126f6cf9bc
evbarm ports. Inline _splraise/_spllower/splx for i80321 and iq80310 for more performance.
579 lines
13 KiB
C
579 lines
13 KiB
C
/* $NetBSD: i80321_icu.c,v 1.5 2002/08/17 16:42:20 briggs Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2001, 2002 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Interrupt support for the Intel i80321 I/O Processor.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <machine/bus.h>
|
|
#include <machine/intr.h>
|
|
|
|
#include <arm/cpufunc.h>
|
|
|
|
#include <arm/xscale/i80321reg.h>
|
|
#include <arm/xscale/i80321var.h>
|
|
|
|
/* Interrupt handler queues. */
|
|
struct intrq intrq[NIRQ];
|
|
|
|
/* Interrupts to mask at each level. */
|
|
int i80321_imask[NIPL];
|
|
|
|
/* Current interrupt priority level. */
|
|
__volatile int current_spl_level;
|
|
|
|
/* Interrupts pending. */
|
|
__volatile int i80321_ipending;
|
|
|
|
/* Software copy of the IRQs we have enabled. */
|
|
__volatile uint32_t intr_enabled;
|
|
|
|
/* Mask if interrupts steered to FIQs. */
|
|
uint32_t intr_steer;
|
|
|
|
/*
|
|
* Map a software interrupt queue index (to the unused bits in the
|
|
* ICU registers -- XXX will need to revisit this if those bits are
|
|
* ever used in future steppings).
|
|
*/
|
|
static const uint32_t si_to_irqbit[SI_NQUEUES] = {
|
|
ICU_INT_bit26, /* SI_SOFT */
|
|
ICU_INT_bit22, /* SI_SOFTCLOCK */
|
|
ICU_INT_bit5, /* SI_SOFTNET */
|
|
ICU_INT_bit4, /* SI_SOFTSERIAL */
|
|
};
|
|
|
|
#define INT_SWMASK \
|
|
((1U << ICU_INT_bit26) | (1U << ICU_INT_bit22) | \
|
|
(1U << ICU_INT_bit5) | (1U << ICU_INT_bit4))
|
|
|
|
#define SI_TO_IRQBIT(si) (1U << si_to_irqbit[(si)])
|
|
|
|
/*
|
|
* Map a software interrupt queue to an interrupt priority level.
|
|
*/
|
|
static const int si_to_ipl[SI_NQUEUES] = {
|
|
IPL_SOFT, /* SI_SOFT */
|
|
IPL_SOFTCLOCK, /* SI_SOFTCLOCK */
|
|
IPL_SOFTNET, /* SI_SOFTNET */
|
|
IPL_SOFTSERIAL, /* SI_SOFTSERIAL */
|
|
};
|
|
|
|
/*
|
|
* Interrupt bit names.
|
|
*/
|
|
const char *i80321_irqnames[] = {
|
|
"DMA0 EOT",
|
|
"DMA0 EOC",
|
|
"DMA1 EOT",
|
|
"DMA1 EOC",
|
|
"irq 4",
|
|
"irq 5",
|
|
"AAU EOT",
|
|
"AAU EOC",
|
|
"core PMU",
|
|
"TMR0 (hardclock)",
|
|
"TMR1",
|
|
"I2C0",
|
|
"I2C1",
|
|
"MU",
|
|
"BIST",
|
|
"periph PMU",
|
|
"XScale PMU",
|
|
"BIU error",
|
|
"ATU error",
|
|
"MCU error",
|
|
"DMA0 error",
|
|
"DMA1 error",
|
|
"irq 22",
|
|
"AAU error",
|
|
"MU error",
|
|
"SSP",
|
|
"irq 26",
|
|
"irq 27",
|
|
"irq 28",
|
|
"irq 29",
|
|
"irq 30",
|
|
"irq 31",
|
|
};
|
|
|
|
void i80321_intr_dispatch(struct clockframe *frame);
|
|
|
|
static __inline uint32_t
|
|
i80321_iintsrc_read(void)
|
|
{
|
|
uint32_t iintsrc;
|
|
|
|
__asm __volatile("mrc p6, 0, %0, c8, c0, 0"
|
|
: "=r" (iintsrc));
|
|
|
|
/*
|
|
* The IINTSRC register shows bits that are active even
|
|
* if they are masked in INTCTL, so we have to mask them
|
|
* off with the interrupts we consider enabled.
|
|
*/
|
|
return (iintsrc & intr_enabled);
|
|
}
|
|
|
|
#if defined(EVBARM_SPL_NOINLINE)
|
|
static __inline void
|
|
i80321_set_intrmask(void)
|
|
{
|
|
extern __volatile uint32_t intr_enabled;
|
|
|
|
__asm __volatile("mcr p6, 0, %0, c0, c0, 0"
|
|
:
|
|
: "r" (intr_enabled & ICU_INT_HWMASK));
|
|
}
|
|
#endif
|
|
|
|
static __inline void
|
|
i80321_set_intrsteer(void)
|
|
{
|
|
|
|
__asm __volatile("mcr p6, 0, %0, c4, c0, 0"
|
|
:
|
|
: "r" (intr_steer & ICU_INT_HWMASK));
|
|
}
|
|
|
|
static __inline void
|
|
i80321_enable_irq(int irq)
|
|
{
|
|
|
|
intr_enabled |= (1U << irq);
|
|
i80321_set_intrmask();
|
|
}
|
|
|
|
static __inline void
|
|
i80321_disable_irq(int irq)
|
|
{
|
|
|
|
intr_enabled &= ~(1U << irq);
|
|
i80321_set_intrmask();
|
|
}
|
|
|
|
/*
|
|
* NOTE: This routine must be called with interrupts disabled in the CPSR.
|
|
*/
|
|
static void
|
|
i80321_intr_calculate_masks(void)
|
|
{
|
|
struct intrq *iq;
|
|
struct intrhand *ih;
|
|
int irq, ipl;
|
|
|
|
/* First, figure out which IPLs each IRQ has. */
|
|
for (irq = 0; irq < NIRQ; irq++) {
|
|
int levels = 0;
|
|
iq = &intrq[irq];
|
|
i80321_disable_irq(irq);
|
|
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
|
|
ih = TAILQ_NEXT(ih, ih_list))
|
|
levels |= (1U << ih->ih_ipl);
|
|
iq->iq_levels = levels;
|
|
}
|
|
|
|
/* Next, figure out which IRQs are used by each IPL. */
|
|
for (ipl = 0; ipl < NIPL; ipl++) {
|
|
int irqs = 0;
|
|
for (irq = 0; irq < NIRQ; irq++) {
|
|
if (intrq[irq].iq_levels & (1U << ipl))
|
|
irqs |= (1U << irq);
|
|
}
|
|
i80321_imask[ipl] = irqs;
|
|
}
|
|
|
|
i80321_imask[IPL_NONE] = 0;
|
|
|
|
/*
|
|
* Initialize the soft interrupt masks to block themselves.
|
|
*/
|
|
i80321_imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT);
|
|
i80321_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
|
|
i80321_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
|
|
i80321_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
|
|
|
|
/*
|
|
* splsoftclock() is the only interface that users of the
|
|
* generic software interrupt facility have to block their
|
|
* soft intrs, so splsoftclock() must also block IPL_SOFT.
|
|
*/
|
|
i80321_imask[IPL_SOFTCLOCK] |= i80321_imask[IPL_SOFT];
|
|
|
|
/*
|
|
* splsoftnet() must also block splsoftclock(), since we don't
|
|
* want timer-driven network events to occur while we're
|
|
* processing incoming packets.
|
|
*/
|
|
i80321_imask[IPL_SOFTNET] |= i80321_imask[IPL_SOFTCLOCK];
|
|
|
|
/*
|
|
* Enforce a heirarchy that gives "slow" device (or devices with
|
|
* limited input buffer space/"real-time" requirements) a better
|
|
* chance at not dropping data.
|
|
*/
|
|
i80321_imask[IPL_BIO] |= i80321_imask[IPL_SOFTNET];
|
|
i80321_imask[IPL_NET] |= i80321_imask[IPL_BIO];
|
|
i80321_imask[IPL_SOFTSERIAL] |= i80321_imask[IPL_NET];
|
|
i80321_imask[IPL_TTY] |= i80321_imask[IPL_SOFTSERIAL];
|
|
|
|
/*
|
|
* splvm() blocks all interrupts that use the kernel memory
|
|
* allocation facilities.
|
|
*/
|
|
i80321_imask[IPL_IMP] |= i80321_imask[IPL_TTY];
|
|
|
|
/*
|
|
* Audio devices are not allowed to perform memory allocation
|
|
* in their interrupt routines, and they have fairly "real-time"
|
|
* requirements, so give them a high interrupt priority.
|
|
*/
|
|
i80321_imask[IPL_AUDIO] |= i80321_imask[IPL_IMP];
|
|
|
|
/*
|
|
* splclock() must block anything that uses the scheduler.
|
|
*/
|
|
i80321_imask[IPL_CLOCK] |= i80321_imask[IPL_AUDIO];
|
|
|
|
/*
|
|
* No separate statclock on the IQ80310.
|
|
*/
|
|
i80321_imask[IPL_STATCLOCK] |= i80321_imask[IPL_CLOCK];
|
|
|
|
/*
|
|
* splhigh() must block "everything".
|
|
*/
|
|
i80321_imask[IPL_HIGH] |= i80321_imask[IPL_STATCLOCK];
|
|
|
|
/*
|
|
* XXX We need serial drivers to run at the absolute highest priority
|
|
* in order to avoid overruns, so serial > high.
|
|
*/
|
|
i80321_imask[IPL_SERIAL] |= i80321_imask[IPL_HIGH];
|
|
|
|
/*
|
|
* Now compute which IRQs must be blocked when servicing any
|
|
* given IRQ.
|
|
*/
|
|
for (irq = 0; irq < NIRQ; irq++) {
|
|
int irqs = (1U << irq);
|
|
iq = &intrq[irq];
|
|
if (TAILQ_FIRST(&iq->iq_list) != NULL)
|
|
i80321_enable_irq(irq);
|
|
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
|
|
ih = TAILQ_NEXT(ih, ih_list))
|
|
irqs |= i80321_imask[ih->ih_ipl];
|
|
iq->iq_mask = irqs;
|
|
}
|
|
}
|
|
|
|
__inline void
|
|
i80321_do_pending(void)
|
|
{
|
|
static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
|
|
int new, oldirqstate;
|
|
|
|
if (__cpu_simple_lock_try(&processing) == 0)
|
|
return;
|
|
|
|
new = current_spl_level;
|
|
|
|
oldirqstate = disable_interrupts(I32_bit);
|
|
|
|
#define DO_SOFTINT(si) \
|
|
if ((i80321_ipending & ~new) & SI_TO_IRQBIT(si)) { \
|
|
i80321_ipending &= ~SI_TO_IRQBIT(si); \
|
|
current_spl_level |= i80321_imask[si_to_ipl[(si)]]; \
|
|
restore_interrupts(oldirqstate); \
|
|
softintr_dispatch(si); \
|
|
oldirqstate = disable_interrupts(I32_bit); \
|
|
current_spl_level = new; \
|
|
}
|
|
|
|
DO_SOFTINT(SI_SOFTSERIAL);
|
|
DO_SOFTINT(SI_SOFTNET);
|
|
DO_SOFTINT(SI_SOFTCLOCK);
|
|
DO_SOFTINT(SI_SOFT);
|
|
|
|
__cpu_simple_unlock(&processing);
|
|
|
|
restore_interrupts(oldirqstate);
|
|
}
|
|
|
|
#if defined(EVBARM_SPL_NOINLINE)
|
|
|
|
__inline void
|
|
splx(int new)
|
|
{
|
|
int oldirqstate, hwpend;
|
|
|
|
current_spl_level = new;
|
|
|
|
hwpend = (i80321_ipending & ICU_INT_HWMASK) & ~new;
|
|
if (hwpend != 0) {
|
|
oldirqstate = disable_interrupts(I32_bit);
|
|
intr_enabled |= hwpend;
|
|
i80321_set_intrmask();
|
|
restore_interrupts(oldirqstate);
|
|
}
|
|
|
|
if ((i80321_ipending & INT_SWMASK) & ~new)
|
|
i80321_do_pending();
|
|
}
|
|
|
|
int
|
|
_splraise(int ipl)
|
|
{
|
|
int old;
|
|
|
|
old = current_spl_level;
|
|
current_spl_level |= i80321_imask[ipl];
|
|
|
|
return (old);
|
|
}
|
|
|
|
int
|
|
_spllower(int ipl)
|
|
{
|
|
int old = current_spl_level;
|
|
|
|
splx(i80321_imask[ipl]);
|
|
return(old);
|
|
}
|
|
|
|
#else /* EVBARM_SPL_NOINLINE */
|
|
|
|
#undef splx
|
|
__inline void
|
|
splx(int new)
|
|
{
|
|
i80321_splx(new);
|
|
}
|
|
|
|
#undef _spllower
|
|
int
|
|
_spllower(int ipl)
|
|
{
|
|
return i80321_spllower(ipl);
|
|
}
|
|
|
|
#undef _splraise
|
|
int
|
|
_splraise(int ipl)
|
|
{
|
|
return i80321_splraise(ipl);
|
|
}
|
|
|
|
#endif /* else EVBARM_SPL_NOINLINE */
|
|
|
|
void
|
|
_setsoftintr(int si)
|
|
{
|
|
int oldirqstate;
|
|
|
|
oldirqstate = disable_interrupts(I32_bit);
|
|
i80321_ipending |= SI_TO_IRQBIT(si);
|
|
restore_interrupts(oldirqstate);
|
|
|
|
/* Process unmasked pending soft interrupts. */
|
|
if ((i80321_ipending & INT_SWMASK) & ~current_spl_level)
|
|
i80321_do_pending();
|
|
}
|
|
|
|
/*
|
|
* i80321_icu_init:
|
|
*
|
|
* Initialize the i80321 ICU. Called early in bootstrap
|
|
* to make sure the ICU is in a pristine state.
|
|
*/
|
|
void
|
|
i80321_icu_init(void)
|
|
{
|
|
|
|
intr_enabled = 0; /* All interrupts disabled */
|
|
i80321_set_intrmask();
|
|
|
|
intr_steer = 0; /* All interrupts steered to IRQ */
|
|
i80321_set_intrsteer();
|
|
}
|
|
|
|
/*
|
|
* i80321_intr_init:
|
|
*
|
|
* Initialize the rest of the interrupt subsystem, making it
|
|
* ready to handle interrupts from devices.
|
|
*/
|
|
void
|
|
i80321_intr_init(void)
|
|
{
|
|
struct intrq *iq;
|
|
int i;
|
|
|
|
intr_enabled = 0;
|
|
|
|
for (i = 0; i < NIRQ; i++) {
|
|
iq = &intrq[i];
|
|
TAILQ_INIT(&iq->iq_list);
|
|
|
|
evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
|
|
NULL, "iop321", i80321_irqnames[i]);
|
|
}
|
|
|
|
i80321_intr_calculate_masks();
|
|
|
|
/* Enable IRQs (don't yet use FIQs). */
|
|
enable_interrupts(I32_bit);
|
|
}
|
|
|
|
void *
|
|
i80321_intr_establish(int irq, int ipl, int (*func)(void *), void *arg)
|
|
{
|
|
struct intrq *iq;
|
|
struct intrhand *ih;
|
|
u_int oldirqstate;
|
|
|
|
if (irq < 0 || irq > NIRQ)
|
|
panic("i80321_intr_establish: IRQ %d out of range", irq);
|
|
|
|
ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
|
|
if (ih == NULL)
|
|
return (NULL);
|
|
|
|
ih->ih_func = func;
|
|
ih->ih_arg = arg;
|
|
ih->ih_ipl = ipl;
|
|
ih->ih_irq = irq;
|
|
|
|
iq = &intrq[irq];
|
|
|
|
/* All IOP321 interrupts are level-triggered. */
|
|
iq->iq_ist = IST_LEVEL;
|
|
|
|
oldirqstate = disable_interrupts(I32_bit);
|
|
|
|
TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
|
|
|
|
i80321_intr_calculate_masks();
|
|
|
|
restore_interrupts(oldirqstate);
|
|
|
|
return (ih);
|
|
}
|
|
|
|
void
|
|
i80321_intr_disestablish(void *cookie)
|
|
{
|
|
struct intrhand *ih = cookie;
|
|
struct intrq *iq = &intrq[ih->ih_irq];
|
|
int oldirqstate;
|
|
|
|
oldirqstate = disable_interrupts(I32_bit);
|
|
|
|
TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
|
|
|
|
i80321_intr_calculate_masks();
|
|
|
|
restore_interrupts(oldirqstate);
|
|
}
|
|
|
|
void
|
|
i80321_intr_dispatch(struct clockframe *frame)
|
|
{
|
|
struct intrq *iq;
|
|
struct intrhand *ih;
|
|
int oldirqstate, pcpl, irq, ibit, hwpend;
|
|
|
|
pcpl = current_spl_level;
|
|
|
|
hwpend = i80321_iintsrc_read();
|
|
|
|
/*
|
|
* Disable all the interrupts that are pending. We will
|
|
* reenable them once they are processed and not masked.
|
|
*/
|
|
intr_enabled &= ~hwpend;
|
|
i80321_set_intrmask();
|
|
|
|
while (hwpend != 0) {
|
|
irq = ffs(hwpend) - 1;
|
|
ibit = (1U << irq);
|
|
|
|
hwpend &= ~ibit;
|
|
|
|
if (pcpl & ibit) {
|
|
/*
|
|
* IRQ is masked; mark it as pending and check
|
|
* the next one. Note: the IRQ is already disabled.
|
|
*/
|
|
i80321_ipending |= ibit;
|
|
continue;
|
|
}
|
|
|
|
i80321_ipending &= ~ibit;
|
|
|
|
iq = &intrq[irq];
|
|
iq->iq_ev.ev_count++;
|
|
uvmexp.intrs++;
|
|
current_spl_level |= iq->iq_mask;
|
|
oldirqstate = enable_interrupts(I32_bit);
|
|
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
|
|
ih = TAILQ_NEXT(ih, ih_list)) {
|
|
(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
|
|
}
|
|
restore_interrupts(oldirqstate);
|
|
|
|
current_spl_level = pcpl;
|
|
|
|
/* Re-enable this interrupt now that's it's cleared. */
|
|
intr_enabled |= ibit;
|
|
i80321_set_intrmask();
|
|
}
|
|
|
|
/* Check for pendings soft intrs. */
|
|
if ((i80321_ipending & INT_SWMASK) & ~current_spl_level) {
|
|
oldirqstate = enable_interrupts(I32_bit);
|
|
i80321_do_pending();
|
|
restore_interrupts(oldirqstate);
|
|
}
|
|
}
|