/* $NetBSD: ucbsnd.c,v 1.7 2001/11/14 18:15:17 thorpej Exp $ */ /*- * Copyright (c) 2000 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by UCHIYAMA Yasushi. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Device driver for PHILIPS UCB1200 Advanced modem/audio analog front-end * Audio codec part. * * /dev/ucbsnd0 : sampling rate 22.154kHz monoral 16bit straight PCM device. */ #define UCBSNDDEBUG #include "opt_tx39_debug.h" #include "opt_use_poll.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define AUDIOUNIT(x) (minor(x)&0x0f) #define AUDIODEV(x) (minor(x)&0xf0) #define splaudio splbio /* XXX */ #ifdef UCBSNDDEBUG int ucbsnd_debug = 1; #define DPRINTF(arg) if (ucbsnd_debug) printf arg; #define DPRINTFN(n, arg) if (ucbsnd_debug > (n)) printf arg; #else #define DPRINTF(arg) #define DPRINTFN(n, arg) #endif #define UCBSND_BUFBLOCK 5 /* * XXX temporary DMA buffer */ static u_int8_t dmabuf_static[TX39_SIBDMA_SIZE * UCBSND_BUFBLOCK] __attribute__((__aligned__(16))); /* XXX */ static size_t dmabufcnt_static[UCBSND_BUFBLOCK]; /* XXX */ enum ucbsnd_state { /* 0 */ UCBSND_IDLE, /* 1 */ UCBSND_INIT, /* 2 */ UCBSND_ENABLE_SAMPLERATE, /* 3 */ UCBSND_ENABLE_OUTPUTPATH, /* 4 */ UCBSND_ENABLE_SETVOLUME, /* 5 */ UCBSND_ENABLE_SPEAKER0, /* 6 */ UCBSND_ENABLE_SPEAKER1, /* 7 */ UCBSND_TRANSITION_PIO, /* 8 */ UCBSND_PIO, /* 9 */ UCBSND_TRANSITION_DISABLE, /*10 */ UCBSND_DISABLE_OUTPUTPATH, /*11 */ UCBSND_DISABLE_SPEAKER0, /*12 */ UCBSND_DISABLE_SPEAKER1, /*13 */ UCBSND_DISABLE_SIB, /*14 */ UCBSND_DMASTART, /*15 */ UCBSND_DMAEND, }; struct ring_buf { u_int32_t rb_buf; /* buffer start address */ size_t *rb_bufcnt; /* effective data count (max rb_blksize)*/ size_t rb_bufsize; /* total amount of buffer */ int rb_blksize; /* DMA block size */ int rb_maxblks; /* # of blocks in ring */ int rb_inp; /* start of input (to buffer) */ int rb_outp; /* output pointer */ }; struct ucbsnd_softc { struct device sc_dev; struct device *sc_sib; /* parent (TX39 SIB module) */ struct device *sc_ucb; /* parent (UCB1200 module) */ tx_chipset_tag_t sc_tc; struct tx_sound_tag sc_tag; int sc_mute; /* * audio codec state machine */ int sa_transfer_mode; #define UCBSND_TRANSFERMODE_DMA 0 #define UCBSND_TRANSFERMODE_PIO 1 enum ucbsnd_state sa_state; int sa_snd_attenuation; #define UCBSND_DEFAULT_ATTENUATION 0 /* Full volume */ int sa_snd_rate; /* passed down from SIB module */ int sa_tel_rate; void* sa_sf0ih; void* sa_sndih; int sa_retry; int sa_cnt; /* misc counter */ /* * input buffer */ size_t sa_dmacnt; struct ring_buf sc_rb; }; cdev_decl(ucbsnd); int ucbsnd_match(struct device*, struct cfdata*, void*); void ucbsnd_attach(struct device*, struct device*, void*); int ucbsnd_exec_output(void*); int ucbsnd_busy(void*); void ucbsnd_sound_init(struct ucbsnd_softc*); void __ucbsnd_sound_click(tx_sound_tag_t); void __ucbsnd_sound_mute(tx_sound_tag_t, int); int ucbsndwrite_subr(struct ucbsnd_softc *, u_int32_t *, size_t, struct uio *); int ringbuf_allocate(struct ring_buf*, size_t, int); void ringbuf_deallocate(struct ring_buf*); void ringbuf_reset(struct ring_buf*); int ringbuf_full(struct ring_buf*); void *ringbuf_producer_get(struct ring_buf*); void ringbuf_producer_return(struct ring_buf*, size_t); void *ringbuf_consumer_get(struct ring_buf*, size_t*); void ringbuf_consumer_return(struct ring_buf*); struct cfattach ucbsnd_ca = { sizeof(struct ucbsnd_softc), ucbsnd_match, ucbsnd_attach }; int ucbsnd_match(struct device *parent, struct cfdata *cf, void *aux) { return (1); } void ucbsnd_attach(struct device *parent, struct device *self, void *aux) { struct ucb1200_attach_args *ucba = aux; struct ucbsnd_softc *sc = (void*)self; tx_chipset_tag_t tc; tc = sc->sc_tc = ucba->ucba_tc; sc->sc_sib = ucba->ucba_sib; sc->sc_ucb = ucba->ucba_ucb; /* register sound functions */ ucbsnd_sound_init(sc); sc->sa_snd_rate = ucba->ucba_snd_rate; sc->sa_tel_rate = ucba->ucba_tel_rate; sc->sa_snd_attenuation = UCBSND_DEFAULT_ATTENUATION; #define KHZ(a) ((a) / 1000), (((a) % 1000)) printf(": audio %d.%03d kHz telecom %d.%03d kHz", KHZ((tx39sib_clock(sc->sc_sib) * 2) / (sc->sa_snd_rate * 64)), KHZ((tx39sib_clock(sc->sc_sib) * 2) / (sc->sa_tel_rate * 64))); ucb1200_state_install(parent, ucbsnd_busy, self, UCB1200_SND_MODULE); ringbuf_allocate(&sc->sc_rb, TX39_SIBDMA_SIZE, UCBSND_BUFBLOCK); printf("\n"); } int ucbsnd_busy(void *arg) { struct ucbsnd_softc *sc = arg; return (sc->sa_state != UCBSND_IDLE); } int ucbsnd_exec_output(void *arg) { struct ucbsnd_softc *sc = arg; tx_chipset_tag_t tc = sc->sc_tc; txreg_t reg; u_int32_t *buf; size_t bufcnt; switch (sc->sa_state) { default: panic("ucbsnd_exec_output: invalid state %d", sc->sa_state); /* NOTREACHED */ break; case UCBSND_IDLE: /* nothing to do */ return (0); case UCBSND_INIT: sc->sa_sf0ih = tx_intr_establish( tc, MAKEINTR(1, TX39_INTRSTATUS1_SIBSF0INT), IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc); sc->sa_state = UCBSND_ENABLE_SAMPLERATE; return (0); case UCBSND_ENABLE_SAMPLERATE: /* Enable UCB1200 side sample rate */ reg = TX39_SIBSF0_WRITE; reg = TX39_SIBSF0_REGADDR_SET(reg, UCB1200_AUDIOCTRLA_REG); reg = TX39_SIBSF0_REGDATA_SET(reg, sc->sa_snd_rate); tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg); sc->sa_state = UCBSND_ENABLE_OUTPUTPATH; return (0); case UCBSND_ENABLE_OUTPUTPATH: /* Enable UCB1200 side */ reg = TX39_SIBSF0_WRITE; reg = TX39_SIBSF0_REGADDR_SET(reg, UCB1200_AUDIOCTRLB_REG); reg = TX39_SIBSF0_REGDATA_SET(reg, sc->sa_snd_attenuation | UCB1200_AUDIOCTRLB_OUTEN); tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg); /* Enable SIB side */ reg = tx_conf_read(tc, TX39_SIBCTRL_REG); tx_conf_write(tc, TX39_SIBCTRL_REG, reg | TX39_SIBCTRL_ENSND); sc->sa_state = UCBSND_ENABLE_SPEAKER0; sc->sa_retry = 10; return (0); case UCBSND_ENABLE_SPEAKER0: /* Speaker on */ reg = TX39_SIBSF0_REGADDR_SET(0, UCB1200_IO_DATA_REG); tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg); sc->sa_state = UCBSND_ENABLE_SPEAKER1; return (0); case UCBSND_ENABLE_SPEAKER1: reg = tx_conf_read(tc, TX39_SIBSF0STAT_REG); if ((TX39_SIBSF0_REGADDR(reg) != UCB1200_IO_DATA_REG) && --sc->sa_retry > 0) { sc->sa_state = UCBSND_ENABLE_SPEAKER0; return (0); } if (sc->sa_retry <= 0) { printf("ucbsnd_exec_output: subframe0 busy\n"); sc->sa_state = UCBSND_IDLE; return (0); } reg |= TX39_SIBSF0_WRITE; reg |= UCB1200_IO_DATA_SPEAKER; tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg); /* * Begin to transfer. */ switch (sc->sa_transfer_mode) { case UCBSND_TRANSFERMODE_DMA: sc->sa_state = UCBSND_DMASTART; sc->sa_dmacnt = 0; break; case UCBSND_TRANSFERMODE_PIO: sc->sa_state = UCBSND_TRANSITION_PIO; break; } return (0); case UCBSND_DMASTART: /* get data */ if (sc->sa_dmacnt) /* return previous buffer */ ringbuf_consumer_return(&sc->sc_rb); buf = ringbuf_consumer_get(&sc->sc_rb, &bufcnt); if (buf == 0) { sc->sa_state = UCBSND_DMAEND; return (0); } if (sc->sa_dmacnt == 0) { /* change interrupt source */ if (sc->sa_sf0ih) { tx_intr_disestablish(tc, sc->sa_sf0ih); sc->sa_sf0ih = 0; } sc->sa_sndih = tx_intr_establish( tc, MAKEINTR(1, TX39_INTRSTATUS1_SND1_0INT), IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc); } else { wakeup(&sc->sc_rb); } /* set DMA buffer address */ tx_conf_write(tc, TX39_SIBSNDTXSTART_REG, MIPS_KSEG0_TO_PHYS(buf)); /* set DMA buffer size */ tx_conf_write(tc, TX39_SIBSIZE_REG, TX39_SIBSIZE_SNDSIZE_SET(0, bufcnt)); tx_conf_write(tc, TX39_SIBSF0CTRL_REG, TX39_SIBSF0_SNDVALID); /* kick DMA */ reg = tx_conf_read(tc, TX39_SIBDMACTRL_REG); reg |= TX39_SIBDMACTRL_ENDMATXSND; tx_conf_write(tc, TX39_SIBDMACTRL_REG, reg); /* set next */ sc->sa_dmacnt += bufcnt; break; case UCBSND_DMAEND: sc->sa_state = UCBSND_TRANSITION_DISABLE; break; case UCBSND_TRANSITION_PIO: /* change interrupt source */ if (sc->sa_sf0ih) { tx_intr_disestablish(tc, sc->sa_sf0ih); sc->sa_sf0ih = 0; } sc->sa_sndih = tx_intr_establish( tc, MAKEINTR(1, TX39_INTRSTATUS1_SNDININT), IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc); sc->sa_state = UCBSND_PIO; sc->sa_cnt = 0; return (0); case UCBSND_PIO: { /* PIO test routine */ int dummy_data = sc->sa_cnt * 3; tx_conf_write(tc, TX39_SIBSNDHOLD_REG, dummy_data << 16 | dummy_data); tx_conf_write(tc, TX39_SIBSF0CTRL_REG, TX39_SIBSF0_SNDVALID); if (sc->sa_cnt++ > 50) { sc->sa_state = UCBSND_TRANSITION_DISABLE; } return (0); } case UCBSND_TRANSITION_DISABLE: /* change interrupt source */ if (sc->sa_sndih) { tx_intr_disestablish(tc, sc->sa_sndih); sc->sa_sndih = 0; } sc->sa_sf0ih = tx_intr_establish( tc, MAKEINTR(1, TX39_INTRSTATUS1_SIBSF0INT), IST_EDGE, IPL_TTY, ucbsnd_exec_output, sc); sc->sa_state = UCBSND_DISABLE_OUTPUTPATH; return (0); case UCBSND_DISABLE_OUTPUTPATH: /* disable codec output path and mute */ reg = TX39_SIBSF0_WRITE; reg = TX39_SIBSF0_REGADDR_SET(reg, UCB1200_AUDIOCTRLB_REG); reg = TX39_SIBSF0_REGDATA_SET(reg, UCB1200_AUDIOCTRLB_MUTE); tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg); sc->sa_state = UCBSND_DISABLE_SPEAKER0; sc->sa_retry = 10; return (0); case UCBSND_DISABLE_SPEAKER0: /* Speaker off */ reg = TX39_SIBSF0_REGADDR_SET(0, UCB1200_IO_DATA_REG); tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg); sc->sa_state = UCBSND_DISABLE_SPEAKER1; return (0); case UCBSND_DISABLE_SPEAKER1: reg = tx_conf_read(tc, TX39_SIBSF0STAT_REG); if ((TX39_SIBSF0_REGADDR(reg) != UCB1200_IO_DATA_REG) && --sc->sa_retry > 0) { sc->sa_state = UCBSND_DISABLE_SPEAKER0; return (0); } if (sc->sa_retry <= 0) { printf("ucbsnd_exec_output: subframe0 busy\n"); sc->sa_state = UCBSND_IDLE; return (0); } reg |= TX39_SIBSF0_WRITE; reg &= ~UCB1200_IO_DATA_SPEAKER; tx_conf_write(tc, TX39_SIBSF0CTRL_REG, reg); sc->sa_state = UCBSND_DISABLE_SIB; return (0); case UCBSND_DISABLE_SIB: /* Disable SIB side */ reg = tx_conf_read(tc, TX39_SIBCTRL_REG); reg &= ~TX39_SIBCTRL_ENSND; tx_conf_write(tc, TX39_SIBCTRL_REG, reg); /* end audio disable sequence */ if (sc->sa_sf0ih) { tx_intr_disestablish(tc, sc->sa_sf0ih); sc->sa_sf0ih = 0; } sc->sa_state = UCBSND_IDLE; return (0); } return (0); } /* * global sound interface. */ void ucbsnd_sound_init(struct ucbsnd_softc *sc) { tx_sound_tag_t ts = &sc->sc_tag; tx_chipset_tag_t tc = sc->sc_tc; ts->ts_v = sc; ts->ts_click = __ucbsnd_sound_click; ts->ts_mute = __ucbsnd_sound_mute; tx_conf_register_sound(tc, ts); } void __ucbsnd_sound_click(tx_sound_tag_t arg) { struct ucbsnd_softc *sc = (void*)arg; if (!sc->sc_mute && sc->sa_state == UCBSND_IDLE) { sc->sa_transfer_mode = UCBSND_TRANSFERMODE_PIO; sc->sa_state = UCBSND_INIT; ucbsnd_exec_output((void*)sc); } } void __ucbsnd_sound_mute(tx_sound_tag_t arg, int onoff) { struct ucbsnd_softc *sc = (void*)arg; sc->sc_mute = onoff; } /* * device access */ extern struct cfdriver ucbsnd_cd; int ucbsndopen(dev_t dev, int flags, int ifmt, struct proc *p) { int unit = AUDIOUNIT(dev); struct ucbsnd_softc *sc; int s; if (unit >= ucbsnd_cd.cd_ndevs || (sc = ucbsnd_cd.cd_devs[unit]) == NULL) return (ENXIO); s = splaudio(); ringbuf_reset(&sc->sc_rb); splx(s); return (0); } int ucbsndclose(dev_t dev, int flags, int ifmt, struct proc *p) { int unit = AUDIOUNIT(dev); struct ucbsnd_softc *sc; if (unit >= ucbsnd_cd.cd_ndevs || (sc = ucbsnd_cd.cd_devs[unit]) == NULL) return (ENXIO); return (0); } int ucbsndread(dev_t dev, struct uio *uio, int ioflag) { int unit = AUDIOUNIT(dev); struct ucbsnd_softc *sc; int error = 0; if (unit >= ucbsnd_cd.cd_ndevs || (sc = ucbsnd_cd.cd_devs[unit]) == NULL) return (ENXIO); /* not supported yet */ return (error); } int ucbsndwrite_subr(struct ucbsnd_softc *sc, u_int32_t *buf, size_t bufsize, struct uio *uio) { int i, s, error; error = uiomove(buf, bufsize, uio); /* * inverse endian for UCB1200 */ for (i = 0; i < bufsize / sizeof(int); i++) buf[i] = htobe32(buf[i]); mips_dcache_wbinv_range((vaddr_t)buf, bufsize); ringbuf_producer_return(&sc->sc_rb, bufsize); s = splaudio(); if (sc->sa_state == UCBSND_IDLE && ringbuf_full(&sc->sc_rb)) { sc->sa_transfer_mode = UCBSND_TRANSFERMODE_DMA; sc->sa_state = UCBSND_INIT; ucbsnd_exec_output((void*)sc); } splx(s); return (error); } int ucbsndwrite(dev_t dev, struct uio *uio, int ioflag) { int unit = AUDIOUNIT(dev); struct ucbsnd_softc *sc; int len, error = 0; int i, n, s, rest; void *buf; if (unit >= ucbsnd_cd.cd_ndevs || (sc = ucbsnd_cd.cd_devs[unit]) == NULL) return (ENXIO); len = uio->uio_resid; n = (len + TX39_SIBDMA_SIZE - 1) / TX39_SIBDMA_SIZE; rest = len % TX39_SIBDMA_SIZE; if (rest) --n; for (i = 0; i < n; i++) { while (!(buf = ringbuf_producer_get(&sc->sc_rb))) { error = tsleep(&sc->sc_rb, PRIBIO, "ucbsnd", 1000); if (error) goto errout; } error = ucbsndwrite_subr(sc, buf, TX39_SIBDMA_SIZE, uio); if (error) goto out; } if (rest) { while (!(buf = ringbuf_producer_get(&sc->sc_rb))) { error = tsleep(&sc->sc_rb, PRIBIO, "ucbsnd", 1000); if (error) goto errout; } error = ucbsndwrite_subr(sc, buf, rest, uio); } out: return (error); errout: printf("%s: timeout. reset ring-buffer.\n", sc->sc_dev.dv_xname); s = splaudio(); ringbuf_reset(&sc->sc_rb); splx(s); return (error); } int ucbsndioctl(dev_t dev, u_long cmd, caddr_t addr, int flag, struct proc *p) { int error = 0; /* not coded yet */ return (error); } int ucbsndpoll(dev_t dev, int events, struct proc *p) { int error = 0; /* not coded yet */ return (error); } paddr_t ucbsndmmap(dev_t dev, off_t off, int prot) { int error = 0; /* not coded yet */ return (error); } /* * Ring buffer. */ int ringbuf_allocate(struct ring_buf *rb, size_t blksize, int maxblk) { rb->rb_bufsize = blksize * maxblk; rb->rb_blksize = blksize; rb->rb_maxblks = maxblk; #if notyet rb->rb_buf = (u_int32_t)malloc(rb->rb_bufsize, M_DEVBUF, M_WAITOK); #else rb->rb_buf = (u_int32_t)dmabuf_static; #endif if (rb->rb_buf == 0) { printf("ringbuf_allocate: can't allocate buffer\n"); return (1); } memset((char*)rb->rb_buf, 0, rb->rb_bufsize); #if notyet rb->rb_bufcnt = malloc(rb->rb_maxblks * sizeof(size_t), M_DEVBUF, M_WAITOK); #else rb->rb_bufcnt = dmabufcnt_static; #endif if (rb->rb_bufcnt == 0) { printf("ringbuf_allocate: can't allocate buffer\n"); return (1); } memset((char*)rb->rb_bufcnt, 0, rb->rb_maxblks * sizeof(size_t)); ringbuf_reset(rb); return (0); } void ringbuf_deallocate(struct ring_buf *rb) { #if notyet free((void*)rb->rb_buf, M_DEVBUF); free(rb->rb_bufcnt, M_DEVBUF); #endif } void ringbuf_reset(struct ring_buf *rb) { rb->rb_outp = 0; rb->rb_inp = 0; } int ringbuf_full(struct ring_buf *rb) { int ret; ret = rb->rb_outp == rb->rb_maxblks; return (ret); } void* ringbuf_producer_get(struct ring_buf *rb) { u_int32_t ret; int s; s = splaudio(); ret = ringbuf_full(rb) ? 0 : rb->rb_buf + rb->rb_inp * rb->rb_blksize; splx(s); return (void *)ret; } void ringbuf_producer_return(struct ring_buf *rb, size_t cnt) { int s; assert(cnt <= rb->rb_blksize); s = splaudio(); rb->rb_outp++; rb->rb_bufcnt[rb->rb_inp] = cnt; rb->rb_inp = (rb->rb_inp + 1) % rb->rb_maxblks; splx(s); } void* ringbuf_consumer_get(struct ring_buf *rb, size_t *cntp) { u_int32_t p; int idx; if (rb->rb_outp == 0) return (0); idx = (rb->rb_inp - rb->rb_outp + rb->rb_maxblks) % rb->rb_maxblks; p = rb->rb_buf + idx * rb->rb_blksize; *cntp = rb->rb_bufcnt[idx]; return (void *)p; } void ringbuf_consumer_return(struct ring_buf *rb) { if (rb->rb_outp > 0) rb->rb_outp--; }