NetBSD/sys/arch/hpcmips/dev/ucbsnd.c

785 lines
18 KiB
C

/* $NetBSD: ucbsnd.c,v 1.7 2001/11/14 18:15:17 thorpej Exp $ */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by UCHIYAMA Yasushi.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Device driver for PHILIPS UCB1200 Advanced modem/audio analog front-end
* Audio codec part.
*
* /dev/ucbsnd0 : sampling rate 22.154kHz monoral 16bit straight PCM device.
*/
#define UCBSNDDEBUG
#include "opt_tx39_debug.h"
#include "opt_use_poll.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/conf.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/endian.h>
#include <mips/cache.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <hpcmips/tx/tx39var.h>
#include <hpcmips/tx/tx39sibvar.h>
#include <hpcmips/tx/tx39sibreg.h>
#include <hpcmips/tx/tx39icureg.h>
#include <hpcmips/tx/txsnd.h>
#include <hpcmips/dev/ucb1200var.h>
#include <hpcmips/dev/ucb1200reg.h>
#define AUDIOUNIT(x) (minor(x)&0x0f)
#define AUDIODEV(x) (minor(x)&0xf0)
#define splaudio splbio /* XXX */
#ifdef UCBSNDDEBUG
int ucbsnd_debug = 1;
#define DPRINTF(arg) if (ucbsnd_debug) printf arg;
#define DPRINTFN(n, arg) if (ucbsnd_debug > (n)) printf arg;
#else
#define DPRINTF(arg)
#define DPRINTFN(n, arg)
#endif
#define UCBSND_BUFBLOCK 5
/*
* XXX temporary DMA buffer
*/
static u_int8_t dmabuf_static[TX39_SIBDMA_SIZE * UCBSND_BUFBLOCK] __attribute__((__aligned__(16))); /* XXX */
static size_t dmabufcnt_static[UCBSND_BUFBLOCK]; /* XXX */
enum ucbsnd_state {
/* 0 */ UCBSND_IDLE,
/* 1 */ UCBSND_INIT,
/* 2 */ UCBSND_ENABLE_SAMPLERATE,
/* 3 */ UCBSND_ENABLE_OUTPUTPATH,
/* 4 */ UCBSND_ENABLE_SETVOLUME,
/* 5 */ UCBSND_ENABLE_SPEAKER0,
/* 6 */ UCBSND_ENABLE_SPEAKER1,
/* 7 */ UCBSND_TRANSITION_PIO,
/* 8 */ UCBSND_PIO,
/* 9 */ UCBSND_TRANSITION_DISABLE,
/*10 */ UCBSND_DISABLE_OUTPUTPATH,
/*11 */ UCBSND_DISABLE_SPEAKER0,
/*12 */ UCBSND_DISABLE_SPEAKER1,
/*13 */ UCBSND_DISABLE_SIB,
/*14 */ UCBSND_DMASTART,
/*15 */ UCBSND_DMAEND,
};
struct ring_buf {
u_int32_t rb_buf; /* buffer start address */
size_t *rb_bufcnt; /* effective data count (max rb_blksize)*/
size_t rb_bufsize; /* total amount of buffer */
int rb_blksize; /* DMA block size */
int rb_maxblks; /* # of blocks in ring */
int rb_inp; /* start of input (to buffer) */
int rb_outp; /* output pointer */
};
struct ucbsnd_softc {
struct device sc_dev;
struct device *sc_sib; /* parent (TX39 SIB module) */
struct device *sc_ucb; /* parent (UCB1200 module) */
tx_chipset_tag_t sc_tc;
struct tx_sound_tag sc_tag;
int sc_mute;
/*
* audio codec state machine
*/
int sa_transfer_mode;
#define UCBSND_TRANSFERMODE_DMA 0
#define UCBSND_TRANSFERMODE_PIO 1
enum ucbsnd_state sa_state;
int sa_snd_attenuation;
#define UCBSND_DEFAULT_ATTENUATION 0 /* Full volume */
int sa_snd_rate; /* passed down from SIB module */
int sa_tel_rate;
void* sa_sf0ih;
void* sa_sndih;
int sa_retry;
int sa_cnt; /* misc counter */
/*
* input buffer
*/
size_t sa_dmacnt;
struct ring_buf sc_rb;
};
cdev_decl(ucbsnd);
int ucbsnd_match(struct device*, struct cfdata*, void*);
void ucbsnd_attach(struct device*, struct device*, void*);
int ucbsnd_exec_output(void*);
int ucbsnd_busy(void*);
void ucbsnd_sound_init(struct ucbsnd_softc*);
void __ucbsnd_sound_click(tx_sound_tag_t);
void __ucbsnd_sound_mute(tx_sound_tag_t, int);
int ucbsndwrite_subr(struct ucbsnd_softc *, u_int32_t *, size_t,
struct uio *);
int ringbuf_allocate(struct ring_buf*, size_t, int);
void ringbuf_deallocate(struct ring_buf*);
void ringbuf_reset(struct ring_buf*);
int ringbuf_full(struct ring_buf*);
void *ringbuf_producer_get(struct ring_buf*);
void ringbuf_producer_return(struct ring_buf*, size_t);
void *ringbuf_consumer_get(struct ring_buf*, size_t*);
void ringbuf_consumer_return(struct ring_buf*);
struct cfattach ucbsnd_ca = {
sizeof(struct ucbsnd_softc), ucbsnd_match, ucbsnd_attach
};
int
ucbsnd_match(struct device *parent, struct cfdata *cf, void *aux)
{
return (1);
}
void
ucbsnd_attach(struct device *parent, struct device *self, void *aux)
{
struct ucb1200_attach_args *ucba = aux;
struct ucbsnd_softc *sc = (void*)self;
tx_chipset_tag_t tc;
tc = sc->sc_tc = ucba->ucba_tc;
sc->sc_sib = ucba->ucba_sib;
sc->sc_ucb = ucba->ucba_ucb;
/* register sound functions */
ucbsnd_sound_init(sc);
sc->sa_snd_rate = ucba->ucba_snd_rate;
sc->sa_tel_rate = ucba->ucba_tel_rate;
sc->sa_snd_attenuation = UCBSND_DEFAULT_ATTENUATION;
#define KHZ(a) ((a) / 1000), (((a) % 1000))
printf(": audio %d.%03d kHz telecom %d.%03d kHz",
KHZ((tx39sib_clock(sc->sc_sib) * 2) /
(sc->sa_snd_rate * 64)),
KHZ((tx39sib_clock(sc->sc_sib) * 2) /
(sc->sa_tel_rate * 64)));
ucb1200_state_install(parent, ucbsnd_busy, self,
UCB1200_SND_MODULE);
ringbuf_allocate(&sc->sc_rb, TX39_SIBDMA_SIZE, UCBSND_BUFBLOCK);
printf("\n");
}
int
ucbsnd_busy(void *arg)
{
struct ucbsnd_softc *sc = arg;
return (sc->sa_state != UCBSND_IDLE);
}
int
ucbsnd_exec_output(void *arg)
{
struct ucbsnd_softc *sc = arg;
tx_chipset_tag_t tc = sc->sc_tc;
txreg_t reg;
u_int32_t *buf;
size_t bufcnt;
switch (sc->sa_state) {
default:
panic("ucbsnd_exec_output: invalid state %d", sc->sa_state);
/* NOTREACHED */
break;
case UCBSND_IDLE:
/* nothing to do */
return (0);
case UCBSND_INIT:
sc->sa_sf0ih = tx_intr_establish(
tc, MAKEINTR(1, TX39_INTRSTATUS1_SIBSF0INT),
IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc);
sc->sa_state = UCBSND_ENABLE_SAMPLERATE;
return (0);
case UCBSND_ENABLE_SAMPLERATE:
/* Enable UCB1200 side sample rate */
reg = TX39_SIBSF0_WRITE;
reg = TX39_SIBSF0_REGADDR_SET(reg, UCB1200_AUDIOCTRLA_REG);
reg = TX39_SIBSF0_REGDATA_SET(reg, sc->sa_snd_rate);
tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);
sc->sa_state = UCBSND_ENABLE_OUTPUTPATH;
return (0);
case UCBSND_ENABLE_OUTPUTPATH:
/* Enable UCB1200 side */
reg = TX39_SIBSF0_WRITE;
reg = TX39_SIBSF0_REGADDR_SET(reg, UCB1200_AUDIOCTRLB_REG);
reg = TX39_SIBSF0_REGDATA_SET(reg, sc->sa_snd_attenuation |
UCB1200_AUDIOCTRLB_OUTEN);
tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);
/* Enable SIB side */
reg = tx_conf_read(tc, TX39_SIBCTRL_REG);
tx_conf_write(tc, TX39_SIBCTRL_REG,
reg | TX39_SIBCTRL_ENSND);
sc->sa_state = UCBSND_ENABLE_SPEAKER0;
sc->sa_retry = 10;
return (0);
case UCBSND_ENABLE_SPEAKER0:
/* Speaker on */
reg = TX39_SIBSF0_REGADDR_SET(0, UCB1200_IO_DATA_REG);
tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);
sc->sa_state = UCBSND_ENABLE_SPEAKER1;
return (0);
case UCBSND_ENABLE_SPEAKER1:
reg = tx_conf_read(tc, TX39_SIBSF0STAT_REG);
if ((TX39_SIBSF0_REGADDR(reg) != UCB1200_IO_DATA_REG) &&
--sc->sa_retry > 0) {
sc->sa_state = UCBSND_ENABLE_SPEAKER0;
return (0);
}
if (sc->sa_retry <= 0) {
printf("ucbsnd_exec_output: subframe0 busy\n");
sc->sa_state = UCBSND_IDLE;
return (0);
}
reg |= TX39_SIBSF0_WRITE;
reg |= UCB1200_IO_DATA_SPEAKER;
tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);
/*
* Begin to transfer.
*/
switch (sc->sa_transfer_mode) {
case UCBSND_TRANSFERMODE_DMA:
sc->sa_state = UCBSND_DMASTART;
sc->sa_dmacnt = 0;
break;
case UCBSND_TRANSFERMODE_PIO:
sc->sa_state = UCBSND_TRANSITION_PIO;
break;
}
return (0);
case UCBSND_DMASTART:
/* get data */
if (sc->sa_dmacnt) /* return previous buffer */
ringbuf_consumer_return(&sc->sc_rb);
buf = ringbuf_consumer_get(&sc->sc_rb, &bufcnt);
if (buf == 0) {
sc->sa_state = UCBSND_DMAEND;
return (0);
}
if (sc->sa_dmacnt == 0) {
/* change interrupt source */
if (sc->sa_sf0ih) {
tx_intr_disestablish(tc, sc->sa_sf0ih);
sc->sa_sf0ih = 0;
}
sc->sa_sndih = tx_intr_establish(
tc, MAKEINTR(1, TX39_INTRSTATUS1_SND1_0INT),
IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc);
} else {
wakeup(&sc->sc_rb);
}
/* set DMA buffer address */
tx_conf_write(tc, TX39_SIBSNDTXSTART_REG,
MIPS_KSEG0_TO_PHYS(buf));
/* set DMA buffer size */
tx_conf_write(tc, TX39_SIBSIZE_REG,
TX39_SIBSIZE_SNDSIZE_SET(0, bufcnt));
tx_conf_write(tc, TX39_SIBSF0CTRL_REG, TX39_SIBSF0_SNDVALID);
/* kick DMA */
reg = tx_conf_read(tc, TX39_SIBDMACTRL_REG);
reg |= TX39_SIBDMACTRL_ENDMATXSND;
tx_conf_write(tc, TX39_SIBDMACTRL_REG, reg);
/* set next */
sc->sa_dmacnt += bufcnt;
break;
case UCBSND_DMAEND:
sc->sa_state = UCBSND_TRANSITION_DISABLE;
break;
case UCBSND_TRANSITION_PIO:
/* change interrupt source */
if (sc->sa_sf0ih) {
tx_intr_disestablish(tc, sc->sa_sf0ih);
sc->sa_sf0ih = 0;
}
sc->sa_sndih = tx_intr_establish(
tc, MAKEINTR(1, TX39_INTRSTATUS1_SNDININT),
IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc);
sc->sa_state = UCBSND_PIO;
sc->sa_cnt = 0;
return (0);
case UCBSND_PIO:
{
/* PIO test routine */
int dummy_data = sc->sa_cnt * 3;
tx_conf_write(tc, TX39_SIBSNDHOLD_REG,
dummy_data << 16 | dummy_data);
tx_conf_write(tc, TX39_SIBSF0CTRL_REG, TX39_SIBSF0_SNDVALID);
if (sc->sa_cnt++ > 50) {
sc->sa_state = UCBSND_TRANSITION_DISABLE;
}
return (0);
}
case UCBSND_TRANSITION_DISABLE:
/* change interrupt source */
if (sc->sa_sndih) {
tx_intr_disestablish(tc, sc->sa_sndih);
sc->sa_sndih = 0;
}
sc->sa_sf0ih = tx_intr_establish(
tc, MAKEINTR(1, TX39_INTRSTATUS1_SIBSF0INT),
IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc);
sc->sa_state = UCBSND_DISABLE_OUTPUTPATH;
return (0);
case UCBSND_DISABLE_OUTPUTPATH:
/* disable codec output path and mute */
reg = TX39_SIBSF0_WRITE;
reg = TX39_SIBSF0_REGADDR_SET(reg, UCB1200_AUDIOCTRLB_REG);
reg = TX39_SIBSF0_REGDATA_SET(reg, UCB1200_AUDIOCTRLB_MUTE);
tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);
sc->sa_state = UCBSND_DISABLE_SPEAKER0;
sc->sa_retry = 10;
return (0);
case UCBSND_DISABLE_SPEAKER0:
/* Speaker off */
reg = TX39_SIBSF0_REGADDR_SET(0, UCB1200_IO_DATA_REG);
tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);
sc->sa_state = UCBSND_DISABLE_SPEAKER1;
return (0);
case UCBSND_DISABLE_SPEAKER1:
reg = tx_conf_read(tc, TX39_SIBSF0STAT_REG);
if ((TX39_SIBSF0_REGADDR(reg) != UCB1200_IO_DATA_REG) &&
--sc->sa_retry > 0) {
sc->sa_state = UCBSND_DISABLE_SPEAKER0;
return (0);
}
if (sc->sa_retry <= 0) {
printf("ucbsnd_exec_output: subframe0 busy\n");
sc->sa_state = UCBSND_IDLE;
return (0);
}
reg |= TX39_SIBSF0_WRITE;
reg &= ~UCB1200_IO_DATA_SPEAKER;
tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg);
sc->sa_state = UCBSND_DISABLE_SIB;
return (0);
case UCBSND_DISABLE_SIB:
/* Disable SIB side */
reg = tx_conf_read(tc, TX39_SIBCTRL_REG);
reg &= ~TX39_SIBCTRL_ENSND;
tx_conf_write(tc, TX39_SIBCTRL_REG, reg);
/* end audio disable sequence */
if (sc->sa_sf0ih) {
tx_intr_disestablish(tc, sc->sa_sf0ih);
sc->sa_sf0ih = 0;
}
sc->sa_state = UCBSND_IDLE;
return (0);
}
return (0);
}
/*
* global sound interface.
*/
void
ucbsnd_sound_init(struct ucbsnd_softc *sc)
{
tx_sound_tag_t ts = &sc->sc_tag;
tx_chipset_tag_t tc = sc->sc_tc;
ts->ts_v = sc;
ts->ts_click = __ucbsnd_sound_click;
ts->ts_mute = __ucbsnd_sound_mute;
tx_conf_register_sound(tc, ts);
}
void
__ucbsnd_sound_click(tx_sound_tag_t arg)
{
struct ucbsnd_softc *sc = (void*)arg;
if (!sc->sc_mute && sc->sa_state == UCBSND_IDLE) {
sc->sa_transfer_mode = UCBSND_TRANSFERMODE_PIO;
sc->sa_state = UCBSND_INIT;
ucbsnd_exec_output((void*)sc);
}
}
void
__ucbsnd_sound_mute(tx_sound_tag_t arg, int onoff)
{
struct ucbsnd_softc *sc = (void*)arg;
sc->sc_mute = onoff;
}
/*
* device access
*/
extern struct cfdriver ucbsnd_cd;
int
ucbsndopen(dev_t dev, int flags, int ifmt, struct proc *p)
{
int unit = AUDIOUNIT(dev);
struct ucbsnd_softc *sc;
int s;
if (unit >= ucbsnd_cd.cd_ndevs ||
(sc = ucbsnd_cd.cd_devs[unit]) == NULL)
return (ENXIO);
s = splaudio();
ringbuf_reset(&sc->sc_rb);
splx(s);
return (0);
}
int
ucbsndclose(dev_t dev, int flags, int ifmt, struct proc *p)
{
int unit = AUDIOUNIT(dev);
struct ucbsnd_softc *sc;
if (unit >= ucbsnd_cd.cd_ndevs ||
(sc = ucbsnd_cd.cd_devs[unit]) == NULL)
return (ENXIO);
return (0);
}
int
ucbsndread(dev_t dev, struct uio *uio, int ioflag)
{
int unit = AUDIOUNIT(dev);
struct ucbsnd_softc *sc;
int error = 0;
if (unit >= ucbsnd_cd.cd_ndevs ||
(sc = ucbsnd_cd.cd_devs[unit]) == NULL)
return (ENXIO);
/* not supported yet */
return (error);
}
int
ucbsndwrite_subr(struct ucbsnd_softc *sc, u_int32_t *buf, size_t bufsize,
struct uio *uio)
{
int i, s, error;
error = uiomove(buf, bufsize, uio);
/*
* inverse endian for UCB1200
*/
for (i = 0; i < bufsize / sizeof(int); i++)
buf[i] = htobe32(buf[i]);
mips_dcache_wbinv_range((vaddr_t)buf, bufsize);
ringbuf_producer_return(&sc->sc_rb, bufsize);
s = splaudio();
if (sc->sa_state == UCBSND_IDLE && ringbuf_full(&sc->sc_rb)) {
sc->sa_transfer_mode = UCBSND_TRANSFERMODE_DMA;
sc->sa_state = UCBSND_INIT;
ucbsnd_exec_output((void*)sc);
}
splx(s);
return (error);
}
int
ucbsndwrite(dev_t dev, struct uio *uio, int ioflag)
{
int unit = AUDIOUNIT(dev);
struct ucbsnd_softc *sc;
int len, error = 0;
int i, n, s, rest;
void *buf;
if (unit >= ucbsnd_cd.cd_ndevs ||
(sc = ucbsnd_cd.cd_devs[unit]) == NULL)
return (ENXIO);
len = uio->uio_resid;
n = (len + TX39_SIBDMA_SIZE - 1) / TX39_SIBDMA_SIZE;
rest = len % TX39_SIBDMA_SIZE;
if (rest)
--n;
for (i = 0; i < n; i++) {
while (!(buf = ringbuf_producer_get(&sc->sc_rb))) {
error = tsleep(&sc->sc_rb, PRIBIO, "ucbsnd", 1000);
if (error)
goto errout;
}
error = ucbsndwrite_subr(sc, buf, TX39_SIBDMA_SIZE, uio);
if (error)
goto out;
}
if (rest) {
while (!(buf = ringbuf_producer_get(&sc->sc_rb))) {
error = tsleep(&sc->sc_rb, PRIBIO, "ucbsnd", 1000);
if (error)
goto errout;
}
error = ucbsndwrite_subr(sc, buf, rest, uio);
}
out:
return (error);
errout:
printf("%s: timeout. reset ring-buffer.\n", sc->sc_dev.dv_xname);
s = splaudio();
ringbuf_reset(&sc->sc_rb);
splx(s);
return (error);
}
int
ucbsndioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p)
{
int error = 0;
/* not coded yet */
return (error);
}
int
ucbsndpoll(dev_t dev, int events, struct proc *p)
{
int error = 0;
/* not coded yet */
return (error);
}
paddr_t
ucbsndmmap(dev_t dev, off_t off, int prot)
{
int error = 0;
/* not coded yet */
return (error);
}
/*
* Ring buffer.
*/
int
ringbuf_allocate(struct ring_buf *rb, size_t blksize, int maxblk)
{
rb->rb_bufsize = blksize * maxblk;
rb->rb_blksize = blksize;
rb->rb_maxblks = maxblk;
#if notyet
rb->rb_buf = (u_int32_t)malloc(rb->rb_bufsize, M_DEVBUF, M_WAITOK);
#else
rb->rb_buf = (u_int32_t)dmabuf_static;
#endif
if (rb->rb_buf == 0) {
printf("ringbuf_allocate: can't allocate buffer\n");
return (1);
}
memset((char*)rb->rb_buf, 0, rb->rb_bufsize);
#if notyet
rb->rb_bufcnt = malloc(rb->rb_maxblks * sizeof(size_t), M_DEVBUF,
M_WAITOK);
#else
rb->rb_bufcnt = dmabufcnt_static;
#endif
if (rb->rb_bufcnt == 0) {
printf("ringbuf_allocate: can't allocate buffer\n");
return (1);
}
memset((char*)rb->rb_bufcnt, 0, rb->rb_maxblks * sizeof(size_t));
ringbuf_reset(rb);
return (0);
}
void
ringbuf_deallocate(struct ring_buf *rb)
{
#if notyet
free((void*)rb->rb_buf, M_DEVBUF);
free(rb->rb_bufcnt, M_DEVBUF);
#endif
}
void
ringbuf_reset(struct ring_buf *rb)
{
rb->rb_outp = 0;
rb->rb_inp = 0;
}
int
ringbuf_full(struct ring_buf *rb)
{
int ret;
ret = rb->rb_outp == rb->rb_maxblks;
return (ret);
}
void*
ringbuf_producer_get(struct ring_buf *rb)
{
u_int32_t ret;
int s;
s = splaudio();
ret = ringbuf_full(rb) ? 0 :
rb->rb_buf + rb->rb_inp * rb->rb_blksize;
splx(s);
return (void *)ret;
}
void
ringbuf_producer_return(struct ring_buf *rb, size_t cnt)
{
int s;
assert(cnt <= rb->rb_blksize);
s = splaudio();
rb->rb_outp++;
rb->rb_bufcnt[rb->rb_inp] = cnt;
rb->rb_inp = (rb->rb_inp + 1) % rb->rb_maxblks;
splx(s);
}
void*
ringbuf_consumer_get(struct ring_buf *rb, size_t *cntp)
{
u_int32_t p;
int idx;
if (rb->rb_outp == 0)
return (0);
idx = (rb->rb_inp - rb->rb_outp + rb->rb_maxblks) % rb->rb_maxblks;
p = rb->rb_buf + idx * rb->rb_blksize;
*cntp = rb->rb_bufcnt[idx];
return (void *)p;
}
void
ringbuf_consumer_return(struct ring_buf *rb)
{
if (rb->rb_outp > 0)
rb->rb_outp--;
}