->driver_txop = 0; tx->next_frame_len = 0; tx->len = htole16(totlen); tx->tid_tspec = tid; tx->life_time = htole32(IWM_TX_CMD_LIFE_TIME_INFINITE); /* Set physical address of "scratch area". */ tx->dram_lsb_ptr = htole32(data->scratch_paddr); tx->dram_msb_ptr = iwm_get_dma_hi_addr(data->scratch_paddr); /* Copy 802.11 header in TX command. */ memcpy(tx + 1, wh, hdrlen); flags |= IWM_TX_CMD_FLG_BT_DIS | IWM_TX_CMD_FLG_SEQ_CTL; tx->sec_ctl = 0; tx->tx_flags |= htole32(flags); /* Trim 802.11 header. */ m_adj(m, hdrlen); err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (err) { if (err != EFBIG) { aprint_error_dev(sc->sc_dev, "can't map mbuf (error %d)\n", err); m_freem(m); return err; } /* Too many DMA segments, linearize mbuf. */ MGETHDR(m1, M_DONTWAIT, MT_DATA); if (m1 == NULL) { m_freem(m); return ENOBUFS; } if (m->m_pkthdr.len > MHLEN) { MCLGET(m1, M_DONTWAIT); if (!(m1->m_flags & M_EXT)) { m_freem(m); m_freem(m1); return ENOBUFS; } } m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *)); m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len; m_freem(m); m = m1; err = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m, BUS_DMA_NOWAIT | BUS_DMA_WRITE); if (err) { aprint_error_dev(sc->sc_dev, "can't map mbuf (error %d)\n", err); m_freem(m); return err; } } data->m = m; data->in = in; data->done = 0; DPRINTFN(8, ("sending txd %p, in %p\n", data, data->in)); KASSERT(data->in != NULL); DPRINTFN(8, ("sending data: qid=%d idx=%d len=%d nsegs=%d type=%d " "subtype=%x tx_flags=%08x init_rateidx=%08x rate_n_flags=%08x\n", ring->qid, ring->cur, totlen, data->map->dm_nsegs, type, (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) >> 4, le32toh(tx->tx_flags), le32toh(tx->initial_rate_index), le32toh(tx->rate_n_flags))); /* Fill TX descriptor. */ desc->num_tbs = 2 + data->map->dm_nsegs; desc->tbs[0].lo = htole32(data->cmd_paddr); desc->tbs[0].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) | (TB0_SIZE << 4); desc->tbs[1].lo = htole32(data->cmd_paddr + TB0_SIZE); desc->tbs[1].hi_n_len = htole16(iwm_get_dma_hi_addr(data->cmd_paddr)) | ((sizeof(struct iwm_cmd_header) + sizeof(*tx) + hdrlen + pad - TB0_SIZE) << 4); /* Other DMA segments are for data payload. */ seg = data->map->dm_segs; for (i = 0; i < data->map->dm_nsegs; i++, seg++) { desc->tbs[i+2].lo = htole32(seg->ds_addr); desc->tbs[i+2].hi_n_len = htole16(iwm_get_dma_hi_addr(seg->ds_addr)) | ((seg->ds_len) << 4); } bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize, BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, ring->cmd_dma.map, (uint8_t *)cmd - (uint8_t *)ring->cmd, sizeof(*cmd), BUS_DMASYNC_PREWRITE); bus_dmamap_sync(sc->sc_dmat, ring->desc_dma.map, (uint8_t *)desc - (uint8_t *)ring->desc, sizeof(*desc), BUS_DMASYNC_PREWRITE); #if 0 iwm_update_sched(sc, ring->qid, ring->cur, tx->sta_id, le16toh(tx->len)); #endif /* Kick TX ring. */ ring->cur = (ring->cur + 1) % IWM_TX_RING_COUNT; IWM_WRITE(sc, IWM_HBUS_TARG_WRPTR, ring->qid << 8 | ring->cur); /* Mark TX ring as full if we reach a certain threshold. */ if (++ring->queued > IWM_TX_RING_HIMARK) { sc->qfullmsk |= 1 << ring->qid; } return 0; } #if 0 /* not necessary? */ static int iwm_flush_tx_path(struct iwm_softc *sc, int tfd_msk, int sync) { struct iwm_tx_path_flush_cmd flush_cmd = { .queues_ctl = htole32(tfd_msk), .flush_ctl = htole16(IWM_DUMP_TX_FIFO_FLUSH), }; int err; err = iwm_send_cmd_pdu(sc, IWM_TXPATH_FLUSH, sync ? 0 : IWM_CMD_ASYNC, sizeof(flush_cmd), &flush_cmd); if (err) aprint_error_dev(sc->sc_dev, "Flushing tx queue failed: %d\n", err); return err; } #endif static void iwm_led_enable(struct iwm_softc *sc) { IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_ON); } static void iwm_led_disable(struct iwm_softc *sc) { IWM_WRITE(sc, IWM_CSR_LED_REG, IWM_CSR_LED_REG_TURN_OFF); } static int iwm_led_is_enabled(struct iwm_softc *sc) { return (IWM_READ(sc, IWM_CSR_LED_REG) == IWM_CSR_LED_REG_TURN_ON); } static void iwm_led_blink_timeout(void *arg) { struct iwm_softc *sc = arg; if (iwm_led_is_enabled(sc)) iwm_led_disable(sc); else iwm_led_enable(sc); callout_schedule(&sc->sc_led_blink_to, mstohz(200)); } static void iwm_led_blink_start(struct iwm_softc *sc) { callout_schedule(&sc->sc_led_blink_to, mstohz(200)); } static void iwm_led_blink_stop(struct iwm_softc *sc) { callout_stop(&sc->sc_led_blink_to); iwm_led_disable(sc); } #define IWM_POWER_KEEP_ALIVE_PERIOD_SEC 25 static int iwm_beacon_filter_send_cmd(struct iwm_softc *sc, struct iwm_beacon_filter_cmd *cmd) { return iwm_send_cmd_pdu(sc, IWM_REPLY_BEACON_FILTERING_CMD, 0, sizeof(struct iwm_beacon_filter_cmd), cmd); } static void iwm_beacon_filter_set_cqm_params(struct iwm_softc *sc, struct iwm_node *in, struct iwm_beacon_filter_cmd *cmd) { cmd->ba_enable_beacon_abort = htole32(sc->sc_bf.ba_enabled); } static int iwm_update_beacon_abort(struct iwm_softc *sc, struct iwm_node *in, int enable) { struct iwm_beacon_filter_cmd cmd = { IWM_BF_CMD_CONFIG_DEFAULTS, .bf_enable_beacon_filter = htole32(1), .ba_enable_beacon_abort = htole32(enable), }; if (!sc->sc_bf.bf_enabled) return 0; sc->sc_bf.ba_enabled = enable; iwm_beacon_filter_set_cqm_params(sc, in, &cmd); return iwm_beacon_filter_send_cmd(sc, &cmd); } static void iwm_power_build_cmd(struct iwm_softc *sc, struct iwm_node *in, struct iwm_mac_power_cmd *cmd) { struct ieee80211_node *ni = &in->in_ni; int dtim_period, dtim_msec, keep_alive; cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); if (ni->ni_dtim_period) dtim_period = ni->ni_dtim_period; else dtim_period = 1; /* * Regardless of power management state the driver must set * keep alive period. FW will use it for sending keep alive NDPs * immediately after association. Check that keep alive period * is at least 3 * DTIM. */ dtim_msec = dtim_period * ni->ni_intval; keep_alive = MAX(3 * dtim_msec, 1000 * IWM_POWER_KEEP_ALIVE_PERIOD_SEC); keep_alive = roundup(keep_alive, 1000) / 1000; cmd->keep_alive_seconds = htole16(keep_alive); #ifdef notyet cmd->flags = htole16(IWM_POWER_FLAGS_POWER_SAVE_ENA_MSK); cmd->rx_data_timeout = IWM_DEFAULT_PS_RX_DATA_TIMEOUT; cmd->tx_data_timeout = IWM_DEFAULT_PS_TX_DATA_TIMEOUT; #endif } static int iwm_power_mac_update_mode(struct iwm_softc *sc, struct iwm_node *in) { int err; int ba_enable; struct iwm_mac_power_cmd cmd; memset(&cmd, 0, sizeof(cmd)); iwm_power_build_cmd(sc, in, &cmd); err = iwm_send_cmd_pdu(sc, IWM_MAC_PM_POWER_TABLE, 0, sizeof(cmd), &cmd); if (err) return err; ba_enable = !!(cmd.flags & htole16(IWM_POWER_FLAGS_POWER_MANAGEMENT_ENA_MSK)); return iwm_update_beacon_abort(sc, in, ba_enable); } static int iwm_power_update_device(struct iwm_softc *sc) { struct iwm_device_power_cmd cmd = { #ifdef notyet .flags = htole16(IWM_DEVICE_POWER_FLAGS_POWER_SAVE_ENA_MSK), #else .flags = 0, #endif }; if (!(sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_DEVICE_PS_CMD)) return 0; cmd.flags |= htole16(IWM_DEVICE_POWER_FLAGS_CAM_MSK); DPRINTF(("Sending device power command with flags = 0x%X\n", cmd.flags)); return iwm_send_cmd_pdu(sc, IWM_POWER_TABLE_CMD, 0, sizeof(cmd), &cmd); } #ifdef notyet static int iwm_enable_beacon_filter(struct iwm_softc *sc, struct iwm_node *in) { struct iwm_beacon_filter_cmd cmd = { IWM_BF_CMD_CONFIG_DEFAULTS, .bf_enable_beacon_filter = htole32(1), }; int err; iwm_beacon_filter_set_cqm_params(sc, in, &cmd); err = iwm_beacon_filter_send_cmd(sc, &cmd); if (err == 0) sc->sc_bf.bf_enabled = 1; return err; } #endif static int iwm_disable_beacon_filter(struct iwm_softc *sc) { struct iwm_beacon_filter_cmd cmd; int err; memset(&cmd, 0, sizeof(cmd)); if ((sc->sc_capaflags & IWM_UCODE_TLV_FLAGS_BF_UPDATED) == 0) return 0; err = iwm_beacon_filter_send_cmd(sc, &cmd); if (err == 0) sc->sc_bf.bf_enabled = 0; return err; } static int iwm_add_sta_cmd(struct iwm_softc *sc, struct iwm_node *in, int update) { struct iwm_add_sta_cmd_v7 add_sta_cmd; int err; uint32_t status; memset(&add_sta_cmd, 0, sizeof(add_sta_cmd)); add_sta_cmd.sta_id = IWM_STATION_ID; add_sta_cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); if (!update) { int ac; for (ac = 0; ac < WME_NUM_AC; ac++) { add_sta_cmd.tfd_queue_msk |= htole32(__BIT(iwm_ac_to_tx_fifo[ac])); } IEEE80211_ADDR_COPY(&add_sta_cmd.addr, in->in_ni.ni_bssid); } add_sta_cmd.add_modify = update ? 1 : 0; add_sta_cmd.station_flags_msk |= htole32(IWM_STA_FLG_FAT_EN_MSK | IWM_STA_FLG_MIMO_EN_MSK); add_sta_cmd.tid_disable_tx = htole16(0xffff); if (update) add_sta_cmd.modify_mask |= (IWM_STA_MODIFY_TID_DISABLE_TX); #ifndef IEEE80211_NO_HT if (in->in_ni.ni_flags & IEEE80211_NODE_HT) { add_sta_cmd.station_flags_msk |= htole32(IWM_STA_FLG_MAX_AGG_SIZE_MSK | IWM_STA_FLG_AGG_MPDU_DENS_MSK); add_sta_cmd.station_flags |= htole32(IWM_STA_FLG_MAX_AGG_SIZE_64K); switch (ic->ic_ampdu_params & IEEE80211_AMPDU_PARAM_SS) { case IEEE80211_AMPDU_PARAM_SS_2: add_sta_cmd.station_flags |= htole32(IWM_STA_FLG_AGG_MPDU_DENS_2US); break; case IEEE80211_AMPDU_PARAM_SS_4: add_sta_cmd.station_flags |= htole32(IWM_STA_FLG_AGG_MPDU_DENS_4US); break; case IEEE80211_AMPDU_PARAM_SS_8: add_sta_cmd.station_flags |= htole32(IWM_STA_FLG_AGG_MPDU_DENS_8US); break; case IEEE80211_AMPDU_PARAM_SS_16: add_sta_cmd.station_flags |= htole32(IWM_STA_FLG_AGG_MPDU_DENS_16US); break; default: break; } } #endif status = IWM_ADD_STA_SUCCESS; err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(add_sta_cmd), &add_sta_cmd, &status); if (err == 0 && status != IWM_ADD_STA_SUCCESS) err = EIO; return err; } static int iwm_add_aux_sta(struct iwm_softc *sc) { struct iwm_add_sta_cmd_v7 cmd; int err; uint32_t status; err = iwm_enable_txq(sc, 0, IWM_AUX_QUEUE, IWM_TX_FIFO_MCAST); if (err) return err; memset(&cmd, 0, sizeof(cmd)); cmd.sta_id = IWM_AUX_STA_ID; cmd.mac_id_n_color = htole32(IWM_FW_CMD_ID_AND_COLOR(IWM_MAC_INDEX_AUX, 0)); cmd.tfd_queue_msk = htole32(1 << IWM_AUX_QUEUE); cmd.tid_disable_tx = htole16(0xffff); status = IWM_ADD_STA_SUCCESS; err = iwm_send_cmd_pdu_status(sc, IWM_ADD_STA, sizeof(cmd), &cmd, &status); if (err == 0 && status != IWM_ADD_STA_SUCCESS) err = EIO; return err; } #define IWM_PLCP_QUIET_THRESH 1 #define IWM_ACTIVE_QUIET_TIME 10 #define LONG_OUT_TIME_PERIOD 600 #define SHORT_OUT_TIME_PERIOD 200 #define SUSPEND_TIME_PERIOD 100 static uint16_t iwm_scan_rx_chain(struct iwm_softc *sc) { uint16_t rx_chain; uint8_t rx_ant; rx_ant = iwm_fw_valid_rx_ant(sc); rx_chain = rx_ant << IWM_PHY_RX_CHAIN_VALID_POS; rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_MIMO_SEL_POS; rx_chain |= rx_ant << IWM_PHY_RX_CHAIN_FORCE_SEL_POS; rx_chain |= 0x1 << IWM_PHY_RX_CHAIN_DRIVER_FORCE_POS; return htole16(rx_chain); } static uint32_t iwm_scan_rate_n_flags(struct iwm_softc *sc, int flags, int no_cck) { uint32_t tx_ant; int i, ind; for (i = 0, ind = sc->sc_scan_last_antenna; i < IWM_RATE_MCS_ANT_NUM; i++) { ind = (ind + 1) % IWM_RATE_MCS_ANT_NUM; if (iwm_fw_valid_tx_ant(sc) & (1 << ind)) { sc->sc_scan_last_antenna = ind; break; } } tx_ant = (1 << sc->sc_scan_last_antenna) << IWM_RATE_MCS_ANT_POS; if ((flags & IEEE80211_CHAN_2GHZ) && !no_cck) return htole32(IWM_RATE_1M_PLCP | IWM_RATE_MCS_CCK_MSK | tx_ant); else return htole32(IWM_RATE_6M_PLCP | tx_ant); } #ifdef notyet /* * If req->n_ssids > 0, it means we should do an active scan. * In case of active scan w/o directed scan, we receive a zero-length SSID * just to notify that this scan is active and not passive. * In order to notify the FW of the number of SSIDs we wish to scan (including * the zero-length one), we need to set the corresponding bits in chan->type, * one for each SSID, and set the active bit (first). If the first SSID is * already included in the probe template, so we need to set only * req->n_ssids - 1 bits in addition to the first bit. */ static uint16_t iwm_get_active_dwell(struct iwm_softc *sc, int flags, int n_ssids) { if (flags & IEEE80211_CHAN_2GHZ) return 30 + 3 * (n_ssids + 1); return 20 + 2 * (n_ssids + 1); } static uint16_t iwm_get_passive_dwell(struct iwm_softc *sc, int flags) { return (flags & IEEE80211_CHAN_2GHZ) ? 100 + 20 : 100 + 10; } #endif static uint8_t iwm_lmac_scan_fill_channels(struct iwm_softc *sc, struct iwm_scan_channel_cfg_lmac *chan, int n_ssids) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c; uint8_t nchan; for (nchan = 0, c = &ic->ic_channels[1]; c <= &ic->ic_channels[IEEE80211_CHAN_MAX] && nchan < sc->sc_capa_n_scan_channels; c++) { if (c->ic_flags == 0) continue; chan->channel_num = htole16(ieee80211_mhz2ieee(c->ic_freq, 0)); chan->iter_count = htole16(1); chan->iter_interval = htole32(0); chan->flags = htole32(IWM_UNIFIED_SCAN_CHANNEL_PARTIAL); chan->flags |= htole32(IWM_SCAN_CHANNEL_NSSIDS(n_ssids)); if (!IEEE80211_IS_CHAN_PASSIVE(c) && n_ssids != 0) chan->flags |= htole32(IWM_SCAN_CHANNEL_TYPE_ACTIVE); chan++; nchan++; } return nchan; } static uint8_t iwm_umac_scan_fill_channels(struct iwm_softc *sc, struct iwm_scan_channel_cfg_umac *chan, int n_ssids) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_channel *c; uint8_t nchan; for (nchan = 0, c = &ic->ic_channels[1]; c <= &ic->ic_channels[IEEE80211_CHAN_MAX] && nchan < sc->sc_capa_n_scan_channels; c++) { if (c->ic_flags == 0) continue; chan->channel_num = ieee80211_mhz2ieee(c->ic_freq, 0); chan->iter_count = 1; chan->iter_interval = htole16(0); chan->flags = htole32(IWM_SCAN_CHANNEL_UMAC_NSSIDS(n_ssids)); chan++; nchan++; } return nchan; } static int iwm_fill_probe_req(struct iwm_softc *sc, struct iwm_scan_probe_req *preq) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_frame *wh = (struct ieee80211_frame *)preq->buf; struct ieee80211_rateset *rs; size_t remain = sizeof(preq->buf); uint8_t *frm, *pos; memset(preq, 0, sizeof(*preq)); if (remain < sizeof(*wh) + 2 + ic->ic_des_esslen) return ENOBUFS; /* * Build a probe request frame. Most of the following code is a * copy & paste of what is done in net80211. */ wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_REQ; wh->i_fc[1] = IEEE80211_FC1_DIR_NODS; IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr); IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr); IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr); *(uint16_t *)&wh->i_dur[0] = 0; /* filled by HW */ *(uint16_t *)&wh->i_seq[0] = 0; /* filled by HW */ frm = (uint8_t *)(wh + 1); frm = ieee80211_add_ssid(frm, ic->ic_des_essid, ic->ic_des_esslen); /* Tell the firmware where the MAC header is. */ preq->mac_header.offset = 0; preq->mac_header.len = htole16(frm - (uint8_t *)wh); remain -= frm - (uint8_t *)wh; /* Fill in 2GHz IEs and tell firmware where they are. */ rs = &ic->ic_sup_rates[IEEE80211_MODE_11G]; if (rs->rs_nrates > IEEE80211_RATE_SIZE) { if (remain < 4 + rs->rs_nrates) return ENOBUFS; } else if (remain < 2 + rs->rs_nrates) return ENOBUFS; preq->band_data[0].offset = htole16(frm - (uint8_t *)wh); pos = frm; frm = ieee80211_add_rates(frm, rs); if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); preq->band_data[0].len = htole16(frm - pos); remain -= frm - pos; if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)) { if (remain < 3) return ENOBUFS; *frm++ = IEEE80211_ELEMID_DSPARMS; *frm++ = 1; *frm++ = 0; remain -= 3; } if (sc->sc_nvm.sku_cap_band_52GHz_enable) { /* Fill in 5GHz IEs. */ rs = &ic->ic_sup_rates[IEEE80211_MODE_11A]; if (rs->rs_nrates > IEEE80211_RATE_SIZE) { if (remain < 4 + rs->rs_nrates) return ENOBUFS; } else if (remain < 2 + rs->rs_nrates) return ENOBUFS; preq->band_data[1].offset = htole16(frm - (uint8_t *)wh); pos = frm; frm = ieee80211_add_rates(frm, rs); if (rs->rs_nrates > IEEE80211_RATE_SIZE) frm = ieee80211_add_xrates(frm, rs); preq->band_data[1].len = htole16(frm - pos); remain -= frm - pos; } #ifndef IEEE80211_NO_HT /* Send 11n IEs on both 2GHz and 5GHz bands. */ preq->common_data.offset = htole16(frm - (uint8_t *)wh); pos = frm; if (ic->ic_flags & IEEE80211_F_HTON) { if (remain < 28) return ENOBUFS; frm = ieee80211_add_htcaps(frm, ic); /* XXX add WME info? */ } #endif preq->common_data.len = htole16(frm - pos); return 0; } static int iwm_lmac_scan(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_host_cmd hcmd = { .id = IWM_SCAN_OFFLOAD_REQUEST_CMD, .len = { 0, }, .data = { NULL, }, .flags = 0, }; struct iwm_scan_req_lmac *req; size_t req_len; int err; DPRINTF(("%s: %s\n", DEVNAME(sc), __func__)); req_len = sizeof(struct iwm_scan_req_lmac) + (sizeof(struct iwm_scan_channel_cfg_lmac) * sc->sc_capa_n_scan_channels) + sizeof(struct iwm_scan_probe_req); if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE) return ENOMEM; req = kmem_zalloc(req_len, KM_SLEEP); if (req == NULL) return ENOMEM; hcmd.len[0] = (uint16_t)req_len; hcmd.data[0] = (void *)req; /* These timings correspond to iwlwifi's UNASSOC scan. */ req->active_dwell = 10; req->passive_dwell = 110; req->fragmented_dwell = 44; req->extended_dwell = 90; req->max_out_time = 0; req->suspend_time = 0; req->scan_prio = htole32(IWM_SCAN_PRIORITY_HIGH); req->rx_chain_select = iwm_scan_rx_chain(sc); req->iter_num = htole32(1); req->delay = 0; req->scan_flags = htole32(IWM_LMAC_SCAN_FLAG_PASS_ALL | IWM_LMAC_SCAN_FLAG_ITER_COMPLETE | IWM_LMAC_SCAN_FLAG_EXTENDED_DWELL); if (ic->ic_des_esslen == 0) req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PASSIVE); else req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAG_PRE_CONNECTION); if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)) req->scan_flags |= htole32(IWM_LMAC_SCAN_FLAGS_RRM_ENABLED); req->flags = htole32(IWM_PHY_BAND_24); if (sc->sc_nvm.sku_cap_band_52GHz_enable) req->flags |= htole32(IWM_PHY_BAND_5); req->filter_flags = htole32(IWM_MAC_FILTER_ACCEPT_GRP | IWM_MAC_FILTER_IN_BEACON); /* Tx flags 2 GHz. */ req->tx_cmd[0].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL | IWM_TX_CMD_FLG_BT_DIS); req->tx_cmd[0].rate_n_flags = iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_2GHZ, 1/*XXX*/); req->tx_cmd[0].sta_id = IWM_AUX_STA_ID; /* Tx flags 5 GHz. */ req->tx_cmd[1].tx_flags = htole32(IWM_TX_CMD_FLG_SEQ_CTL | IWM_TX_CMD_FLG_BT_DIS); req->tx_cmd[1].rate_n_flags = iwm_scan_rate_n_flags(sc, IEEE80211_CHAN_5GHZ, 1/*XXX*/); req->tx_cmd[1].sta_id = IWM_AUX_STA_ID; /* Check if we're doing an active directed scan. */ if (ic->ic_des_esslen != 0) { req->direct_scan[0].id = IEEE80211_ELEMID_SSID; req->direct_scan[0].len = ic->ic_des_esslen; memcpy(req->direct_scan[0].ssid, ic->ic_des_essid, ic->ic_des_esslen); } req->n_channels = iwm_lmac_scan_fill_channels(sc, (struct iwm_scan_channel_cfg_lmac *)req->data, ic->ic_des_esslen != 0); err = iwm_fill_probe_req(sc, (struct iwm_scan_probe_req *)(req->data + (sizeof(struct iwm_scan_channel_cfg_lmac) * sc->sc_capa_n_scan_channels))); if (err) { kmem_free(req, req_len); return err; } /* Specify the scan plan: We'll do one iteration. */ req->schedule[0].iterations = 1; req->schedule[0].full_scan_mul = 1; /* Disable EBS. */ req->channel_opt[0].non_ebs_ratio = 1; req->channel_opt[1].non_ebs_ratio = 1; err = iwm_send_cmd(sc, &hcmd); kmem_free(req, req_len); return err; } static int iwm_config_umac_scan(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_scan_config *scan_config; int err, nchan; size_t cmd_size; struct ieee80211_channel *c; struct iwm_host_cmd hcmd = { .id = iwm_cmd_id(IWM_SCAN_CFG_CMD, IWM_ALWAYS_LONG_GROUP, 0), .flags = 0, }; static const uint32_t rates = (IWM_SCAN_CONFIG_RATE_1M | IWM_SCAN_CONFIG_RATE_2M | IWM_SCAN_CONFIG_RATE_5M | IWM_SCAN_CONFIG_RATE_11M | IWM_SCAN_CONFIG_RATE_6M | IWM_SCAN_CONFIG_RATE_9M | IWM_SCAN_CONFIG_RATE_12M | IWM_SCAN_CONFIG_RATE_18M | IWM_SCAN_CONFIG_RATE_24M | IWM_SCAN_CONFIG_RATE_36M | IWM_SCAN_CONFIG_RATE_48M | IWM_SCAN_CONFIG_RATE_54M); cmd_size = sizeof(*scan_config) + sc->sc_capa_n_scan_channels; scan_config = kmem_zalloc(cmd_size, KM_SLEEP); if (scan_config == NULL) return ENOMEM; scan_config->tx_chains = htole32(iwm_fw_valid_tx_ant(sc)); scan_config->rx_chains = htole32(iwm_fw_valid_rx_ant(sc)); scan_config->legacy_rates = htole32(rates | IWM_SCAN_CONFIG_SUPPORTED_RATE(rates)); /* These timings correspond to iwlwifi's UNASSOC scan. */ scan_config->dwell_active = 10; scan_config->dwell_passive = 110; scan_config->dwell_fragmented = 44; scan_config->dwell_extended = 90; scan_config->out_of_channel_time = htole32(0); scan_config->suspend_time = htole32(0); IEEE80211_ADDR_COPY(scan_config->mac_addr, sc->sc_ic.ic_myaddr); scan_config->bcast_sta_id = IWM_AUX_STA_ID; scan_config->channel_flags = IWM_CHANNEL_FLAG_EBS | IWM_CHANNEL_FLAG_ACCURATE_EBS | IWM_CHANNEL_FLAG_EBS_ADD | IWM_CHANNEL_FLAG_PRE_SCAN_PASSIVE2ACTIVE; for (c = &ic->ic_channels[1], nchan = 0; c <= &ic->ic_channels[IEEE80211_CHAN_MAX] && nchan < sc->sc_capa_n_scan_channels; c++) { if (c->ic_flags == 0) continue; scan_config->channel_array[nchan++] = ieee80211_mhz2ieee(c->ic_freq, 0); } scan_config->flags = htole32(IWM_SCAN_CONFIG_FLAG_ACTIVATE | IWM_SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS | IWM_SCAN_CONFIG_FLAG_SET_TX_CHAINS | IWM_SCAN_CONFIG_FLAG_SET_RX_CHAINS | IWM_SCAN_CONFIG_FLAG_SET_AUX_STA_ID | IWM_SCAN_CONFIG_FLAG_SET_ALL_TIMES | IWM_SCAN_CONFIG_FLAG_SET_LEGACY_RATES | IWM_SCAN_CONFIG_FLAG_SET_MAC_ADDR | IWM_SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS| IWM_SCAN_CONFIG_N_CHANNELS(nchan) | IWM_SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED); hcmd.data[0] = scan_config; hcmd.len[0] = cmd_size; err = iwm_send_cmd(sc, &hcmd); kmem_free(scan_config, cmd_size); return err; } static int iwm_umac_scan(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_host_cmd hcmd = { .id = iwm_cmd_id(IWM_SCAN_REQ_UMAC, IWM_ALWAYS_LONG_GROUP, 0), .len = { 0, }, .data = { NULL, }, .flags = 0, }; struct iwm_scan_req_umac *req; struct iwm_scan_req_umac_tail *tail; size_t req_len; int err; DPRINTF(("%s: %s\n", DEVNAME(sc), __func__)); req_len = sizeof(struct iwm_scan_req_umac) + (sizeof(struct iwm_scan_channel_cfg_umac) * sc->sc_capa_n_scan_channels) + sizeof(struct iwm_scan_req_umac_tail); if (req_len > IWM_MAX_CMD_PAYLOAD_SIZE) return ENOMEM; req = kmem_zalloc(req_len, KM_SLEEP); if (req == NULL) return ENOMEM; hcmd.len[0] = (uint16_t)req_len; hcmd.data[0] = (void *)req; /* These timings correspond to iwlwifi's UNASSOC scan. */ req->active_dwell = 10; req->passive_dwell = 110; req->fragmented_dwell = 44; req->extended_dwell = 90; req->max_out_time = 0; req->suspend_time = 0; req->scan_priority = htole32(IWM_SCAN_PRIORITY_HIGH); req->ooc_priority = htole32(IWM_SCAN_PRIORITY_HIGH); req->n_channels = iwm_umac_scan_fill_channels(sc, (struct iwm_scan_channel_cfg_umac *)req->data, ic->ic_des_esslen != 0); req->general_flags = htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASS_ALL | IWM_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE | IWM_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL); tail = (struct iwm_scan_req_umac_tail *)(req->data + sizeof(struct iwm_scan_channel_cfg_umac) * sc->sc_capa_n_scan_channels); /* Check if we're doing an active directed scan. */ if (ic->ic_des_esslen != 0) { tail->direct_scan[0].id = IEEE80211_ELEMID_SSID; tail->direct_scan[0].len = ic->ic_des_esslen; memcpy(tail->direct_scan[0].ssid, ic->ic_des_essid, ic->ic_des_esslen); req->general_flags |= htole32(IWM_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT); } else req->general_flags |= htole32(IWM_UMAC_SCAN_GEN_FLAGS_PASSIVE); if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT)) req->general_flags |= htole32(IWM_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED); err = iwm_fill_probe_req(sc, &tail->preq); if (err) { kmem_free(req, req_len); return err; } /* Specify the scan plan: We'll do one iteration. */ tail->schedule[0].interval = 0; tail->schedule[0].iter_count = 1; err = iwm_send_cmd(sc, &hcmd); kmem_free(req, req_len); return err; } static uint8_t iwm_ridx2rate(struct ieee80211_rateset *rs, int ridx) { int i; uint8_t rval; for (i = 0; i < rs->rs_nrates; i++) { rval = (rs->rs_rates[i] & IEEE80211_RATE_VAL); if (rval == iwm_rates[ridx].rate) return rs->rs_rates[i]; } return 0; } static void iwm_ack_rates(struct iwm_softc *sc, struct iwm_node *in, int *cck_rates, int *ofdm_rates) { struct ieee80211_node *ni = &in->in_ni; struct ieee80211_rateset *rs = &ni->ni_rates; int lowest_present_ofdm = -1; int lowest_present_cck = -1; uint8_t cck = 0; uint8_t ofdm = 0; int i; if (ni->ni_chan == IEEE80211_CHAN_ANYC || IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) { for (i = IWM_FIRST_CCK_RATE; i < IWM_FIRST_OFDM_RATE; i++) { if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0) continue; cck |= (1 << i); if (lowest_present_cck == -1 || lowest_present_cck > i) lowest_present_cck = i; } } for (i = IWM_FIRST_OFDM_RATE; i <= IWM_LAST_NON_HT_RATE; i++) { if ((iwm_ridx2rate(rs, i) & IEEE80211_RATE_BASIC) == 0) continue; ofdm |= (1 << (i - IWM_FIRST_OFDM_RATE)); if (lowest_present_ofdm == -1 || lowest_present_ofdm > i) lowest_present_ofdm = i; } /* * Now we've got the basic rates as bitmaps in the ofdm and cck * variables. This isn't sufficient though, as there might not * be all the right rates in the bitmap. E.g. if the only basic * rates are 5.5 Mbps and 11 Mbps, we still need to add 1 Mbps * and 6 Mbps because the 802.11-2007 standard says in 9.6: * * [...] a STA responding to a received frame shall transmit * its Control Response frame [...] at the highest rate in the * BSSBasicRateSet parameter that is less than or equal to the * rate of the immediately previous frame in the frame exchange * sequence ([...]) and that is of the same modulation class * ([...]) as the received frame. If no rate contained in the * BSSBasicRateSet parameter meets these conditions, then the * control frame sent in response to a received frame shall be * transmitted at the highest mandatory rate of the PHY that is * less than or equal to the rate of the received frame, and * that is of the same modulation class as the received frame. * * As a consequence, we need to add all mandatory rates that are * lower than all of the basic rates to these bitmaps. */ if (IWM_RATE_24M_INDEX < lowest_present_ofdm) ofdm |= IWM_RATE_BIT_MSK(24) >> IWM_FIRST_OFDM_RATE; if (IWM_RATE_12M_INDEX < lowest_present_ofdm) ofdm |= IWM_RATE_BIT_MSK(12) >> IWM_FIRST_OFDM_RATE; /* 6M already there or needed so always add */ ofdm |= IWM_RATE_BIT_MSK(6) >> IWM_FIRST_OFDM_RATE; /* * CCK is a bit more complex with DSSS vs. HR/DSSS vs. ERP. * Note, however: * - if no CCK rates are basic, it must be ERP since there must * be some basic rates at all, so they're OFDM => ERP PHY * (or we're in 5 GHz, and the cck bitmap will never be used) * - if 11M is a basic rate, it must be ERP as well, so add 5.5M * - if 5.5M is basic, 1M and 2M are mandatory * - if 2M is basic, 1M is mandatory * - if 1M is basic, that's the only valid ACK rate. * As a consequence, it's not as complicated as it sounds, just add * any lower rates to the ACK rate bitmap. */ if (IWM_RATE_11M_INDEX < lowest_present_cck) cck |= IWM_RATE_BIT_MSK(11) >> IWM_FIRST_CCK_RATE; if (IWM_RATE_5M_INDEX < lowest_present_cck) cck |= IWM_RATE_BIT_MSK(5) >> IWM_FIRST_CCK_RATE; if (IWM_RATE_2M_INDEX < lowest_present_cck) cck |= IWM_RATE_BIT_MSK(2) >> IWM_FIRST_CCK_RATE; /* 1M already there or needed so always add */ cck |= IWM_RATE_BIT_MSK(1) >> IWM_FIRST_CCK_RATE; *cck_rates = cck; *ofdm_rates = ofdm; } static void iwm_mac_ctxt_cmd_common(struct iwm_softc *sc, struct iwm_node *in, struct iwm_mac_ctx_cmd *cmd, uint32_t action, int assoc) { #define IWM_EXP2(x) ((1 << (x)) - 1) /* CWmin = 2^ECWmin - 1 */ struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; int cck_ack_rates, ofdm_ack_rates; int i; cmd->id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(in->in_id, in->in_color)); cmd->action = htole32(action); cmd->mac_type = htole32(IWM_FW_MAC_TYPE_BSS_STA); cmd->tsf_id = htole32(IWM_TSF_ID_A); IEEE80211_ADDR_COPY(cmd->node_addr, ic->ic_myaddr); IEEE80211_ADDR_COPY(cmd->bssid_addr, ni->ni_bssid); iwm_ack_rates(sc, in, &cck_ack_rates, &ofdm_ack_rates); cmd->cck_rates = htole32(cck_ack_rates); cmd->ofdm_rates = htole32(ofdm_ack_rates); cmd->cck_short_preamble = htole32((ic->ic_flags & IEEE80211_F_SHPREAMBLE) ? IWM_MAC_FLG_SHORT_PREAMBLE : 0); cmd->short_slot = htole32((ic->ic_flags & IEEE80211_F_SHSLOT) ? IWM_MAC_FLG_SHORT_SLOT : 0); for (i = 0; i < WME_NUM_AC; i++) { struct wmeParams *wmep = &ic->ic_wme.wme_params[i]; int txf = iwm_ac_to_tx_fifo[i]; cmd->ac[txf].cw_min = htole16(IWM_EXP2(wmep->wmep_logcwmin)); cmd->ac[txf].cw_max = htole16(IWM_EXP2(wmep->wmep_logcwmax)); cmd->ac[txf].aifsn = wmep->wmep_aifsn; cmd->ac[txf].fifos_mask = (1 << txf); cmd->ac[txf].edca_txop = htole16(wmep->wmep_txopLimit * 32); } if (ni->ni_flags & IEEE80211_NODE_QOS) cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_UPDATE_EDCA); #ifndef IEEE80211_NO_HT if (ni->ni_flags & IEEE80211_NODE_HT) { enum ieee80211_htprot htprot = (ni->ni_htop1 & IEEE80211_HTOP1_PROT_MASK); switch (htprot) { case IEEE80211_HTPROT_NONE: break; case IEEE80211_HTPROT_NONMEMBER: case IEEE80211_HTPROT_NONHT_MIXED: cmd->protection_flags |= htole32(IWM_MAC_PROT_FLG_HT_PROT); case IEEE80211_HTPROT_20MHZ: cmd->protection_flags |= htole32(IWM_MAC_PROT_FLG_HT_PROT | IWM_MAC_PROT_FLG_FAT_PROT); break; default: break; } cmd->qos_flags |= htole32(IWM_MAC_QOS_FLG_TGN); } #endif if (ic->ic_flags & IEEE80211_F_USEPROT) cmd->protection_flags |= htole32(IWM_MAC_PROT_FLG_TGG_PROTECT); cmd->filter_flags = htole32(IWM_MAC_FILTER_ACCEPT_GRP); #undef IWM_EXP2 } static void iwm_mac_ctxt_cmd_fill_sta(struct iwm_softc *sc, struct iwm_node *in, struct iwm_mac_data_sta *sta, int assoc) { struct ieee80211_node *ni = &in->in_ni; uint32_t dtim_off; uint64_t tsf; dtim_off = ni->ni_dtim_count * ni->ni_intval * IEEE80211_DUR_TU; tsf = le64toh(ni->ni_tstamp.tsf); sta->is_assoc = htole32(assoc); sta->dtim_time = htole32(ni->ni_rstamp + dtim_off); sta->dtim_tsf = htole64(tsf + dtim_off); sta->bi = htole32(ni->ni_intval); sta->bi_reciprocal = htole32(iwm_reciprocal(ni->ni_intval)); sta->dtim_interval = htole32(ni->ni_intval * ni->ni_dtim_period); sta->dtim_reciprocal = htole32(iwm_reciprocal(sta->dtim_interval)); sta->listen_interval = htole32(10); sta->assoc_id = htole32(ni->ni_associd); sta->assoc_beacon_arrive_time = htole32(ni->ni_rstamp); } static int iwm_mac_ctxt_cmd(struct iwm_softc *sc, struct iwm_node *in, uint32_t action, int assoc) { struct ieee80211_node *ni = &in->in_ni; struct iwm_mac_ctx_cmd cmd; memset(&cmd, 0, sizeof(cmd)); iwm_mac_ctxt_cmd_common(sc, in, &cmd, action, assoc); /* Allow beacons to pass through as long as we are not associated or we * do not have dtim period information */ if (!assoc || !ni->ni_associd || !ni->ni_dtim_period) cmd.filter_flags |= htole32(IWM_MAC_FILTER_IN_BEACON); else iwm_mac_ctxt_cmd_fill_sta(sc, in, &cmd.sta, assoc); return iwm_send_cmd_pdu(sc, IWM_MAC_CONTEXT_CMD, 0, sizeof(cmd), &cmd); } #define IWM_MISSED_BEACONS_THRESHOLD 8 static void iwm_rx_missed_beacons_notif(struct iwm_softc *sc, struct iwm_rx_packet *pkt, struct iwm_rx_data *data) { struct iwm_missed_beacons_notif *mb = (void *)pkt->data; int s; DPRINTF(("missed bcn mac_id=%u, consecutive=%u (%u, %u, %u)\n", le32toh(mb->mac_id), le32toh(mb->consec_missed_beacons), le32toh(mb->consec_missed_beacons_since_last_rx), le32toh(mb->num_recvd_beacons), le32toh(mb->num_expected_beacons))); /* * TODO: the threshold should be adjusted based on latency conditions, * and/or in case of a CS flow on one of the other AP vifs. */ if (le32toh(mb->consec_missed_beacons_since_last_rx) > IWM_MISSED_BEACONS_THRESHOLD) { s = splnet(); ieee80211_beacon_miss(&sc->sc_ic); splx(s); } } static int iwm_update_quotas(struct iwm_softc *sc, struct iwm_node *in) { struct iwm_time_quota_cmd cmd; int i, idx, num_active_macs, quota, quota_rem; int colors[IWM_MAX_BINDINGS] = { -1, -1, -1, -1, }; int n_ifs[IWM_MAX_BINDINGS] = {0, }; uint16_t id; memset(&cmd, 0, sizeof(cmd)); /* currently, PHY ID == binding ID */ if (in) { id = in->in_phyctxt->id; KASSERT(id < IWM_MAX_BINDINGS); colors[id] = in->in_phyctxt->color; if (1) n_ifs[id] = 1; } /* * The FW's scheduling session consists of * IWM_MAX_QUOTA fragments. Divide these fragments * equally between all the bindings that require quota */ num_active_macs = 0; for (i = 0; i < IWM_MAX_BINDINGS; i++) { cmd.quotas[i].id_and_color = htole32(IWM_FW_CTXT_INVALID); num_active_macs += n_ifs[i]; } quota = 0; quota_rem = 0; if (num_active_macs) { quota = IWM_MAX_QUOTA / num_active_macs; quota_rem = IWM_MAX_QUOTA % num_active_macs; } for (idx = 0, i = 0; i < IWM_MAX_BINDINGS; i++) { if (colors[i] < 0) continue; cmd.quotas[idx].id_and_color = htole32(IWM_FW_CMD_ID_AND_COLOR(i, colors[i])); if (n_ifs[i] <= 0) { cmd.quotas[idx].quota = htole32(0); cmd.quotas[idx].max_duration = htole32(0); } else { cmd.quotas[idx].quota = htole32(quota * n_ifs[i]); cmd.quotas[idx].max_duration = htole32(0); } idx++; } /* Give the remainder of the session to the first binding */ cmd.quotas[0].quota = htole32(le32toh(cmd.quotas[0].quota) + quota_rem); return iwm_send_cmd_pdu(sc, IWM_TIME_QUOTA_CMD, 0, sizeof(cmd), &cmd); } static int iwm_auth(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_node *in = (struct iwm_node *)ic->ic_bss; uint32_t duration; int err; err = iwm_sf_config(sc, IWM_SF_FULL_ON); if (err) return err; err = iwm_allow_mcast(sc); if (err) return err; sc->sc_phyctxt[0].channel = in->in_ni.ni_chan; err = iwm_phy_ctxt_cmd(sc, &sc->sc_phyctxt[0], 1, 1, IWM_FW_CTXT_ACTION_MODIFY, 0); if (err) return err; in->in_phyctxt = &sc->sc_phyctxt[0]; err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD, 0); if (err) { aprint_error_dev(sc->sc_dev, "could not add MAC context (error %d)\n", err); return err; } err = iwm_binding_cmd(sc, in, IWM_FW_CTXT_ACTION_ADD); if (err) return err; err = iwm_add_sta_cmd(sc, in, 0); if (err) return err; err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 0); if (err) { aprint_error_dev(sc->sc_dev, "failed to update MAC\n"); return err; } /* * Prevent the FW from wandering off channel during association * by "protecting" the session with a time event. */ if (in->in_ni.ni_intval) duration = in->in_ni.ni_intval * 2; else duration = IEEE80211_DUR_TU; iwm_protect_session(sc, in, duration, in->in_ni.ni_intval / 2); DELAY(100); return 0; } static int iwm_assoc(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_node *in = (struct iwm_node *)ic->ic_bss; int err; err = iwm_add_sta_cmd(sc, in, 1); if (err) return err; return 0; } static struct ieee80211_node * iwm_node_alloc(struct ieee80211_node_table *nt) { return malloc(sizeof(struct iwm_node), M_80211_NODE, M_NOWAIT | M_ZERO); } static void iwm_calib_timeout(void *arg) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct iwm_node *in = (struct iwm_node *)ic->ic_bss; #ifndef IEEE80211_NO_HT struct ieee80211_node *ni = &in->in_ni; int otxrate; #endif int s; s = splnet(); if ((ic->ic_fixed_rate == -1 #ifndef IEEE80211_NO_HT || ic->ic_fixed_mcs == -1 #endif ) && ic->ic_opmode == IEEE80211_M_STA && ic->ic_bss) { #ifndef IEEE80211_NO_HT if (ni->ni_flags & IEEE80211_NODE_HT) otxrate = ni->ni_txmcs; else otxrate = ni->ni_txrate; #endif ieee80211_amrr_choose(&sc->sc_amrr, &in->in_ni, &in->in_amn); #ifndef IEEE80211_NO_HT /* * If AMRR has chosen a new TX rate we must update * the firwmare's LQ rate table from process context. */ if ((ni->ni_flags & IEEE80211_NODE_HT) && otxrate != ni->ni_txmcs) softint_schedule(sc->setrates_task); else if (otxrate != ni->ni_txrate) softint_schedule(sc->setrates_task); #endif } splx(s); callout_schedule(&sc->sc_calib_to, mstohz(500)); } #ifndef IEEE80211_NO_HT static void iwm_setrates_task(void *arg) { struct iwm_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; struct iwm_node *in = (struct iwm_node *)ic->ic_bss; /* Update rates table based on new TX rate determined by AMRR. */ iwm_setrates(in); } static int iwm_setrates(struct iwm_node *in) { struct ieee80211_node *ni = &in->in_ni; struct ieee80211com *ic = ni->ni_ic; struct iwm_softc *sc = IC2IFP(ic)->if_softc; struct iwm_lq_cmd *lq = &in->in_lq; struct ieee80211_rateset *rs = &ni->ni_rates; int i, j, ridx, ridx_min, tab = 0; #ifndef IEEE80211_NO_HT int sgi_ok; #endif struct iwm_host_cmd cmd = { .id = IWM_LQ_CMD, .len = { sizeof(in->in_lq), }, }; memset(lq, 0, sizeof(*lq)); lq->sta_id = IWM_STATION_ID; if (ic->ic_flags & IEEE80211_F_USEPROT) lq->flags |= IWM_LQ_FLAG_USE_RTS_MSK; #ifndef IEEE80211_NO_HT sgi_ok = ((ni->ni_flags & IEEE80211_NODE_HT) && (ni->ni_htcaps & IEEE80211_HTCAP_SGI20)); #endif /* * Fill the LQ rate selection table with legacy and/or HT rates * in descending order, i.e. with the node's current TX rate first. * In cases where throughput of an HT rate corresponds to a legacy * rate it makes no sense to add both. We rely on the fact that * iwm_rates is laid out such that equivalent HT/legacy rates share * the same IWM_RATE_*_INDEX value. Also, rates not applicable to * legacy/HT are assumed to be marked with an 'invalid' PLCP value. */ j = 0; ridx_min = (IEEE80211_IS_CHAN_5GHZ(ni->ni_chan)) ? IWM_RIDX_OFDM : IWM_RIDX_CCK; for (ridx = IWM_RIDX_MAX; ridx >= ridx_min; ridx--) { if (j >= __arraycount(lq->rs_table)) break; tab = 0; #ifndef IEEE80211_NO_HT if ((ni->ni_flags & IEEE80211_NODE_HT) && iwm_rates[ridx].ht_plcp != IWM_RATE_HT_SISO_MCS_INV_PLCP) { for (i = ni->ni_txmcs; i >= 0; i--) { if (isclr(ni->ni_rxmcs, i)) continue; if (ridx == iwm_mcs2ridx[i]) { tab = iwm_rates[ridx].ht_plcp; tab |= IWM_RATE_MCS_HT_MSK; if (sgi_ok) tab |= IWM_RATE_MCS_SGI_MSK; break; } } } #endif if (tab == 0 && iwm_rates[ridx].plcp != IWM_RATE_INVM_PLCP) { for (i = ni->ni_txrate; i >= 0; i--) { if (iwm_rates[ridx].rate == (rs->rs_rates[i] & IEEE80211_RATE_VAL)) { tab = iwm_rates[ridx].plcp; break; } } } if (tab == 0) continue; tab |= 1 << IWM_RATE_MCS_ANT_POS; if (IWM_RIDX_IS_CCK(ridx)) tab |= IWM_RATE_MCS_CCK_MSK; DPRINTFN(2, ("station rate %d %x\n", i, tab)); lq->rs_table[j++] = htole32(tab); } /* Fill the rest with the lowest possible rate */ i = j > 0 ? j - 1 : 0; while (j < __arraycount(lq->rs_table)) lq->rs_table[j++] = lq->rs_table[i]; lq->single_stream_ant_msk = IWM_ANT_A; lq->dual_stream_ant_msk = IWM_ANT_AB; lq->agg_time_limit = htole16(4000); /* 4ms */ lq->agg_disable_start_th = 3; #ifdef notyet lq->agg_frame_cnt_limit = 0x3f; #else lq->agg_frame_cnt_limit = 1; /* tx agg disabled */ #endif cmd.data[0] = &in->in_lq; return iwm_send_cmd(sc, &cmd); } #endif static int iwm_media_change(struct ifnet *ifp) { struct iwm_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; uint8_t rate, ridx; int err; err = ieee80211_media_change(ifp); if (err != ENETRESET) return err; #ifndef IEEE80211_NO_HT if (ic->ic_fixed_mcs != -1) sc->sc_fixed_ridx = iwm_mcs2ridx[ic->ic_fixed_mcs]; else #endif if (ic->ic_fixed_rate != -1) { rate = ic->ic_sup_rates[ic->ic_curmode]. rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL; /* Map 802.11 rate to HW rate index. */ for (ridx = 0; ridx <= IWM_RIDX_MAX; ridx++) if (iwm_rates[ridx].rate == rate) break; sc->sc_fixed_ridx = ridx; } if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { iwm_stop(ifp, 0); err = iwm_init(ifp); } return err; } static int iwm_do_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = IC2IFP(ic); struct iwm_softc *sc = ifp->if_softc; enum ieee80211_state ostate = ic->ic_state; struct iwm_node *in; int err; DPRINTF(("switching state %s->%s\n", ieee80211_state_name[ostate], ieee80211_state_name[nstate])); if (ostate == IEEE80211_S_SCAN && nstate != ostate) iwm_led_blink_stop(sc); if (ostate == IEEE80211_S_RUN && nstate != ostate) iwm_disable_beacon_filter(sc); /* Reset the device if moving out of AUTH, ASSOC, or RUN. */ /* XXX Is there a way to switch states without a full reset? */ if (ostate > IEEE80211_S_SCAN && nstate < ostate) { /* * Upon receiving a deauth frame from AP the net80211 stack * puts the driver into AUTH state. This will fail with this * driver so bring the FSM from RUN to SCAN in this case. */ if (nstate != IEEE80211_S_INIT) { DPRINTF(("Force transition to INIT; MGT=%d\n", arg)); /* Always pass arg as -1 since we can't Tx right now. */ sc->sc_newstate(ic, IEEE80211_S_INIT, -1); iwm_stop(ifp, 0); iwm_init(ifp); return 0; } iwm_stop_device(sc); iwm_init_hw(sc); } switch (nstate) { case IEEE80211_S_INIT: break; case IEEE80211_S_SCAN: if (ostate == nstate && ISSET(sc->sc_flags, IWM_FLAG_SCANNING)) return 0; if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) err = iwm_umac_scan(sc); else err = iwm_lmac_scan(sc); if (err) { DPRINTF(("%s: could not initiate scan: %d\n", DEVNAME(sc), err)); return err; } SET(sc->sc_flags, IWM_FLAG_SCANNING); ic->ic_state = nstate; iwm_led_blink_start(sc); return 0; case IEEE80211_S_AUTH: err = iwm_auth(sc); if (err) { DPRINTF(("%s: could not move to auth state: %d\n", DEVNAME(sc), err)); return err; } break; case IEEE80211_S_ASSOC: err = iwm_assoc(sc); if (err) { DPRINTF(("%s: failed to associate: %d\n", DEVNAME(sc), err)); return err; } break; case IEEE80211_S_RUN: in = (struct iwm_node *)ic->ic_bss; /* We have now been assigned an associd by the AP. */ err = iwm_mac_ctxt_cmd(sc, in, IWM_FW_CTXT_ACTION_MODIFY, 1); if (err) { aprint_error_dev(sc->sc_dev, "failed to update MAC\n"); return err; } err = iwm_power_update_device(sc); if (err) { aprint_error_dev(sc->sc_dev, "could send power command (error %d)\n", err); return err; } #ifdef notyet /* * Disabled for now. Default beacon filter settings * prevent net80211 from getting ERP and HT protection * updates from beacons. */ err = iwm_enable_beacon_filter(sc, in); if (err) { aprint_error_dev(sc->sc_dev, "could not enable beacon filter\n"); return err; } #endif err = iwm_power_mac_update_mode(sc, in); if (err) { aprint_error_dev(sc->sc_dev, "could not update MAC power (error %d)\n", err); return err; } err = iwm_update_quotas(sc, in); if (err) { aprint_error_dev(sc->sc_dev, "could not update quotas (error %d)\n", err); return err; } ieee80211_amrr_node_init(&sc->sc_amrr, &in->in_amn); /* Start at lowest available bit-rate, AMRR will raise. */ in->in_ni.ni_txrate = 0; #ifndef IEEE80211_NO_HT in->in_ni.ni_txmcs = 0; iwm_setrates(in); #endif callout_schedule(&sc->sc_calib_to, mstohz(500)); iwm_led_enable(sc); break; default: break; } return sc->sc_newstate(ic, nstate, arg); } static void iwm_newstate_cb(struct work *wk, void *v) { struct iwm_softc *sc = v; struct ieee80211com *ic = &sc->sc_ic; struct iwm_newstate_state *iwmns = (struct iwm_newstate_state *)wk; enum ieee80211_state nstate = iwmns->ns_nstate; int generation = iwmns->ns_generation; int arg = iwmns->ns_arg; int s; kmem_free(iwmns, sizeof(*iwmns)); s = splnet(); DPRINTF(("Prepare to switch state %d->%d\n", ic->ic_state, nstate)); if (sc->sc_generation != generation) { DPRINTF(("newstate_cb: someone pulled the plug meanwhile\n")); if (nstate == IEEE80211_S_INIT) { DPRINTF(("newstate_cb: nstate == IEEE80211_S_INIT: " "calling sc_newstate()\n")); (void) sc->sc_newstate(ic, nstate, arg); } } else (void) iwm_do_newstate(ic, nstate, arg); splx(s); } static int iwm_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct iwm_newstate_state *iwmns; struct ifnet *ifp = IC2IFP(ic); struct iwm_softc *sc = ifp->if_softc; callout_stop(&sc->sc_calib_to); iwmns = kmem_intr_alloc(sizeof(*iwmns), KM_NOSLEEP); if (!iwmns) { DPRINTF(("%s: allocating state cb mem failed\n", DEVNAME(sc))); return ENOMEM; } iwmns->ns_nstate = nstate; iwmns->ns_arg = arg; iwmns->ns_generation = sc->sc_generation; workqueue_enqueue(sc->sc_nswq, &iwmns->ns_wk, NULL); return 0; } static void iwm_endscan(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int s; DPRINTF(("%s: scan ended\n", DEVNAME(sc))); s = splnet(); if (ic->ic_state == IEEE80211_S_SCAN) ieee80211_end_scan(ic); splx(s); } /* * Aging and idle timeouts for the different possible scenarios * in default configuration */ static const uint32_t iwm_sf_full_timeout_def[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = { { htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER_DEF), htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER_DEF) }, { htole32(IWM_SF_AGG_UNICAST_AGING_TIMER_DEF), htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER_DEF) }, { htole32(IWM_SF_MCAST_AGING_TIMER_DEF), htole32(IWM_SF_MCAST_IDLE_TIMER_DEF) }, { htole32(IWM_SF_BA_AGING_TIMER_DEF), htole32(IWM_SF_BA_IDLE_TIMER_DEF) }, { htole32(IWM_SF_TX_RE_AGING_TIMER_DEF), htole32(IWM_SF_TX_RE_IDLE_TIMER_DEF) }, }; /* * Aging and idle timeouts for the different possible scenarios * in single BSS MAC configuration. */ static const uint32_t iwm_sf_full_timeout[IWM_SF_NUM_SCENARIO][IWM_SF_NUM_TIMEOUT_TYPES] = { { htole32(IWM_SF_SINGLE_UNICAST_AGING_TIMER), htole32(IWM_SF_SINGLE_UNICAST_IDLE_TIMER) }, { htole32(IWM_SF_AGG_UNICAST_AGING_TIMER), htole32(IWM_SF_AGG_UNICAST_IDLE_TIMER) }, { htole32(IWM_SF_MCAST_AGING_TIMER), htole32(IWM_SF_MCAST_IDLE_TIMER) }, { htole32(IWM_SF_BA_AGING_TIMER), htole32(IWM_SF_BA_IDLE_TIMER) }, { htole32(IWM_SF_TX_RE_AGING_TIMER), htole32(IWM_SF_TX_RE_IDLE_TIMER) }, }; static void iwm_fill_sf_command(struct iwm_softc *sc, struct iwm_sf_cfg_cmd *sf_cmd, struct ieee80211_node *ni) { int i, j, watermark; sf_cmd->watermark[IWM_SF_LONG_DELAY_ON] = htole32(IWM_SF_W_MARK_SCAN); /* * If we are in association flow - check antenna configuration * capabilities of the AP station, and choose the watermark accordingly. */ if (ni) { #ifndef IEEE80211_NO_HT if (ni->ni_flags & IEEE80211_NODE_HT) { #ifdef notyet if (ni->ni_rxmcs[2] != 0) watermark = IWM_SF_W_MARK_MIMO3; else if (ni->ni_rxmcs[1] != 0) watermark = IWM_SF_W_MARK_MIMO2; else #endif watermark = IWM_SF_W_MARK_SISO; } else #endif watermark = IWM_SF_W_MARK_LEGACY; /* default watermark value for unassociated mode. */ } else { watermark = IWM_SF_W_MARK_MIMO2; } sf_cmd->watermark[IWM_SF_FULL_ON] = htole32(watermark); for (i = 0; i < IWM_SF_NUM_SCENARIO; i++) { for (j = 0; j < IWM_SF_NUM_TIMEOUT_TYPES; j++) { sf_cmd->long_delay_timeouts[i][j] = htole32(IWM_SF_LONG_DELAY_AGING_TIMER); } } if (ni) { memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout, sizeof(iwm_sf_full_timeout)); } else { memcpy(sf_cmd->full_on_timeouts, iwm_sf_full_timeout_def, sizeof(iwm_sf_full_timeout_def)); } } static int iwm_sf_config(struct iwm_softc *sc, int new_state) { struct ieee80211com *ic = &sc->sc_ic; struct iwm_sf_cfg_cmd sf_cmd = { .state = htole32(IWM_SF_FULL_ON), }; if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) sf_cmd.state |= htole32(IWM_SF_CFG_DUMMY_NOTIF_OFF); switch (new_state) { case IWM_SF_UNINIT: case IWM_SF_INIT_OFF: iwm_fill_sf_command(sc, &sf_cmd, NULL); break; case IWM_SF_FULL_ON: iwm_fill_sf_command(sc, &sf_cmd, ic->ic_bss); break; default: return EINVAL; } return iwm_send_cmd_pdu(sc, IWM_REPLY_SF_CFG_CMD, IWM_CMD_ASYNC, sizeof(sf_cmd), &sf_cmd); } static int iwm_send_bt_init_conf(struct iwm_softc *sc) { struct iwm_bt_coex_cmd bt_cmd; bt_cmd.mode = htole32(IWM_BT_COEX_WIFI); bt_cmd.enabled_modules = htole32(IWM_BT_COEX_HIGH_BAND_RET); return iwm_send_cmd_pdu(sc, IWM_BT_CONFIG, 0, sizeof(bt_cmd), &bt_cmd); } static bool iwm_is_lar_supported(struct iwm_softc *sc) { bool nvm_lar = sc->sc_nvm.lar_enabled; bool tlv_lar = isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT); if (iwm_lar_disable) return false; /* * Enable LAR only if it is supported by the FW (TLV) && * enabled in the NVM */ if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) return nvm_lar && tlv_lar; else return tlv_lar; } static int iwm_send_update_mcc_cmd(struct iwm_softc *sc, const char *alpha2) { struct iwm_mcc_update_cmd mcc_cmd; struct iwm_host_cmd hcmd = { .id = IWM_MCC_UPDATE_CMD, .flags = IWM_CMD_WANT_SKB, .data = { &mcc_cmd }, }; int err; int resp_v2 = isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_SUPPORT_V2); if (!iwm_is_lar_supported(sc)) { DPRINTF(("%s: no LAR support\n", __func__)); return 0; } memset(&mcc_cmd, 0, sizeof(mcc_cmd)); mcc_cmd.mcc = htole16(alpha2[0] << 8 | alpha2[1]); if (isset(sc->sc_ucode_api, IWM_UCODE_TLV_API_WIFI_MCC_UPDATE) || isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_LAR_MULTI_MCC)) mcc_cmd.source_id = IWM_MCC_SOURCE_GET_CURRENT; else mcc_cmd.source_id = IWM_MCC_SOURCE_OLD_FW; if (resp_v2) hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd); else hcmd.len[0] = sizeof(struct iwm_mcc_update_cmd_v1); err = iwm_send_cmd(sc, &hcmd); if (err) return err; iwm_free_resp(sc, &hcmd); return 0; } static void iwm_tt_tx_backoff(struct iwm_softc *sc, uint32_t backoff) { struct iwm_host_cmd cmd = { .id = IWM_REPLY_THERMAL_MNG_BACKOFF, .len = { sizeof(uint32_t), }, .data = { &backoff, }, }; iwm_send_cmd(sc, &cmd); } static int iwm_init_hw(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int err, i, ac; err = iwm_preinit(sc); if (err) return err; err = iwm_start_hw(sc); if (err) { aprint_error_dev(sc->sc_dev, "could not initialize hardware\n"); return err; } err = iwm_run_init_mvm_ucode(sc, 0); if (err) return err; /* Should stop and start HW since INIT image just loaded. */ iwm_stop_device(sc); err = iwm_start_hw(sc); if (err) { aprint_error_dev(sc->sc_dev, "could not initialize hardware\n"); return err; } /* Restart, this time with the regular firmware */ err = iwm_load_ucode_wait_alive(sc, IWM_UCODE_TYPE_REGULAR); if (err) { aprint_error_dev(sc->sc_dev, "could not load firmware (error %d)\n", err); goto err; } err = iwm_send_bt_init_conf(sc); if (err) { aprint_error_dev(sc->sc_dev, "could not init bt coex (error %d)\n", err); goto err; } err = iwm_send_tx_ant_cfg(sc, iwm_fw_valid_tx_ant(sc)); if (err) { aprint_error_dev(sc->sc_dev, "could not init tx ant config (error %d)\n", err); goto err; } /* Send phy db control command and then phy db calibration*/ err = iwm_send_phy_db_data(sc); if (err) { aprint_error_dev(sc->sc_dev, "could not init phy db (error %d)\n", err); goto err; } err = iwm_send_phy_cfg_cmd(sc); if (err) { aprint_error_dev(sc->sc_dev, "could not send phy config (error %d)\n", err); goto err; } /* Add auxiliary station for scanning */ err = iwm_add_aux_sta(sc); if (err) { aprint_error_dev(sc->sc_dev, "could not add aux station (error %d)\n", err); goto err; } for (i = 0; i < IWM_NUM_PHY_CTX; i++) { /* * The channel used here isn't relevant as it's * going to be overwritten in the other flows. * For now use the first channel we have. */ sc->sc_phyctxt[i].channel = &ic->ic_channels[1]; err = iwm_phy_ctxt_cmd(sc, &sc->sc_phyctxt[i], 1, 1, IWM_FW_CTXT_ACTION_ADD, 0); if (err) { aprint_error_dev(sc->sc_dev, "could not add phy context %d (error %d)\n", i, err); goto err; } } /* Initialize tx backoffs to the minimum. */ if (sc->sc_device_family == IWM_DEVICE_FAMILY_7000) iwm_tt_tx_backoff(sc, 0); err = iwm_power_update_device(sc); if (err) { aprint_error_dev(sc->sc_dev, "could send power command (error %d)\n", err); goto err; } err = iwm_send_update_mcc_cmd(sc, iwm_default_mcc); if (err) { aprint_error_dev(sc->sc_dev, "could not init LAR (error %d)\n", err); goto err; } if (isset(sc->sc_enabled_capa, IWM_UCODE_TLV_CAPA_UMAC_SCAN)) { err = iwm_config_umac_scan(sc); if (err) { aprint_error_dev(sc->sc_dev, "could not configure scan (error %d)\n", err); goto err; } } for (ac = 0; ac < WME_NUM_AC; ac++) { err = iwm_enable_txq(sc, IWM_STATION_ID, ac, iwm_ac_to_tx_fifo[ac]); if (err) { aprint_error_dev(sc->sc_dev, "could not enable Tx queue %d (error %d)\n", i, err); goto err; } } err = iwm_disable_beacon_filter(sc); if (err) { aprint_error_dev(sc->sc_dev, "could not disable beacon filter (error %d)\n", err); goto err; } return 0; err: iwm_stop_device(sc); return err; } /* Allow multicast from our BSSID. */ static int iwm_allow_mcast(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct iwm_mcast_filter_cmd *cmd; size_t size; int err; size = roundup(sizeof(*cmd), 4); cmd = kmem_intr_zalloc(size, KM_NOSLEEP); if (cmd == NULL) return ENOMEM; cmd->filter_own = 1; cmd->port_id = 0; cmd->count = 0; cmd->pass_all = 1; IEEE80211_ADDR_COPY(cmd->bssid, ni->ni_bssid); err = iwm_send_cmd_pdu(sc, IWM_MCAST_FILTER_CMD, 0, size, cmd); kmem_intr_free(cmd, size); return err; } static int iwm_init(struct ifnet *ifp) { struct iwm_softc *sc = ifp->if_softc; int err; if (ISSET(sc->sc_flags, IWM_FLAG_HW_INITED)) return 0; sc->sc_generation++; sc->sc_flags &= ~IWM_FLAG_STOPPED; err = iwm_init_hw(sc); if (err) { iwm_stop(ifp, 1); return err; } ifp->if_flags &= ~IFF_OACTIVE; ifp->if_flags |= IFF_RUNNING; ieee80211_begin_scan(&sc->sc_ic, 0); SET(sc->sc_flags, IWM_FLAG_HW_INITED); return 0; } static void iwm_start(struct ifnet *ifp) { struct iwm_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni; struct ether_header *eh; struct mbuf *m; int ac; if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING) return; for (;;) { /* why isn't this done per-queue? */ if (sc->qfullmsk != 0) { ifp->if_flags |= IFF_OACTIVE; break; } /* need to send management frames even if we're not RUNning */ IF_DEQUEUE(&ic->ic_mgtq, m); if (m) { ni = M_GETCTX(m, struct ieee80211_node *); M_CLEARCTX(m); ac = WME_AC_BE; goto sendit; } if (ic->ic_state != IEEE80211_S_RUN) { break; } IFQ_DEQUEUE(&ifp->if_snd, m); if (m == NULL) break; if (m->m_len < sizeof (*eh) && (m = m_pullup(m, sizeof (*eh))) == NULL) { ifp->if_oerrors++; continue; } eh = mtod(m, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { m_freem(m); ifp->if_oerrors++; continue; } /* classify mbuf so we can find which tx ring to use */ if (ieee80211_classify(ic, m, ni) != 0) { m_freem(m); ieee80211_free_node(ni); ifp->if_oerrors++; continue; } /* No QoS encapsulation for EAPOL frames. */ ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ? M_WME_GETAC(m) : WME_AC_BE; bpf_mtap(ifp, m); if ((m = ieee80211_encap(ic, m, ni)) == NULL) { ieee80211_free_node(ni); ifp->if_oerrors++; continue; } sendit: bpf_mtap3(ic->ic_rawbpf, m); if (iwm_tx(sc, m, ni, ac) != 0) { ieee80211_free_node(ni); ifp->if_oerrors++; continue; } if (ifp->if_flags & IFF_UP) { sc->sc_tx_timer = 15; ifp->if_timer = 1; } } } static void iwm_stop(struct ifnet *ifp, int disable) { struct iwm_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct iwm_node *in = (struct iwm_node *)ic->ic_bss; sc->sc_flags &= ~IWM_FLAG_HW_INITED; sc->sc_flags |= IWM_FLAG_STOPPED; sc->sc_generation++; ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE); if (in) in->in_phyctxt = NULL; if (ic->ic_state != IEEE80211_S_INIT) ieee80211_new_state(ic, IEEE80211_S_INIT, -1); callout_stop(&sc->sc_calib_to); iwm_led_blink_stop(sc); ifp->if_timer = sc->sc_tx_timer = 0; iwm_stop_device(sc); } static void iwm_watchdog(struct ifnet *ifp) { struct iwm_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (sc->sc_tx_timer > 0) { if (--sc->sc_tx_timer == 0) { aprint_error_dev(sc->sc_dev, "device timeout\n"); #ifdef IWM_DEBUG iwm_nic_error(sc); #endif ifp->if_flags &= ~IFF_UP; iwm_stop(ifp, 1); ifp->if_oerrors++; return; } ifp->if_timer = 1; } ieee80211_watchdog(&sc->sc_ic); } static int iwm_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct iwm_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; const struct sockaddr *sa; int s, err = 0; s = splnet(); switch (cmd) { case SIOCSIFADDR: ifp->if_flags |= IFF_UP; /* FALLTHROUGH */ case SIOCSIFFLAGS: err = ifioctl_common(ifp, cmd, data); if (err) break; if (ifp->if_flags & IFF_UP) { if (!(ifp->if_flags & IFF_RUNNING)) { err = iwm_init(ifp); if (err) ifp->if_flags &= ~IFF_UP; } } else { if (ifp->if_flags & IFF_RUNNING) iwm_stop(ifp, 1); } break; case SIOCADDMULTI: case SIOCDELMULTI: if (!ISSET(sc->sc_flags, IWM_FLAG_ATTACHED)) { err = ENXIO; break; } sa = ifreq_getaddr(SIOCADDMULTI, (struct ifreq *)data); err = (cmd == SIOCADDMULTI) ? ether_addmulti(sa, &sc->sc_ec) : ether_delmulti(sa, &sc->sc_ec); if (err == ENETRESET) err = 0; break; default: if (!ISSET(sc->sc_flags, IWM_FLAG_ATTACHED)) { err = ether_ioctl(ifp, cmd, data); break; } err = ieee80211_ioctl(ic, cmd, data); break; } if (err == ENETRESET) { err = 0; if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) { iwm_stop(ifp, 0); err = iwm_init(ifp); } } splx(s); return err; } /* * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with uint32_t-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwm_error_event_table { uint32_t valid; /* (nonzero) valid, (0) log is empty */ uint32_t error_id; /* type of error */ uint32_t trm_hw_status0; /* TRM HW status */ uint32_t trm_hw_status1; /* TRM HW status */ uint32_t blink2; /* branch link */ uint32_t ilink1; /* interrupt link */ uint32_t ilink2; /* interrupt link */ uint32_t data1; /* error-specific data */ uint32_t data2; /* error-specific data */ uint32_t data3; /* error-specific data */ uint32_t bcon_time; /* beacon timer */ uint32_t tsf_low; /* network timestamp function timer */ uint32_t tsf_hi; /* network timestamp function timer */ uint32_t gp1; /* GP1 timer register */ uint32_t gp2; /* GP2 timer register */ uint32_t fw_rev_type; /* firmware revision type */ uint32_t major; /* uCode version major */ uint32_t minor; /* uCode version minor */ uint32_t hw_ver; /* HW Silicon version */ uint32_t brd_ver; /* HW board version */ uint32_t log_pc; /* log program counter */ uint32_t frame_ptr; /* frame pointer */ uint32_t stack_ptr; /* stack pointer */ uint32_t hcmd; /* last host command header */ uint32_t isr0; /* isr status register LMPM_NIC_ISR0: * rxtx_flag */ uint32_t isr1; /* isr status register LMPM_NIC_ISR1: * host_flag */ uint32_t isr2; /* isr status register LMPM_NIC_ISR2: * enc_flag */ uint32_t isr3; /* isr status register LMPM_NIC_ISR3: * time_flag */ uint32_t isr4; /* isr status register LMPM_NIC_ISR4: * wico interrupt */ uint32_t last_cmd_id; /* last HCMD id handled by the firmware */ uint32_t wait_event; /* wait event() caller address */ uint32_t l2p_control; /* L2pControlField */ uint32_t l2p_duration; /* L2pDurationField */ uint32_t l2p_mhvalid; /* L2pMhValidBits */ uint32_t l2p_addr_match; /* L2pAddrMatchStat */ uint32_t lmpm_pmg_sel; /* indicate which clocks are turned on * (LMPM_PMG_SEL) */ uint32_t u_timestamp; /* indicate when the date and time of the * compilation */ uint32_t flow_handler; /* FH read/write pointers, RX credit */ } __packed /* LOG_ERROR_TABLE_API_S_VER_3 */; /* * UMAC error struct - relevant starting from family 8000 chip. * Note: This structure is read from the device with IO accesses, * and the reading already does the endian conversion. As it is * read with u32-sized accesses, any members with a different size * need to be ordered correctly though! */ struct iwm_umac_error_event_table { uint32_t valid; /* (nonzero) valid, (0) log is empty */ uint32_t error_id; /* type of error */ uint32_t blink1; /* branch link */ uint32_t blink2; /* branch link */ uint32_t ilink1; /* interrupt link */ uint32_t ilink2; /* interrupt link */ uint32_t data1; /* error-specific data */ uint32_t data2; /* error-specific data */ uint32_t data3; /* error-specific data */ uint32_t umac_major; uint32_t umac_minor; uint32_t frame_pointer; /* core register 27 */ uint32_t stack_pointer; /* core register 28 */ uint32_t cmd_header; /* latest host cmd sent to UMAC */ uint32_t nic_isr_pref; /* ISR status register */ } __packed; #define ERROR_START_OFFSET (1 * sizeof(uint32_t)) #define ERROR_ELEM_SIZE (7 * sizeof(uint32_t)) #ifdef IWM_DEBUG static const struct { const char *name; uint8_t num; } advanced_lookup[] = { { "NMI_INTERRUPT_WDG", 0x34 }, { "SYSASSERT", 0x35 }, { "UCODE_VERSION_MISMATCH", 0x37 }, { "BAD_COMMAND", 0x38 }, { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C }, { "FATAL_ERROR", 0x3D }, { "NMI_TRM_HW_ERR", 0x46 }, { "NMI_INTERRUPT_TRM", 0x4C }, { "NMI_INTERRUPT_BREAK_POINT", 0x54 }, { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C }, { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 }, { "NMI_INTERRUPT_HOST", 0x66 }, { "NMI_INTERRUPT_ACTION_PT", 0x7C }, { "NMI_INTERRUPT_UNKNOWN", 0x84 }, { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 }, { "ADVANCED_SYSASSERT", 0 }, }; static const char * iwm_desc_lookup(uint32_t num) { int i; for (i = 0; i < __arraycount(advanced_lookup) - 1; i++) if (advanced_lookup[i].num == num) return advanced_lookup[i].name; /* No entry matches 'num', so it is the last: ADVANCED_SYSASSERT */ return advanced_lookup[i].name; } /* * Support for dumping the error log seemed like a good idea ... * but it's mostly hex junk and the only sensible thing is the * hw/ucode revision (which we know anyway). Since it's here, * I'll just leave it in, just in case e.g. the Intel guys want to * help us decipher some "ADVANCED_SYSASSERT" later. */ static void iwm_nic_error(struct iwm_softc *sc) { struct iwm_error_event_table t; uint32_t base; aprint_error_dev(sc->sc_dev, "dumping device error log\n"); base = sc->sc_uc.uc_error_event_table; if (base < 0x800000) { aprint_error_dev(sc->sc_dev, "Invalid error log pointer 0x%08x\n", base); return; } if (iwm_read_mem(sc, base, &t, sizeof(t)/sizeof(uint32_t))) { aprint_error_dev(sc->sc_dev, "reading errlog failed\n"); return; } if (!t.valid) { aprint_error_dev(sc->sc_dev, "errlog not found, skipping\n"); return; } if (ERROR_START_OFFSET <= t.valid * ERROR_ELEM_SIZE) { aprint_error_dev(sc->sc_dev, "Start Error Log Dump:\n"); aprint_error_dev(sc->sc_dev, "Status: 0x%x, count: %d\n", sc->sc_flags, t.valid); } aprint_error_dev(sc->sc_dev, "%08X | %-28s\n", t.error_id, iwm_desc_lookup(t.error_id)); aprint_error_dev(sc->sc_dev, "%08X | trm_hw_status0\n", t.trm_hw_status0); aprint_error_dev(sc->sc_dev, "%08X | trm_hw_status1\n", t.trm_hw_status1); aprint_error_dev(sc->sc_dev, "%08X | branchlink2\n", t.blink2); aprint_error_dev(sc->sc_dev, "%08X | interruptlink1\n", t.ilink1); aprint_error_dev(sc->sc_dev, "%08X | interruptlink2\n", t.ilink2); aprint_error_dev(sc->sc_dev, "%08X | data1\n", t.data1); aprint_error_dev(sc->sc_dev, "%08X | data2\n", t.data2); aprint_error_dev(sc->sc_dev, "%08X | data3\n", t.data3); aprint_error_dev(sc->sc_dev, "%08X | beacon time\n", t.bcon_time); aprint_error_dev(sc->sc_dev, "%08X | tsf low\n", t.tsf_low); aprint_error_dev(sc->sc_dev, "%08X | tsf hi\n", t.tsf_hi); aprint_error_dev(sc->sc_dev, "%08X | time gp1\n", t.gp1); aprint_error_dev(sc->sc_dev, "%08X | time gp2\n", t.gp2); aprint_error_dev(sc->sc_dev, "%08X | uCode revision type\n", t.fw_rev_type); aprint_error_dev(sc->sc_dev, "%08X | uCode version major\n", t.major); aprint_error_dev(sc->sc_dev, "%08X | uCode version minor\n", t.minor); aprint_error_dev(sc->sc_dev, "%08X | hw version\n", t.hw_ver); aprint_error_dev(sc->sc_dev, "%08X | board version\n", t.brd_ver); aprint_error_dev(sc->sc_dev, "%08X | hcmd\n", t.hcmd); aprint_error_dev(sc->sc_dev, "%08X | isr0\n", t.isr0); aprint_error_dev(sc->sc_dev, "%08X | isr1\n", t.isr1); aprint_error_dev(sc->sc_dev, "%08X | isr2\n", t.isr2); aprint_error_dev(sc->sc_dev, "%08X | isr3\n", t.isr3); aprint_error_dev(sc->sc_dev, "%08X | isr4\n", t.isr4); aprint_error_dev(sc->sc_dev, "%08X | last cmd Id\n", t.last_cmd_id); aprint_error_dev(sc->sc_dev, "%08X | wait_event\n", t.wait_event); aprint_error_dev(sc->sc_dev, "%08X | l2p_control\n", t.l2p_control); aprint_error_dev(sc->sc_dev, "%08X | l2p_duration\n", t.l2p_duration); aprint_error_dev(sc->sc_dev, "%08X | l2p_mhvalid\n", t.l2p_mhvalid); aprint_error_dev(sc->sc_dev, "%08X | l2p_addr_match\n", t.l2p_addr_match); aprint_error_dev(sc->sc_dev, "%08X | lmpm_pmg_sel\n", t.lmpm_pmg_sel); aprint_error_dev(sc->sc_dev, "%08X | timestamp\n", t.u_timestamp); aprint_error_dev(sc->sc_dev, "%08X | flow_handler\n", t.flow_handler); if (sc->sc_uc.uc_umac_error_event_table) iwm_nic_umac_error(sc); } static void iwm_nic_umac_error(struct iwm_softc *sc) { struct iwm_umac_error_event_table t; uint32_t base; base = sc->sc_uc.uc_umac_error_event_table; if (base < 0x800000) { aprint_error_dev(sc->sc_dev, "Invalid error log pointer 0x%08x\n", base); return; } if (iwm_read_mem(sc, base, &t, sizeof(t)/sizeof(uint32_t))) { aprint_error_dev(sc->sc_dev, "reading errlog failed\n"); return; } if (ERROR_START_OFFSET <= t.valid * ERROR_ELEM_SIZE) { aprint_error_dev(sc->sc_dev, "Start UMAC Error Log Dump:\n"); aprint_error_dev(sc->sc_dev, "Status: 0x%x, count: %d\n", sc->sc_flags, t.valid); } aprint_error_dev(sc->sc_dev, "0x%08X | %s\n", t.error_id, iwm_desc_lookup(t.error_id)); aprint_error_dev(sc->sc_dev, "0x%08X | umac branchlink1\n", t.blink1); aprint_error_dev(sc->sc_dev, "0x%08X | umac branchlink2\n", t.blink2); aprint_error_dev(sc->sc_dev, "0x%08X | umac interruptlink1\n", t.ilink1); aprint_error_dev(sc->sc_dev, "0x%08X | umac interruptlink2\n", t.ilink2); aprint_error_dev(sc->sc_dev, "0x%08X | umac data1\n", t.data1); aprint_error_dev(sc->sc_dev, "0x%08X | umac data2\n", t.data2); aprint_error_dev(sc->sc_dev, "0x%08X | umac data3\n", t.data3); aprint_error_dev(sc->sc_dev, "0x%08X | umac major\n", t.umac_major); aprint_error_dev(sc->sc_dev, "0x%08X | umac minor\n", t.umac_minor); aprint_error_dev(sc->sc_dev, "0x%08X | frame pointer\n", t.frame_pointer); aprint_error_dev(sc->sc_dev, "0x%08X | stack pointer\n", t.stack_pointer); aprint_error_dev(sc->sc_dev, "0x%08X | last host cmd\n", t.cmd_header); aprint_error_dev(sc->sc_dev, "0x%08X | isr status reg\n", t.nic_isr_pref); } #endif #define SYNC_RESP_STRUCT(_var_, _pkt_) \ do { \ bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \ sizeof(*(_var_)), BUS_DMASYNC_POSTREAD); \ _var_ = (void *)((_pkt_)+1); \ } while (/*CONSTCOND*/0) #define SYNC_RESP_PTR(_ptr_, _len_, _pkt_) \ do { \ bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*(_pkt_)), \ sizeof(len), BUS_DMASYNC_POSTREAD); \ _ptr_ = (void *)((_pkt_)+1); \ } while (/*CONSTCOND*/0) #define ADVANCE_RXQ(sc) (sc->rxq.cur = (sc->rxq.cur + 1) % IWM_RX_RING_COUNT); static void iwm_notif_intr(struct iwm_softc *sc) { uint16_t hw; bus_dmamap_sync(sc->sc_dmat, sc->rxq.stat_dma.map, 0, sc->rxq.stat_dma.size, BUS_DMASYNC_POSTREAD); hw = le16toh(sc->rxq.stat->closed_rb_num) & 0xfff; while (sc->rxq.cur != hw) { struct iwm_rx_data *data = &sc->rxq.data[sc->rxq.cur]; struct iwm_rx_packet *pkt; struct iwm_cmd_response *cresp; int orig_qid, qid, idx, code; bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof(*pkt), BUS_DMASYNC_POSTREAD); pkt = mtod(data->m, struct iwm_rx_packet *); orig_qid = pkt->hdr.qid; qid = orig_qid & ~0x80; idx = pkt->hdr.idx; code = IWM_WIDE_ID(pkt->hdr.flags, pkt->hdr.code); /* * randomly get these from the firmware, no idea why. * they at least seem harmless, so just ignore them for now */ if (__predict_false((pkt->hdr.code == 0 && qid == 0 && idx == 0) || pkt->len_n_flags == htole32(0x55550000))) { ADVANCE_RXQ(sc); continue; } switch (code) { case IWM_REPLY_RX_PHY_CMD: iwm_rx_rx_phy_cmd(sc, pkt, data); break; case IWM_REPLY_RX_MPDU_CMD: iwm_rx_rx_mpdu(sc, pkt, data); break; case IWM_TX_CMD: iwm_rx_tx_cmd(sc, pkt, data); break; case IWM_MISSED_BEACONS_NOTIFICATION: iwm_rx_missed_beacons_notif(sc, pkt, data); break; case IWM_MFUART_LOAD_NOTIFICATION: break; case IWM_ALIVE: { struct iwm_alive_resp_v1 *resp1; struct iwm_alive_resp_v2 *resp2; struct iwm_alive_resp_v3 *resp3; if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp1)) { SYNC_RESP_STRUCT(resp1, pkt); sc->sc_uc.uc_error_event_table = le32toh(resp1->error_event_table_ptr); sc->sc_uc.uc_log_event_table = le32toh(resp1->log_event_table_ptr); sc->sched_base = le32toh(resp1->scd_base_ptr); if (resp1->status == IWM_ALIVE_STATUS_OK) sc->sc_uc.uc_ok = 1; else sc->sc_uc.uc_ok = 0; } if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp2)) { SYNC_RESP_STRUCT(resp2, pkt); sc->sc_uc.uc_error_event_table = le32toh(resp2->error_event_table_ptr); sc->sc_uc.uc_log_event_table = le32toh(resp2->log_event_table_ptr); sc->sched_base = le32toh(resp2->scd_base_ptr); sc->sc_uc.uc_umac_error_event_table = le32toh(resp2->error_info_addr); if (resp2->status == IWM_ALIVE_STATUS_OK) sc->sc_uc.uc_ok = 1; else sc->sc_uc.uc_ok = 0; } if (iwm_rx_packet_payload_len(pkt) == sizeof(*resp3)) { SYNC_RESP_STRUCT(resp3, pkt); sc->sc_uc.uc_error_event_table = le32toh(resp3->error_event_table_ptr); sc->sc_uc.uc_log_event_table = le32toh(resp3->log_event_table_ptr); sc->sched_base = le32toh(resp3->scd_base_ptr); sc->sc_uc.uc_umac_error_event_table = le32toh(resp3->error_info_addr); if (resp3->status == IWM_ALIVE_STATUS_OK) sc->sc_uc.uc_ok = 1; else sc->sc_uc.uc_ok = 0; } sc->sc_uc.uc_intr = 1; wakeup(&sc->sc_uc); break; } case IWM_CALIB_RES_NOTIF_PHY_DB: { struct iwm_calib_res_notif_phy_db *phy_db_notif; SYNC_RESP_STRUCT(phy_db_notif, pkt); uint16_t size = le16toh(phy_db_notif->length); bus_dmamap_sync(sc->sc_dmat, data->map, sizeof(*pkt) + sizeof(*phy_db_notif), size, BUS_DMASYNC_POSTREAD); iwm_phy_db_set_section(sc, phy_db_notif, size); break; } case IWM_STATISTICS_NOTIFICATION: { struct iwm_notif_statistics *stats; SYNC_RESP_STRUCT(stats, pkt); memcpy(&sc->sc_stats, stats, sizeof(sc->sc_stats)); sc->sc_noise = iwm_get_noise(&stats->rx.general); break; } case IWM_NVM_ACCESS_CMD: case IWM_MCC_UPDATE_CMD: if (sc->sc_wantresp == ((qid << 16) | idx)) { bus_dmamap_sync(sc->sc_dmat, data->map, 0, sizeof(sc->sc_cmd_resp), BUS_DMASYNC_POSTREAD); memcpy(sc->sc_cmd_resp, pkt, sizeof(sc->sc_cmd_resp)); } break; case IWM_MCC_CHUB_UPDATE_CMD: { struct iwm_mcc_chub_notif *notif; SYNC_RESP_STRUCT(notif, pkt); sc->sc_fw_mcc[0] = (notif->mcc & 0xff00) >> 8; sc->sc_fw_mcc[1] = notif->mcc & 0xff; sc->sc_fw_mcc[2] = '\0'; break; } case IWM_DTS_MEASUREMENT_NOTIFICATION: case IWM_WIDE_ID(IWM_PHY_OPS_GROUP, IWM_DTS_MEASUREMENT_NOTIF_WIDE): { struct iwm_dts_measurement_notif_v1 *notif1; struct iwm_dts_measurement_notif_v2 *notif2; if (iwm_rx_packet_payload_len(pkt) == sizeof(*notif1)) { SYNC_RESP_STRUCT(notif1, pkt); DPRINTF(("%s: DTS temp=%d \n", DEVNAME(sc), notif1->temp)); break; } if (iwm_rx_packet_payload_len(pkt) == sizeof(*notif2)) { SYNC_RESP_STRUCT(notif2, pkt); DPRINTF(("%s: DTS temp=%d \n", DEVNAME(sc), notif2->temp)); break; } break; } case IWM_PHY_CONFIGURATION_CMD: case IWM_TX_ANT_CONFIGURATION_CMD: case IWM_ADD_STA: case IWM_MAC_CONTEXT_CMD: case IWM_REPLY_SF_CFG_CMD: case IWM_POWER_TABLE_CMD: case IWM_PHY_CONTEXT_CMD: case IWM_BINDING_CONTEXT_CMD: case IWM_TIME_EVENT_CMD: case IWM_SCAN_REQUEST_CMD: case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_CFG_CMD): case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_REQ_UMAC): case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_SCAN_ABORT_UMAC): case IWM_SCAN_OFFLOAD_REQUEST_CMD: case IWM_SCAN_OFFLOAD_ABORT_CMD: case IWM_REPLY_BEACON_FILTERING_CMD: case IWM_MAC_PM_POWER_TABLE: case IWM_TIME_QUOTA_CMD: case IWM_REMOVE_STA: case IWM_TXPATH_FLUSH: case IWM_LQ_CMD: case IWM_WIDE_ID(IWM_ALWAYS_LONG_GROUP, IWM_FW_PAGING_BLOCK_CMD): case IWM_BT_CONFIG: case IWM_REPLY_THERMAL_MNG_BACKOFF: SYNC_RESP_STRUCT(cresp, pkt); if (sc->sc_wantresp == ((qid << 16) | idx)) { memcpy(sc->sc_cmd_resp, pkt, sizeof(*pkt) + sizeof(*cresp)); } break; /* ignore */ case IWM_PHY_DB_CMD: break; case IWM_INIT_COMPLETE_NOTIF: sc->sc_init_complete = 1; wakeup(&sc->sc_init_complete); break; case IWM_SCAN_OFFLOAD_COMPLETE: { struct iwm_periodic_scan_complete *notif; SYNC_RESP_STRUCT(notif, pkt); break; } case IWM_SCAN_ITERATION_COMPLETE: { struct iwm_lmac_scan_complete_notif *notif; SYNC_RESP_STRUCT(notif, pkt); if (ISSET(sc->sc_flags, IWM_FLAG_SCANNING)) { CLR(sc->sc_flags, IWM_FLAG_SCANNING); iwm_endscan(sc); } break; } case IWM_SCAN_COMPLETE_UMAC: { struct iwm_umac_scan_complete *notif; SYNC_RESP_STRUCT(notif, pkt); if (ISSET(sc->sc_flags, IWM_FLAG_SCANNING)) { CLR(sc->sc_flags, IWM_FLAG_SCANNING); iwm_endscan(sc); } break; } case IWM_SCAN_ITERATION_COMPLETE_UMAC: { struct iwm_umac_scan_iter_complete_notif *notif; SYNC_RESP_STRUCT(notif, pkt); if (ISSET(sc->sc_flags, IWM_FLAG_SCANNING)) { CLR(sc->sc_flags, IWM_FLAG_SCANNING); iwm_endscan(sc); } break; } case IWM_REPLY_ERROR: { struct iwm_error_resp *resp; SYNC_RESP_STRUCT(resp, pkt); aprint_error_dev(sc->sc_dev, "firmware error 0x%x, cmd 0x%x\n", le32toh(resp->error_type), resp->cmd_id); break; } case IWM_TIME_EVENT_NOTIFICATION: { struct iwm_time_event_notif *notif; SYNC_RESP_STRUCT(notif, pkt); break; } case IWM_DEBUG_LOG_MSG: break; case IWM_MCAST_FILTER_CMD: break; case IWM_SCD_QUEUE_CFG: { struct iwm_scd_txq_cfg_rsp *rsp; SYNC_RESP_STRUCT(rsp, pkt); break; } default: aprint_error_dev(sc->sc_dev, "unhandled firmware response 0x%x 0x%x/0x%x " "rx ring %d[%d]\n", code, pkt->hdr.code, pkt->len_n_flags, qid, idx); break; } /* * uCode sets bit 0x80 when it originates the notification, * i.e. when the notification is not a direct response to a * command sent by the driver. * For example, uCode issues IWM_REPLY_RX when it sends a * received frame to the driver. */ if (!(orig_qid & (1 << 7))) { iwm_cmd_done(sc, qid, idx); } ADVANCE_RXQ(sc); } /* * Seems like the hardware gets upset unless we align the write by 8?? */ hw = (hw == 0) ? IWM_RX_RING_COUNT - 1 : hw - 1; IWM_WRITE(sc, IWM_FH_RSCSR_CHNL0_WPTR, hw & ~7); } static int iwm_intr(void *arg) { struct iwm_softc *sc = arg; /* Disable interrupts */ IWM_WRITE(sc, IWM_CSR_INT_MASK, 0); softint_schedule(sc->sc_soft_ih); return 1; } static void iwm_softintr(void *arg) { struct iwm_softc *sc = arg; struct ifnet *ifp = IC2IFP(&sc->sc_ic); uint32_t r1, r2; int isperiodic = 0, s; if (__predict_true(sc->sc_flags & IWM_FLAG_USE_ICT)) { uint32_t *ict = sc->ict_dma.vaddr; int tmp; bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, sc->ict_dma.size, BUS_DMASYNC_POSTREAD); tmp = htole32(ict[sc->ict_cur]); if (tmp == 0) goto out_ena; /* Interrupt not for us. */ /* * ok, there was something. keep plowing until we have all. */ r1 = r2 = 0; while (tmp) { r1 |= tmp; ict[sc->ict_cur] = 0; /* Acknowledge. */ sc->ict_cur = (sc->ict_cur + 1) % IWM_ICT_COUNT; tmp = htole32(ict[sc->ict_cur]); } bus_dmamap_sync(sc->sc_dmat, sc->ict_dma.map, 0, sc->ict_dma.size, BUS_DMASYNC_PREWRITE); /* this is where the fun begins. don't ask */ if (r1 == 0xffffffff) r1 = 0; /* i am not expected to understand this */ if (r1 & 0xc0000) r1 |= 0x8000; r1 = (0xff & r1) | ((0xff00 & r1) << 16); } else { r1 = IWM_READ(sc, IWM_CSR_INT); if (r1 == 0xffffffff || (r1 & 0xfffffff0) == 0xa5a5a5a0) return; /* Hardware gone! */ r2 = IWM_READ(sc, IWM_CSR_FH_INT_STATUS); } if (r1 == 0 && r2 == 0) { goto out_ena; /* Interrupt not for us. */ } /* Acknowledge interrupts. */ IWM_WRITE(sc, IWM_CSR_INT, r1 | ~sc->sc_intmask); if (__predict_false(!(sc->sc_flags & IWM_FLAG_USE_ICT))) IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, r2); if (r1 & IWM_CSR_INT_BIT_SW_ERR) { #ifdef IWM_DEBUG int i; iwm_nic_error(sc); /* Dump driver status (TX and RX rings) while we're here. */ DPRINTF(("driver status:\n")); for (i = 0; i < IWM_MAX_QUEUES; i++) { struct iwm_tx_ring *ring = &sc->txq[i]; DPRINTF((" tx ring %2d: qid=%-2d cur=%-3d " "queued=%-3d\n", i, ring->qid, ring->cur, ring->queued)); } DPRINTF((" rx ring: cur=%d\n", sc->rxq.cur)); DPRINTF((" 802.11 state %s\n", ieee80211_state_name[sc->sc_ic.ic_state])); #endif aprint_error_dev(sc->sc_dev, "fatal firmware error\n"); fatal: s = splnet(); ifp->if_flags &= ~IFF_UP; iwm_stop(ifp, 1); splx(s); /* Don't restore interrupt mask */ return; } if (r1 & IWM_CSR_INT_BIT_HW_ERR) { aprint_error_dev(sc->sc_dev, "hardware error, stopping device\n"); goto fatal; } /* firmware chunk loaded */ if (r1 & IWM_CSR_INT_BIT_FH_TX) { IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_TX_MASK); sc->sc_fw_chunk_done = 1; wakeup(&sc->sc_fw); } if (r1 & IWM_CSR_INT_BIT_RF_KILL) { if (iwm_check_rfkill(sc) && (ifp->if_flags & IFF_UP)) goto fatal; } if (r1 & IWM_CSR_INT_BIT_RX_PERIODIC) { IWM_WRITE(sc, IWM_CSR_INT, IWM_CSR_INT_BIT_RX_PERIODIC); if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) == 0) IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_DIS); isperiodic = 1; } if ((r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX)) || isperiodic) { IWM_WRITE(sc, IWM_CSR_FH_INT_STATUS, IWM_CSR_FH_INT_RX_MASK); iwm_notif_intr(sc); /* enable periodic interrupt, see above */ if (r1 & (IWM_CSR_INT_BIT_FH_RX | IWM_CSR_INT_BIT_SW_RX) && !isperiodic) IWM_WRITE_1(sc, IWM_CSR_INT_PERIODIC_REG, IWM_CSR_INT_PERIODIC_ENA); } out_ena: iwm_restore_interrupts(sc); } /* * Autoconf glue-sniffing */ static const pci_product_id_t iwm_devices[] = { PCI_PRODUCT_INTEL_WIFI_LINK_7260_1, PCI_PRODUCT_INTEL_WIFI_LINK_7260_2, PCI_PRODUCT_INTEL_WIFI_LINK_3160_1, PCI_PRODUCT_INTEL_WIFI_LINK_3160_2, PCI_PRODUCT_INTEL_WIFI_LINK_7265_1, PCI_PRODUCT_INTEL_WIFI_LINK_7265_2, PCI_PRODUCT_INTEL_WIFI_LINK_3165_1, PCI_PRODUCT_INTEL_WIFI_LINK_3165_2, PCI_PRODUCT_INTEL_WIFI_LINK_8260_1, PCI_PRODUCT_INTEL_WIFI_LINK_8260_2, PCI_PRODUCT_INTEL_WIFI_LINK_4165_1, PCI_PRODUCT_INTEL_WIFI_LINK_4165_2, }; static int iwm_match(device_t parent, cfdata_t match __unused, void *aux) { struct pci_attach_args *pa = aux; if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL) return 0; for (size_t i = 0; i < __arraycount(iwm_devices); i++) if (PCI_PRODUCT(pa->pa_id) == iwm_devices[i]) return 1; return 0; } static int iwm_preinit(struct iwm_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; int err; if (ISSET(sc->sc_flags, IWM_FLAG_ATTACHED)) return 0; err = iwm_start_hw(sc); if (err) { aprint_error_dev(sc->sc_dev, "could not initialize hardware\n"); return err; } err = iwm_run_init_mvm_ucode(sc, 1); iwm_stop_device(sc); if (err) return err; sc->sc_flags |= IWM_FLAG_ATTACHED; aprint_normal_dev(sc->sc_dev, "hw rev 0x%x, fw ver %s, address %s\n", sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK, sc->sc_fwver, ether_sprintf(sc->sc_nvm.hw_addr)); #ifndef IEEE80211_NO_HT if (sc->sc_nvm.sku_cap_11n_enable) iwm_setup_ht_rates(sc); #endif /* not all hardware can do 5GHz band */ if (sc->sc_nvm.sku_cap_band_52GHz_enable) ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a; ieee80211_ifattach(ic); ic->ic_node_alloc = iwm_node_alloc; /* Override 802.11 state transition machine. */ sc->sc_newstate = ic->ic_newstate; ic->ic_newstate = iwm_newstate; ieee80211_media_init(ic, iwm_media_change, ieee80211_media_status); ieee80211_announce(ic); iwm_radiotap_attach(sc); return 0; } static void iwm_attach_hook(device_t dev) { struct iwm_softc *sc = device_private(dev); iwm_preinit(sc); } static void iwm_attach(device_t parent, device_t self, void *aux) { struct iwm_softc *sc = device_private(self); struct pci_attach_args *pa = aux; struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_ec.ec_if; pcireg_t reg, memtype; char intrbuf[PCI_INTRSTR_LEN]; const char *intrstr; int err; int txq_i; const struct sysctlnode *node; sc->sc_dev = self; sc->sc_pct = pa->pa_pc; sc->sc_pcitag = pa->pa_tag; sc->sc_dmat = pa->pa_dmat; sc->sc_pciid = pa->pa_id; pci_aprint_devinfo(pa, NULL); if (workqueue_create(&sc->sc_nswq, "iwmns", iwm_newstate_cb, sc, PRI_NONE, IPL_NET, 0)) panic("%s: could not create workqueue: newstate", device_xname(self)); sc->sc_soft_ih = softint_establish(SOFTINT_NET, iwm_softintr, sc); if (sc->sc_soft_ih == NULL) panic("%s: could not establish softint", device_xname(self)); /* * Get the offset of the PCI Express Capability Structure in PCI * Configuration Space. */ err = pci_get_capability(sc->sc_pct, sc->sc_pcitag, PCI_CAP_PCIEXPRESS, &sc->sc_cap_off, NULL); if (err == 0) { aprint_error_dev(self, "PCIe capability structure not found!\n"); return; } /* Clear device-specific "PCI retry timeout" register (41h). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); /* Enable bus-mastering */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); reg |= PCI_COMMAND_MASTER_ENABLE; pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, PCI_MAPREG_START); err = pci_mapreg_map(pa, PCI_MAPREG_START, memtype, 0, &sc->sc_st, &sc->sc_sh, NULL, &sc->sc_sz); if (err) { aprint_error_dev(self, "can't map mem space\n"); return; } /* Install interrupt handler. */ err = pci_intr_alloc(pa, &sc->sc_pihp, NULL, 0); if (err) { aprint_error_dev(self, "can't allocate interrupt\n"); return; } reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG); if (pci_intr_type(sc->sc_pct, sc->sc_pihp[0]) == PCI_INTR_TYPE_INTX) CLR(reg, PCI_COMMAND_INTERRUPT_DISABLE); else SET(reg, PCI_COMMAND_INTERRUPT_DISABLE); pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, reg); intrstr = pci_intr_string(sc->sc_pct, sc->sc_pihp[0], intrbuf, sizeof(intrbuf)); sc->sc_ih = pci_intr_establish_xname(sc->sc_pct, sc->sc_pihp[0], IPL_NET, iwm_intr, sc, device_xname(self)); if (sc->sc_ih == NULL) { aprint_error_dev(self, "can't establish interrupt"); if (intrstr != NULL) aprint_error(" at %s", intrstr); aprint_error("\n"); return; } aprint_normal_dev(self, "interrupting at %s\n", intrstr); sc->sc_wantresp = IWM_CMD_RESP_IDLE; sc->sc_hw_rev = IWM_READ(sc, IWM_CSR_HW_REV); switch (PCI_PRODUCT(sc->sc_pciid)) { case PCI_PRODUCT_INTEL_WIFI_LINK_3160_1: case PCI_PRODUCT_INTEL_WIFI_LINK_3160_2: sc->sc_fwname = "iwlwifi-3160-17.ucode"; sc->host_interrupt_operation_mode = 1; sc->apmg_wake_up_wa = 1; sc->sc_device_family = IWM_DEVICE_FAMILY_7000; sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; break; case PCI_PRODUCT_INTEL_WIFI_LINK_3165_1: case PCI_PRODUCT_INTEL_WIFI_LINK_3165_2: sc->sc_fwname = "iwlwifi-7265D-22.ucode"; sc->host_interrupt_operation_mode = 0; sc->apmg_wake_up_wa = 1; sc->sc_device_family = IWM_DEVICE_FAMILY_7000; sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; break; case PCI_PRODUCT_INTEL_WIFI_LINK_3168: sc->sc_fwname = "iwlwifi-3168-22.ucode"; sc->host_interrupt_operation_mode = 0; sc->apmg_wake_up_wa = 1; sc->sc_device_family = IWM_DEVICE_FAMILY_7000; sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; break; case PCI_PRODUCT_INTEL_WIFI_LINK_7260_1: case PCI_PRODUCT_INTEL_WIFI_LINK_7260_2: sc->sc_fwname = "iwlwifi-7260-17.ucode"; sc->host_interrupt_operation_mode = 1; sc->apmg_wake_up_wa = 1; sc->sc_device_family = IWM_DEVICE_FAMILY_7000; sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; break; case PCI_PRODUCT_INTEL_WIFI_LINK_7265_1: case PCI_PRODUCT_INTEL_WIFI_LINK_7265_2: sc->sc_fwname = (sc->sc_hw_rev & IWM_CSR_HW_REV_TYPE_MSK) == IWM_CSR_HW_REV_TYPE_7265D ? "iwlwifi-7265D-22.ucode": "iwlwifi-7265-17.ucode"; sc->host_interrupt_operation_mode = 0; sc->apmg_wake_up_wa = 1; sc->sc_device_family = IWM_DEVICE_FAMILY_7000; sc->sc_fwdmasegsz = IWM_FWDMASEGSZ; break; case PCI_PRODUCT_INTEL_WIFI_LINK_8260_1: case PCI_PRODUCT_INTEL_WIFI_LINK_8260_2: case PCI_PRODUCT_INTEL_WIFI_LINK_4165_1: case PCI_PRODUCT_INTEL_WIFI_LINK_4165_2: sc->sc_fwname = "iwlwifi-8000C-22.ucode"; sc->host_interrupt_operation_mode = 0; sc->apmg_wake_up_wa = 0; sc->sc_device_family = IWM_DEVICE_FAMILY_8000; sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000; break; case PCI_PRODUCT_INTEL_WIFI_LINK_8265: sc->sc_fwname = "iwlwifi-8265-22.ucode"; sc->host_interrupt_operation_mode = 0; sc->apmg_wake_up_wa = 0; sc->sc_device_family = IWM_DEVICE_FAMILY_8000; sc->sc_fwdmasegsz = IWM_FWDMASEGSZ_8000; break; default: aprint_error_dev(self, "unknown product %#x", PCI_PRODUCT(sc->sc_pciid)); return; } DPRINTF(("%s: firmware=%s\n", DEVNAME(sc), sc->sc_fwname)); /* * In the 8000 HW family the format of the 4 bytes of CSR_HW_REV have * changed, and now the revision step also includes bit 0-1 (no more * "dash" value). To keep hw_rev backwards compatible - we'll store it * in the old format. */ if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) sc->sc_hw_rev = (sc->sc_hw_rev & 0xfff0) | (IWM_CSR_HW_REV_STEP(sc->sc_hw_rev << 2) << 2); if (iwm_prepare_card_hw(sc) != 0) { aprint_error_dev(sc->sc_dev, "could not initialize hardware\n"); return; } if (sc->sc_device_family == IWM_DEVICE_FAMILY_8000) { uint32_t hw_step; /* * In order to recognize C step the driver should read the * chip version id located at the AUX bus MISC address. */ IWM_SETBITS(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_INIT_DONE); DELAY(2); err = iwm_poll_bit(sc, IWM_CSR_GP_CNTRL, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, IWM_CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000); if (!err) { aprint_error_dev(sc->sc_dev, "failed to wake up the nic\n"); return; } if (iwm_nic_lock(sc)) { hw_step = iwm_read_prph(sc, IWM_WFPM_CTRL_REG); hw_step |= IWM_ENABLE_WFPM; iwm_write_prph(sc, IWM_WFPM_CTRL_REG, hw_step); hw_step = iwm_read_prph(sc, IWM_AUX_MISC_REG); hw_step = (hw_step >> IWM_HW_STEP_LOCATION_BITS) & 0xF; if (hw_step == 0x3) sc->sc_hw_rev = (sc->sc_hw_rev & 0xFFFFFFF3) | (IWM_SILICON_C_STEP << 2); iwm_nic_unlock(sc); } else { aprint_error_dev(sc->sc_dev, "failed to lock the nic\n"); return; } } /* * Allocate DMA memory for firmware transfers. * Must be aligned on a 16-byte boundary. */ err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, sc->sc_fwdmasegsz, 16); if (err) { aprint_error_dev(sc->sc_dev, "could not allocate memory for firmware\n"); return; } /* Allocate "Keep Warm" page, used internally by the card. */ err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->kw_dma, 4096, 4096); if (err) { aprint_error_dev(sc->sc_dev, "could not allocate keep warm page\n"); goto fail1; } /* Allocate interrupt cause table (ICT).*/ err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->ict_dma, IWM_ICT_SIZE, 1 << IWM_ICT_PADDR_SHIFT); if (err) { aprint_error_dev(sc->sc_dev, "could not allocate ICT table\n"); goto fail2; } /* TX scheduler rings must be aligned on a 1KB boundary. */ err = iwm_dma_contig_alloc(sc->sc_dmat, &sc->sched_dma, __arraycount(sc->txq) * sizeof(struct iwm_agn_scd_bc_tbl), 1024); if (err) { aprint_error_dev(sc->sc_dev, "could not allocate TX scheduler rings\n"); goto fail3; } for (txq_i = 0; txq_i < __arraycount(sc->txq); txq_i++) { err = iwm_alloc_tx_ring(sc, &sc->txq[txq_i], txq_i); if (err) { aprint_error_dev(sc->sc_dev, "could not allocate TX ring %d\n", txq_i); goto fail4; } } err = iwm_alloc_rx_ring(sc, &sc->rxq); if (err) { aprint_error_dev(sc->sc_dev, "could not allocate RX ring\n"); goto fail4; } /* Clear pending interrupts. */ IWM_WRITE(sc, IWM_CSR_INT, 0xffffffff); if ((err = sysctl_createv(&sc->sc_clog, 0, NULL, &node, 0, CTLTYPE_NODE, device_xname(sc->sc_dev), SYSCTL_DESCR("iwm per-controller controls"), NULL, 0, NULL, 0, CTL_HW, iwm_sysctl_root_num, CTL_CREATE, CTL_EOL)) != 0) { aprint_normal_dev(sc->sc_dev, "couldn't create iwm per-controller sysctl node\n"); } if (err == 0) { int iwm_nodenum = node->sysctl_num; /* Reload firmware sysctl node */ if ((err = sysctl_createv(&sc->sc_clog, 0, NULL, &node, CTLFLAG_READWRITE, CTLTYPE_INT, "fw_loaded", SYSCTL_DESCR("Reload firmware"), iwm_sysctl_fw_loaded_handler, 0, (void *)sc, 0, CTL_HW, iwm_sysctl_root_num, iwm_nodenum, CTL_CREATE, CTL_EOL)) != 0) { aprint_normal_dev(sc->sc_dev, "couldn't create load_fw sysctl node\n"); } } /* * Attach interface */ ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ ic->ic_state = IEEE80211_S_INIT; /* Set device capabilities. */ ic->ic_caps = IEEE80211_C_WEP | /* WEP */ IEEE80211_C_WPA | /* 802.11i */ #ifdef notyet IEEE80211_C_SCANALL | /* device scans all channels at once */ IEEE80211_C_SCANALLBAND | /* device scans all bands at once */ #endif IEEE80211_C_SHSLOT | /* short slot time supported */ IEEE80211_C_SHPREAMBLE; /* short preamble supported */ #ifndef IEEE80211_NO_HT ic->ic_htcaps = IEEE80211_HTCAP_SGI20; ic->ic_htxcaps = 0; ic->ic_txbfcaps = 0; ic->ic_aselcaps = 0; ic->ic_ampdu_params = (IEEE80211_AMPDU_PARAM_SS_4 | 0x3 /* 64k */); #endif /* all hardware can do 2.4GHz band */ ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; for (int i = 0; i < __arraycount(sc->sc_phyctxt); i++) { sc->sc_phyctxt[i].id = i; } sc->sc_amrr.amrr_min_success_threshold = 1; sc->sc_amrr.amrr_max_success_threshold = 15; /* IBSS channel undefined for now. */ ic->ic_ibss_chan = &ic->ic_channels[1]; #if 0 ic->ic_max_rssi = IWM_MAX_DBM - IWM_MIN_DBM; #endif ifp->if_softc = sc; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_init = iwm_init; ifp->if_stop = iwm_stop; ifp->if_ioctl = iwm_ioctl; ifp->if_start = iwm_start; ifp->if_watchdog = iwm_watchdog; IFQ_SET_READY(&ifp->if_snd); memcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ); if_initialize(ifp); #if 0 ieee80211_ifattach(ic); #else ether_ifattach(ifp, ic->ic_myaddr); /* XXX */ #endif /* Use common softint-based if_input */ ifp->if_percpuq = if_percpuq_create(ifp); if_register(ifp); callout_init(&sc->sc_calib_to, 0); callout_setfunc(&sc->sc_calib_to, iwm_calib_timeout, sc); callout_init(&sc->sc_led_blink_to, 0); callout_setfunc(&sc->sc_led_blink_to, iwm_led_blink_timeout, sc); #ifndef IEEE80211_NO_HT if (workqueue_create(&sc->sc_setratewq, "iwmsr", iwm_setrates_task, sc, PRI_NONE, IPL_NET, 0)) panic("%s: could not create workqueue: setrates", device_xname(self)); if (workqueue_create(&sc->sc_bawq, "iwmba", iwm_ba_task, sc, PRI_NONE, IPL_NET, 0)) panic("%s: could not create workqueue: blockack", device_xname(self)); if (workqueue_create(&sc->sc_htprowq, "iwmhtpro", iwm_htprot_task, sc, PRI_NONE, IPL_NET, 0)) panic("%s: could not create workqueue: htprot", device_xname(self)); #endif if (pmf_device_register(self, NULL, NULL)) pmf_class_network_register(self, ifp); else aprint_error_dev(self, "couldn't establish power handler\n"); /* * We can't do normal attach before the file system is mounted * because we cannot read the MAC address without loading the * firmware from disk. So we postpone until mountroot is done. * Notably, this will require a full driver unload/load cycle * (or reboot) in case the firmware is not present when the * hook runs. */ config_mountroot(self, iwm_attach_hook); return; fail4: while (--txq_i >= 0) iwm_free_tx_ring(sc, &sc->txq[txq_i]); iwm_free_rx_ring(sc, &sc->rxq); iwm_dma_contig_free(&sc->sched_dma); fail3: if (sc->ict_dma.vaddr != NULL) iwm_dma_contig_free(&sc->ict_dma); fail2: iwm_dma_contig_free(&sc->kw_dma); fail1: iwm_dma_contig_free(&sc->fw_dma); } void iwm_radiotap_attach(struct iwm_softc *sc) { struct ifnet *ifp = IC2IFP(&sc->sc_ic); bpf_attach2(ifp, DLT_IEEE802_11_RADIO, sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN, &sc->sc_drvbpf); sc->sc_rxtap_len = sizeof sc->sc_rxtapu; sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); sc->sc_rxtap.wr_ihdr.it_present = htole32(IWM_RX_RADIOTAP_PRESENT); sc->sc_txtap_len = sizeof sc->sc_txtapu; sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); sc->sc_txtap.wt_ihdr.it_present = htole32(IWM_TX_RADIOTAP_PRESENT); } #if 0 static void iwm_init_task(void *arg) { struct iwm_softc *sc = arg; struct ifnet *ifp = IC2IFP(&sc->sc_ic); int s; rw_enter_write(&sc->ioctl_rwl); s = splnet(); iwm_stop(ifp, 0); if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == IFF_UP) iwm_init(ifp); splx(s); rw_exit(&sc->ioctl_rwl); } static void iwm_wakeup(struct iwm_softc *sc) { pcireg_t reg; /* Clear device-specific "PCI retry timeout" register (41h). */ reg = pci_conf_read(sc->sc_pct, sc->sc_pcitag, 0x40); pci_conf_write(sc->sc_pct, sc->sc_pcitag, 0x40, reg & ~0xff00); iwm_init_task(sc); } static int iwm_activate(device_t self, enum devact act) { struct iwm_softc *sc = device_private(self); struct ifnet *ifp = IC2IFP(&sc->sc_ic); switch (act) { case DVACT_DEACTIVATE: if (ifp->if_flags & IFF_RUNNING) iwm_stop(ifp, 0); return 0; default: return EOPNOTSUPP; } } #endif CFATTACH_DECL_NEW(iwm, sizeof(struct iwm_softc), iwm_match, iwm_attach, NULL, NULL); static int iwm_sysctl_fw_loaded_handler(SYSCTLFN_ARGS) { struct sysctlnode node; struct iwm_softc *sc; int err, t; node = *rnode; sc = node.sysctl_data; t = ISSET(sc->sc_flags, IWM_FLAG_FW_LOADED) ? 1 : 0; node.sysctl_data = &t; err = sysctl_lookup(SYSCTLFN_CALL(&node)); if (err || newp == NULL) return err; if (t == 0) CLR(sc->sc_flags, IWM_FLAG_FW_LOADED); return 0; } SYSCTL_SETUP(sysctl_iwm, "sysctl iwm(4) subtree setup") { const struct sysctlnode *rnode; #ifdef IWM_DEBUG const struct sysctlnode *cnode; #endif /* IWM_DEBUG */ int rc; if ((rc = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "iwm", SYSCTL_DESCR("iwm global controls"), NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) goto err; iwm_sysctl_root_num = rnode->sysctl_num; #ifdef IWM_DEBUG /* control debugging printfs */ if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable debugging output"), NULL, 0, &iwm_debug, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; #endif /* IWM_DEBUG */ return; err: aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); }