NetBSD/sys/dev/ic/wi.c
pooka 4f6fb3bf35 Ensure that the top level sysctl nodes (kern, vfs, net, ...) exist before
the sysctl link sets are processed, and remove redundancy.

Shaves >13kB off of an amd64 GENERIC, not to mention >1k duplicate
lines of code.
2014-02-25 18:30:08 +00:00

3319 lines
88 KiB
C

/* $NetBSD: wi.c,v 1.237 2014/02/25 18:30:09 pooka Exp $ */
/*-
* Copyright (c) 2004 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1997, 1998, 1999
* Bill Paul <wpaul@ctr.columbia.edu>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD.
*
* Original FreeBSD driver written by Bill Paul <wpaul@ctr.columbia.edu>
* Electrical Engineering Department
* Columbia University, New York City
*/
/*
* The WaveLAN/IEEE adapter is the second generation of the WaveLAN
* from Lucent. Unlike the older cards, the new ones are programmed
* entirely via a firmware-driven controller called the Hermes.
* Unfortunately, Lucent will not release the Hermes programming manual
* without an NDA (if at all). What they do release is an API library
* called the HCF (Hardware Control Functions) which is supposed to
* do the device-specific operations of a device driver for you. The
* publically available version of the HCF library (the 'HCF Light') is
* a) extremely gross, b) lacks certain features, particularly support
* for 802.11 frames, and c) is contaminated by the GNU Public License.
*
* This driver does not use the HCF or HCF Light at all. Instead, it
* programs the Hermes controller directly, using information gleaned
* from the HCF Light code and corresponding documentation.
*
* This driver supports both the PCMCIA and ISA versions of the
* WaveLAN/IEEE cards. Note however that the ISA card isn't really
* anything of the sort: it's actually a PCMCIA bridge adapter
* that fits into an ISA slot, into which a PCMCIA WaveLAN card is
* inserted. Consequently, you need to use the pccard support for
* both the ISA and PCMCIA adapters.
*/
/*
* FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the
* Oslo IETF plenary meeting.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.237 2014/02/25 18:30:09 pooka Exp $");
#define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */
#define WI_HERMES_STATS_WAR /* Work around stats counter bug. */
#undef WI_HISTOGRAM
#undef WI_RING_DEBUG
#define STATIC static
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/socket.h>
#include <sys/mbuf.h>
#include <sys/ioctl.h>
#include <sys/kernel.h> /* for hz */
#include <sys/proc.h>
#include <sys/kauth.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_llc.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/route.h>
#include <net80211/ieee80211_netbsd.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_ioctl.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_rssadapt.h>
#include <net/bpf.h>
#include <net/bpfdesc.h>
#include <sys/bus.h>
#include <dev/ic/wi_ieee.h>
#include <dev/ic/wireg.h>
#include <dev/ic/wivar.h>
STATIC int wi_init(struct ifnet *);
STATIC void wi_stop(struct ifnet *, int);
STATIC void wi_start(struct ifnet *);
STATIC int wi_reset(struct wi_softc *);
STATIC void wi_watchdog(struct ifnet *);
STATIC int wi_ioctl(struct ifnet *, u_long, void *);
STATIC int wi_media_change(struct ifnet *);
STATIC void wi_media_status(struct ifnet *, struct ifmediareq *);
static void wi_ioctl_init(struct wi_softc *);
static int wi_ioctl_enter(struct wi_softc *);
static void wi_ioctl_exit(struct wi_softc *);
static void wi_ioctl_drain(struct wi_softc *);
STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *);
STATIC void wi_node_free(struct ieee80211_node *);
STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *);
STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *,
struct ieee80211_frame *, u_int);
STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *);
STATIC void wi_rssadapt_updatestats(void *);
STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *);
STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[],
wi_rssdescq_t *, u_int8_t (*)[]);
STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]);
STATIC void wi_rx_intr(struct wi_softc *);
STATIC void wi_txalloc_intr(struct wi_softc *);
STATIC void wi_cmd_intr(struct wi_softc *);
STATIC void wi_tx_intr(struct wi_softc *);
STATIC void wi_tx_ex_intr(struct wi_softc *);
STATIC void wi_info_intr(struct wi_softc *);
STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *);
STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *,
const u_int8_t[IEEE80211_ADDR_LEN]);
STATIC void wi_key_update_begin(struct ieee80211com *);
STATIC void wi_key_update_end(struct ieee80211com *);
STATIC void wi_push_packet(struct wi_softc *);
STATIC int wi_get_cfg(struct ifnet *, u_long, void *);
STATIC int wi_set_cfg(struct ifnet *, u_long, void *);
STATIC int wi_cfg_txrate(struct wi_softc *);
STATIC int wi_write_txrate(struct wi_softc *, int);
STATIC int wi_write_wep(struct wi_softc *);
STATIC int wi_write_multi(struct wi_softc *);
STATIC int wi_alloc_fid(struct wi_softc *, int, int *);
STATIC void wi_read_nicid(struct wi_softc *);
STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int);
STATIC int wi_cmd(struct wi_softc *, int, int, int, int);
STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int);
STATIC int wi_cmd_wait(struct wi_softc *, int, int);
STATIC int wi_seek_bap(struct wi_softc *, int, int);
STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int);
STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int);
STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int);
STATIC int wi_read_rid(struct wi_softc *, int, void *, int *);
STATIC int wi_write_rid(struct wi_softc *, int, void *, int);
STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int);
STATIC void wi_set_tim(struct ieee80211_node *, int);
STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t);
STATIC void wi_scan_result(struct wi_softc *, int, int);
STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi);
STATIC void wi_mend_flags(struct wi_softc *, enum ieee80211_state);
static inline int
wi_write_val(struct wi_softc *sc, int rid, u_int16_t val)
{
val = htole16(val);
return wi_write_rid(sc, rid, &val, sizeof(val));
}
static struct timeval lasttxerror; /* time of last tx error msg */
static int curtxeps = 0; /* current tx error msgs/sec */
static int wi_txerate = 0; /* tx error rate: max msgs/sec */
#ifdef WI_DEBUG
#define WI_DEBUG_MAX 2
int wi_debug = 0;
#define DPRINTF(X) if (wi_debug) printf X
#define DPRINTF2(X) if (wi_debug > 1) printf X
#define IFF_DUMPPKTS(_ifp) \
(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
static int wi_sysctl_verify_debug(SYSCTLFN_PROTO);
#else
#define DPRINTF(X)
#define DPRINTF2(X)
#define IFF_DUMPPKTS(_ifp) 0
#endif
#define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \
WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD)
struct wi_card_ident
wi_card_ident[] = {
/* CARD_ID CARD_NAME FIRM_TYPE */
{ WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT },
{ WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT },
{ WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT },
{ WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL },
{ WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL },
{ WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL },
{ WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL },
{ WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL },
{ WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL },
{ WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL },
{ WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL },
{ WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL },
{ WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
{ WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
{ WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL },
{ WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
{ WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
{ WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL },
{ WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL },
{ WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
{ WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL },
{ 0, NULL, 0 },
};
#ifndef _MODULE
/*
* Setup sysctl(3) MIB, hw.wi.*
*
* TBD condition CTLFLAG_PERMANENT on being a module or not
*/
SYSCTL_SETUP(sysctl_wi, "sysctl wi(4) subtree setup")
{
int rc;
const struct sysctlnode *rnode;
#ifdef WI_DEBUG
const struct sysctlnode *cnode;
#endif /* WI_DEBUG */
if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "wi",
"Lucent/Prism/Symbol 802.11 controls",
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0)
goto err;
#ifdef WI_DEBUG
/* control debugging printfs */
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
wi_sysctl_verify_debug, 0, &wi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
#endif /* WI_DEBUG */
return;
err:
printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}
#endif
#ifdef WI_DEBUG
static int
wi_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper)
{
int error, t;
struct sysctlnode node;
node = *rnode;
t = *(int*)rnode->sysctl_data;
node.sysctl_data = &t;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return (error);
if (t < lower || t > upper)
return (EINVAL);
*(int*)rnode->sysctl_data = t;
return (0);
}
static int
wi_sysctl_verify_debug(SYSCTLFN_ARGS)
{
return wi_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)),
0, WI_DEBUG_MAX);
}
#endif /* WI_DEBUG */
STATIC int
wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen)
{
int buflen, rc;
buflen = ebuflen;
if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0)
return rc;
if (buflen < ebuflen) {
#ifdef WI_DEBUG
printf("%s: rid=%#04x read %d, expected %d\n", __func__,
rid, buflen, ebuflen);
#endif
return -1;
}
return 0;
}
int
wi_attach(struct wi_softc *sc, const u_int8_t *macaddr)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
int chan, nrate, buflen;
u_int16_t val, chanavail;
struct {
u_int16_t nrates;
char rates[IEEE80211_RATE_SIZE];
} ratebuf;
static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};
int s;
wi_ioctl_init(sc);
s = splnet();
/* Make sure interrupts are disabled. */
CSR_WRITE_2(sc, WI_INT_EN, 0);
CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
sc->sc_invalid = 0;
/* Reset the NIC. */
if (wi_reset(sc) != 0) {
sc->sc_invalid = 1;
splx(s);
return 1;
}
if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
IEEE80211_ADDR_LEN) != 0 ||
IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) {
if (macaddr != NULL)
memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN);
else {
printf(" could not get mac address, attach failed\n");
splx(s);
return 1;
}
}
printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr));
/* Read NIC identification */
wi_read_nicid(sc);
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = wi_start;
ifp->if_ioctl = wi_ioctl;
ifp->if_watchdog = wi_watchdog;
ifp->if_init = wi_init;
ifp->if_stop = wi_stop;
ifp->if_flags =
IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
IFQ_SET_READY(&ifp->if_snd);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_caps = IEEE80211_C_AHDEMO;
ic->ic_state = IEEE80211_S_INIT;
ic->ic_max_aid = WI_MAX_AID;
/* Find available channel */
if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail,
sizeof(chanavail)) != 0) {
aprint_normal_dev(sc->sc_dev, "using default channel list\n");
chanavail = htole16(0x1fff); /* assume 1-13 */
}
for (chan = 16; chan > 0; chan--) {
if (!isset((u_int8_t*)&chanavail, chan - 1))
continue;
ic->ic_ibss_chan = &ic->ic_channels[chan];
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B;
}
/* Find default IBSS channel */
if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) {
chan = le16toh(val);
if (isset((u_int8_t*)&chanavail, chan - 1))
ic->ic_ibss_chan = &ic->ic_channels[chan];
}
if (ic->ic_ibss_chan == NULL) {
aprint_error_dev(sc->sc_dev, "no available channel\n");
return 1;
}
if (sc->sc_firmware_type == WI_LUCENT) {
sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET;
} else {
if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) &&
wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0)
sc->sc_dbm_offset = le16toh(val);
else
sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET;
}
sc->sc_flags |= WI_FLAGS_RSSADAPTSTA;
/*
* Set flags based on firmware version.
*/
switch (sc->sc_firmware_type) {
case WI_LUCENT:
sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
#ifdef WI_HERMES_AUTOINC_WAR
/* XXX: not confirmed, but never seen for recent firmware */
if (sc->sc_sta_firmware_ver < 40000) {
sc->sc_flags |= WI_FLAGS_BUG_AUTOINC;
}
#endif
if (sc->sc_sta_firmware_ver >= 60000)
sc->sc_flags |= WI_FLAGS_HAS_MOR;
if (sc->sc_sta_firmware_ver >= 60006) {
ic->ic_caps |= IEEE80211_C_IBSS;
ic->ic_caps |= IEEE80211_C_MONITOR;
}
ic->ic_caps |= IEEE80211_C_PMGT;
sc->sc_ibss_port = 1;
break;
case WI_INTERSIL:
sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR;
sc->sc_flags |= WI_FLAGS_HAS_ROAMING;
sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE;
if (sc->sc_sta_firmware_ver > 10101)
sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST;
if (sc->sc_sta_firmware_ver >= 800) {
if (sc->sc_sta_firmware_ver != 10402)
ic->ic_caps |= IEEE80211_C_HOSTAP;
ic->ic_caps |= IEEE80211_C_IBSS;
ic->ic_caps |= IEEE80211_C_MONITOR;
}
ic->ic_caps |= IEEE80211_C_PMGT;
sc->sc_ibss_port = 0;
sc->sc_alt_retry = 2;
break;
case WI_SYMBOL:
sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY;
if (sc->sc_sta_firmware_ver >= 20000)
ic->ic_caps |= IEEE80211_C_IBSS;
sc->sc_ibss_port = 4;
break;
}
/*
* Find out if we support WEP on this card.
*/
if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 &&
val != htole16(0))
ic->ic_caps |= IEEE80211_C_WEP;
/* Find supported rates. */
buflen = sizeof(ratebuf);
if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 &&
buflen > 2) {
nrate = le16toh(ratebuf.nrates);
if (nrate > IEEE80211_RATE_SIZE)
nrate = IEEE80211_RATE_SIZE;
memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates,
&ratebuf.rates[0], nrate);
ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate;
} else {
aprint_error_dev(sc->sc_dev, "no supported rate list\n");
return 1;
}
sc->sc_max_datalen = 2304;
sc->sc_rts_thresh = 2347;
sc->sc_frag_thresh = 2346;
sc->sc_system_scale = 1;
sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN;
sc->sc_roaming_mode = 1;
callout_init(&sc->sc_rssadapt_ch, 0);
/*
* Call MI attach routines.
*/
if_attach(ifp);
ieee80211_ifattach(ic);
sc->sc_newstate = ic->ic_newstate;
sc->sc_set_tim = ic->ic_set_tim;
ic->ic_newstate = wi_newstate;
ic->ic_node_alloc = wi_node_alloc;
ic->ic_node_free = wi_node_free;
ic->ic_set_tim = wi_set_tim;
ic->ic_crypto.cs_key_delete = wi_key_delete;
ic->ic_crypto.cs_key_set = wi_key_set;
ic->ic_crypto.cs_key_update_begin = wi_key_update_begin;
ic->ic_crypto.cs_key_update_end = wi_key_update_end;
ieee80211_media_init(ic, wi_media_change, wi_media_status);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf);
memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu));
sc->sc_rxtap.wr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu));
sc->sc_rxtap.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT);
memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu));
sc->sc_txtap.wt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu));
sc->sc_txtap.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT);
/* Attach is successful. */
sc->sc_attached = 1;
splx(s);
ieee80211_announce(ic);
return 0;
}
int
wi_detach(struct wi_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
int s;
if (!sc->sc_attached)
return 0;
sc->sc_invalid = 1;
s = splnet();
wi_stop(ifp, 1);
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
splx(s);
wi_ioctl_drain(sc);
return 0;
}
int
wi_activate(device_t self, enum devact act)
{
struct wi_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
if_deactivate(&sc->sc_if);
return 0;
default:
return EOPNOTSUPP;
}
}
int
wi_intr(void *arg)
{
int i;
struct wi_softc *sc = arg;
struct ifnet *ifp = &sc->sc_if;
u_int16_t status;
if (sc->sc_enabled == 0 ||
!device_is_active(sc->sc_dev) ||
(ifp->if_flags & IFF_RUNNING) == 0)
return 0;
if ((ifp->if_flags & IFF_UP) == 0) {
CSR_WRITE_2(sc, WI_INT_EN, 0);
CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
return 1;
}
/* This is superfluous on Prism, but Lucent breaks if we
* do not disable interrupts.
*/
CSR_WRITE_2(sc, WI_INT_EN, 0);
/* maximum 10 loops per interrupt */
for (i = 0; i < 10; i++) {
status = CSR_READ_2(sc, WI_EVENT_STAT);
#ifdef WI_DEBUG
if (wi_debug > 1) {
printf("%s: iter %d status %#04x\n", __func__, i,
status);
}
#endif /* WI_DEBUG */
if ((status & WI_INTRS) == 0)
break;
sc->sc_status = status;
if (status & WI_EV_RX)
wi_rx_intr(sc);
if (status & WI_EV_ALLOC)
wi_txalloc_intr(sc);
if (status & WI_EV_TX)
wi_tx_intr(sc);
if (status & WI_EV_TX_EXC)
wi_tx_ex_intr(sc);
if (status & WI_EV_INFO)
wi_info_intr(sc);
CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status);
if (sc->sc_status & WI_EV_CMD)
wi_cmd_intr(sc);
if ((ifp->if_flags & IFF_OACTIVE) == 0 &&
(sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 &&
!IFQ_IS_EMPTY(&ifp->if_snd))
wi_start(ifp);
sc->sc_status = 0;
}
/* re-enable interrupts */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
sc->sc_status = 0;
return 1;
}
#define arraylen(a) (sizeof(a) / sizeof((a)[0]))
STATIC void
wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree)
{
int i;
SLIST_INIT(rssdfree);
for (i = 0; i < arraylen(*rssd); i++) {
SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next);
}
}
STATIC void
wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS],
wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE])
{
struct ieee80211_node *ni;
int i;
for (i = 0; i < arraylen(*rssd); i++) {
ni = (*rssd)[i].rd_desc.id_node;
(*rssd)[i].rd_desc.id_node = NULL;
if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0)
printf("%s: cleaning outstanding rssadapt "
"descriptor for %s\n",
ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr));
if (ni != NULL)
ieee80211_free_node(ni);
}
memset(*txpending, 0, sizeof(*txpending));
wi_rssdescs_init(rssd, rssdfree);
}
STATIC int
wi_init(struct ifnet *ifp)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct wi_joinreq join;
int i;
int error = 0, wasenabled;
DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled));
wasenabled = sc->sc_enabled;
if (!sc->sc_enabled) {
if ((error = (*sc->sc_enable)(sc->sc_dev, 1)) != 0)
goto out;
sc->sc_enabled = 1;
} else
wi_stop(ifp, 0);
/* Symbol firmware cannot be initialized more than once */
if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled)
if ((error = wi_reset(sc)) != 0)
goto out;
/* common 802.11 configuration */
ic->ic_flags &= ~IEEE80211_F_IBSSON;
sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS);
break;
case IEEE80211_M_IBSS:
wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port);
ic->ic_flags |= IEEE80211_F_IBSSON;
break;
case IEEE80211_M_AHDEMO:
wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
break;
case IEEE80211_M_HOSTAP:
wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP);
break;
case IEEE80211_M_MONITOR:
if (sc->sc_firmware_type == WI_LUCENT)
wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC);
wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0);
break;
}
/* Intersil interprets this RID as joining ESS even in IBSS mode */
if (sc->sc_firmware_type == WI_LUCENT &&
(ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0)
wi_write_val(sc, WI_RID_CREATE_IBSS, 1);
else
wi_write_val(sc, WI_RID_CREATE_IBSS, 0);
wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval);
wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid,
ic->ic_des_esslen);
wi_write_val(sc, WI_RID_OWN_CHNL,
ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen);
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN);
if (ic->ic_caps & IEEE80211_C_PMGT)
wi_write_val(sc, WI_RID_PM_ENABLED,
(ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0);
/* not yet common 802.11 configuration */
wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen);
wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh);
if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)
wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh);
/* driver specific 802.11 configuration */
if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)
wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale);
if (sc->sc_flags & WI_FLAGS_HAS_ROAMING)
wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode);
if (sc->sc_flags & WI_FLAGS_HAS_MOR)
wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven);
wi_cfg_txrate(sc);
wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen);
#ifndef IEEE80211_NO_HOSTAP
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
sc->sc_firmware_type == WI_INTERSIL) {
wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval);
wi_write_val(sc, WI_RID_DTIM_PERIOD, 1);
}
#endif /* !IEEE80211_NO_HOSTAP */
if (sc->sc_firmware_type == WI_INTERSIL) {
struct ieee80211_rateset *rs =
&ic->ic_sup_rates[IEEE80211_MODE_11B];
u_int16_t basic = 0, supported = 0, rate;
for (i = 0; i < rs->rs_nrates; i++) {
switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) {
case 2:
rate = 1;
break;
case 4:
rate = 2;
break;
case 11:
rate = 4;
break;
case 22:
rate = 8;
break;
default:
rate = 0;
break;
}
if (rs->rs_rates[i] & IEEE80211_RATE_BASIC)
basic |= rate;
supported |= rate;
}
wi_write_val(sc, WI_RID_BASIC_RATE, basic);
wi_write_val(sc, WI_RID_SUPPORT_RATE, supported);
wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry);
}
/*
* Initialize promisc mode.
* Being in Host-AP mode causes a great
* deal of pain if promiscuous mode is set.
* Therefore we avoid confusing the firmware
* and always reset promisc mode in Host-AP
* mode. Host-AP sees all the packets anyway.
*/
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
(ifp->if_flags & IFF_PROMISC) != 0) {
wi_write_val(sc, WI_RID_PROMISC, 1);
} else {
wi_write_val(sc, WI_RID_PROMISC, 0);
}
/* Configure WEP. */
if (ic->ic_caps & IEEE80211_C_WEP) {
sc->sc_cnfauthmode = ic->ic_bss->ni_authmode;
wi_write_wep(sc);
}
/* Set multicast filter. */
wi_write_multi(sc);
sc->sc_txalloc = 0;
sc->sc_txalloced = 0;
sc->sc_txqueue = 0;
sc->sc_txqueued = 0;
sc->sc_txstart = 0;
sc->sc_txstarted = 0;
if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) {
sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame);
if (sc->sc_firmware_type == WI_SYMBOL)
sc->sc_buflen = 1585; /* XXX */
for (i = 0; i < WI_NTXBUF; i++) {
error = wi_alloc_fid(sc, sc->sc_buflen,
&sc->sc_txd[i].d_fid);
if (error) {
aprint_error_dev(sc->sc_dev,
"tx buffer allocation failed\n");
goto out;
}
DPRINTF2(("wi_init: txbuf %d allocated %x\n", i,
sc->sc_txd[i].d_fid));
++sc->sc_txalloced;
}
}
wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree);
/* Enable desired port */
wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
ic->ic_state = IEEE80211_S_INIT;
if (ic->ic_opmode == IEEE80211_M_AHDEMO ||
ic->ic_opmode == IEEE80211_M_IBSS ||
ic->ic_opmode == IEEE80211_M_MONITOR ||
ic->ic_opmode == IEEE80211_M_HOSTAP)
ieee80211_create_ibss(ic, ic->ic_ibss_chan);
/* Enable interrupts */
CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS);
#ifndef IEEE80211_NO_HOSTAP
if (!wasenabled &&
ic->ic_opmode == IEEE80211_M_HOSTAP &&
sc->sc_firmware_type == WI_INTERSIL) {
/* XXX: some card need to be re-enabled for hostap */
wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0);
wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0);
}
#endif /* !IEEE80211_NO_HOSTAP */
if (ic->ic_opmode == IEEE80211_M_STA &&
((ic->ic_flags & IEEE80211_F_DESBSSID) ||
ic->ic_des_chan != IEEE80211_CHAN_ANYC)) {
memset(&join, 0, sizeof(join));
if (ic->ic_flags & IEEE80211_F_DESBSSID)
IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid);
if (ic->ic_des_chan != IEEE80211_CHAN_ANYC)
join.wi_chan =
htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan));
/* Lucent firmware does not support the JOIN RID. */
if (sc->sc_firmware_type != WI_LUCENT)
wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join));
}
out:
if (error) {
printf("%s: interface not running\n", device_xname(sc->sc_dev));
wi_stop(ifp, 0);
}
DPRINTF(("wi_init: return %d\n", error));
return error;
}
STATIC void
wi_txcmd_wait(struct wi_softc *sc)
{
KASSERT(sc->sc_txcmds == 1);
if (sc->sc_status & WI_EV_CMD) {
sc->sc_status &= ~WI_EV_CMD;
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
} else
(void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0);
}
STATIC void
wi_stop(struct ifnet *ifp, int disable)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s;
if (!sc->sc_enabled)
return;
s = splnet();
DPRINTF(("wi_stop: disable %d\n", disable));
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* wait for tx command completion (deassoc, deauth) */
while (sc->sc_txcmds > 0) {
wi_txcmd_wait(sc);
wi_cmd_intr(sc);
}
/* TBD wait for deassoc, deauth tx completion? */
if (!sc->sc_invalid) {
CSR_WRITE_2(sc, WI_INT_EN, 0);
wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
}
wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
&sc->sc_txpending);
sc->sc_tx_timer = 0;
sc->sc_scan_timer = 0;
sc->sc_false_syns = 0;
sc->sc_naps = 0;
ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING);
ifp->if_timer = 0;
if (disable) {
(*sc->sc_enable)(sc->sc_dev, 0);
sc->sc_enabled = 0;
}
splx(s);
}
/*
* Choose a data rate for a packet len bytes long that suits the packet
* type and the wireless conditions.
*
* TBD Adapt fragmentation threshold.
*/
STATIC int
wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_frame *wh, u_int len)
{
struct wi_softc *sc = ic->ic_ifp->if_softc;
struct wi_node *wn = (void*)ni;
struct ieee80211_rssadapt *ra = &wn->wn_rssadapt;
int do_not_adapt, i, rateidx, s;
do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) &&
(sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0;
s = splnet();
rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len,
ic->ic_fixed_rate,
((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname,
do_not_adapt);
ni->ni_txrate = rateidx;
if (ic->ic_opmode != IEEE80211_M_HOSTAP) {
/* choose the slowest pending rate so that we don't
* accidentally send a packet on the MAC's queue
* too fast. TBD find out if the MAC labels Tx
* packets w/ rate when enqueued or dequeued.
*/
for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++);
rateidx = i;
}
splx(s);
return (rateidx);
}
STATIC void
wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
{
struct wi_node *wn;
if (id->id_node == NULL)
return;
wn = (void*)id->id_node;
ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id);
}
STATIC void
wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id)
{
struct ieee80211_node *ni;
struct wi_node *wn;
int s;
s = splnet();
if ((ni = id->id_node) == NULL) {
DPRINTF(("wi_lower_rate: missing node\n"));
goto out;
}
wn = (void *)ni;
ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id);
out:
splx(s);
return;
}
STATIC void
wi_start(struct ifnet *ifp)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ether_header *eh;
struct ieee80211_node *ni;
struct ieee80211_frame *wh;
struct ieee80211_rateset *rs;
struct wi_rssdesc *rd;
struct ieee80211_rssdesc *id;
struct mbuf *m0;
struct wi_frame frmhdr;
int cur, fid, off, rateidx;
if (!sc->sc_enabled || sc->sc_invalid)
return;
if (sc->sc_flags & WI_FLAGS_OUTRANGE)
return;
memset(&frmhdr, 0, sizeof(frmhdr));
cur = sc->sc_txqueue;
for (;;) {
ni = ic->ic_bss;
if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
if (!IF_IS_EMPTY(&ic->ic_mgtq)) {
IF_DEQUEUE(&ic->ic_mgtq, m0);
m_copydata(m0, 4, ETHER_ADDR_LEN * 2,
(void *)&frmhdr.wi_ehdr);
frmhdr.wi_ehdr.ether_type = 0;
wh = mtod(m0, struct ieee80211_frame *);
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
} else if (ic->ic_state == IEEE80211_S_RUN) {
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
IFQ_DEQUEUE(&ifp->if_snd, m0);
ifp->if_opackets++;
m_copydata(m0, 0, ETHER_HDR_LEN,
(void *)&frmhdr.wi_ehdr);
bpf_mtap(ifp, m0);
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
ifp->if_oerrors++;
continue;
}
if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
(m0->m_flags & M_PWR_SAV) == 0) {
ieee80211_pwrsave(ic, ni, m0);
goto next;
}
if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
wh = mtod(m0, struct ieee80211_frame *);
} else
break;
bpf_mtap3(ic->ic_rawbpf, m0);
frmhdr.wi_tx_ctl =
htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK);
#ifndef IEEE80211_NO_HOSTAP
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY);
if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
(wh->i_fc[1] & IEEE80211_FC1_WEP)) {
if (ieee80211_crypto_encap(ic, ni, m0) == NULL) {
m_freem(m0);
ifp->if_oerrors++;
goto next;
}
frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT);
}
#endif /* !IEEE80211_NO_HOSTAP */
rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len);
rs = &ni->ni_rates;
if (sc->sc_drvbpf) {
struct wi_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_rate = rs->rs_rates[rateidx];
tap->wt_chan_freq =
htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags =
htole16(ic->ic_bss->ni_chan->ic_flags);
/* TBD tap->wt_flags */
bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0);
}
rd = SLIST_FIRST(&sc->sc_rssdfree);
id = &rd->rd_desc;
id->id_len = m0->m_pkthdr.len;
id->id_rateidx = ni->ni_txrate;
id->id_rssi = ni->ni_rssi;
frmhdr.wi_tx_idx = rd - sc->sc_rssd;
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] &
IEEE80211_RATE_VAL);
else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA)
(void)wi_write_txrate(sc, rs->rs_rates[rateidx]);
m_copydata(m0, 0, sizeof(struct ieee80211_frame),
(void *)&frmhdr.wi_whdr);
m_adj(m0, sizeof(struct ieee80211_frame));
frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len);
if (IFF_DUMPPKTS(ifp))
wi_dump_pkt(&frmhdr, ni, -1);
fid = sc->sc_txd[cur].d_fid;
off = sizeof(frmhdr);
if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 ||
wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) {
aprint_error_dev(sc->sc_dev, "%s write fid %x failed\n",
__func__, fid);
ifp->if_oerrors++;
m_freem(m0);
goto next;
}
m_freem(m0);
sc->sc_txpending[ni->ni_txrate]++;
--sc->sc_txalloced;
if (sc->sc_txqueued++ == 0) {
#ifdef DIAGNOSTIC
if (cur != sc->sc_txstart)
printf("%s: ring is desynchronized\n",
device_xname(sc->sc_dev));
#endif
wi_push_packet(sc);
} else {
#ifdef WI_RING_DEBUG
printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
device_xname(sc->sc_dev), fid,
sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
#endif
}
sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF;
SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next);
id->id_node = ni;
continue;
next:
if (ni != NULL)
ieee80211_free_node(ni);
}
}
STATIC int
wi_reset(struct wi_softc *sc)
{
int i, error;
DPRINTF(("wi_reset\n"));
if (sc->sc_reset)
(*sc->sc_reset)(sc);
error = 0;
for (i = 0; i < 5; i++) {
if (sc->sc_invalid)
return ENXIO;
DELAY(20*1000); /* XXX: way too long! */
if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0)
break;
}
if (error) {
aprint_error_dev(sc->sc_dev, "init failed\n");
return error;
}
CSR_WRITE_2(sc, WI_INT_EN, 0);
CSR_WRITE_2(sc, WI_EVENT_ACK, ~0);
/* Calibrate timer. */
wi_write_val(sc, WI_RID_TICK_TIME, 0);
return 0;
}
STATIC void
wi_watchdog(struct ifnet *ifp)
{
struct wi_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (!sc->sc_enabled)
return;
if (sc->sc_tx_timer) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", ifp->if_xname);
ifp->if_oerrors++;
wi_init(ifp);
return;
}
ifp->if_timer = 1;
}
if (sc->sc_scan_timer) {
if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT &&
sc->sc_firmware_type == WI_INTERSIL) {
DPRINTF(("wi_watchdog: inquire scan\n"));
wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
}
if (sc->sc_scan_timer)
ifp->if_timer = 1;
}
/* TODO: rate control */
ieee80211_watchdog(&sc->sc_ic);
}
static int
wi_ioctl_enter(struct wi_softc *sc)
{
int rc = 0;
mutex_enter(&sc->sc_ioctl_mtx);
sc->sc_ioctl_nwait++;
while (sc->sc_ioctl_lwp != NULL && sc->sc_ioctl_lwp != curlwp) {
rc = sc->sc_ioctl_gone
? ENXIO
: cv_wait_sig(&sc->sc_ioctl_cv, &sc->sc_ioctl_mtx);
if (rc != 0)
break;
}
if (rc == 0) {
sc->sc_ioctl_lwp = curlwp;
sc->sc_ioctl_depth++;
}
if (--sc->sc_ioctl_nwait == 0)
cv_signal(&sc->sc_ioctl_cv);
mutex_exit(&sc->sc_ioctl_mtx);
return rc;
}
static void
wi_ioctl_exit(struct wi_softc *sc)
{
KASSERT(sc->sc_ioctl_lwp == curlwp);
mutex_enter(&sc->sc_ioctl_mtx);
if (--sc->sc_ioctl_depth == 0) {
sc->sc_ioctl_lwp = NULL;
cv_signal(&sc->sc_ioctl_cv);
}
mutex_exit(&sc->sc_ioctl_mtx);
}
static void
wi_ioctl_init(struct wi_softc *sc)
{
mutex_init(&sc->sc_ioctl_mtx, MUTEX_DEFAULT, IPL_NONE);
cv_init(&sc->sc_ioctl_cv, device_xname(sc->sc_dev));
}
static void
wi_ioctl_drain(struct wi_softc *sc)
{
wi_ioctl_enter(sc);
mutex_enter(&sc->sc_ioctl_mtx);
sc->sc_ioctl_gone = true;
cv_broadcast(&sc->sc_ioctl_cv);
while (sc->sc_ioctl_nwait != 0)
cv_wait(&sc->sc_ioctl_cv, &sc->sc_ioctl_mtx);
mutex_exit(&sc->sc_ioctl_mtx);
wi_ioctl_exit(sc);
mutex_destroy(&sc->sc_ioctl_mtx);
cv_destroy(&sc->sc_ioctl_cv);
}
STATIC int
wi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
if (!device_is_active(sc->sc_dev))
return ENXIO;
s = splnet();
if ((error = wi_ioctl_enter(sc)) != 0)
return error;
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
/*
* Can't do promisc and hostap at the same time. If all that's
* changing is the promisc flag, try to short-circuit a call to
* wi_init() by just setting PROMISC in the hardware.
*/
if (ifp->if_flags & IFF_UP) {
if (sc->sc_enabled) {
if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
(ifp->if_flags & IFF_PROMISC) != 0)
wi_write_val(sc, WI_RID_PROMISC, 1);
else
wi_write_val(sc, WI_RID_PROMISC, 0);
} else
error = wi_init(ifp);
} else if (sc->sc_enabled)
wi_stop(ifp, 1);
break;
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING) {
/* do not rescan */
error = wi_write_multi(sc);
} else
error = 0;
}
break;
case SIOCGIFGENERIC:
error = wi_get_cfg(ifp, cmd, data);
break;
case SIOCSIFGENERIC:
error = kauth_authorize_network(curlwp->l_cred,
KAUTH_NETWORK_INTERFACE,
KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd),
NULL);
if (error)
break;
error = wi_set_cfg(ifp, cmd, data);
if (error == ENETRESET) {
if (ifp->if_flags & IFF_RUNNING)
error = wi_init(ifp);
else
error = 0;
}
break;
case SIOCS80211BSSID:
if (sc->sc_firmware_type == WI_LUCENT) {
error = ENODEV;
break;
}
/* fall through */
default:
ic->ic_flags |= sc->sc_ic_flags;
error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
sc->sc_ic_flags = ic->ic_flags & IEEE80211_F_DROPUNENC;
if (error == ENETRESET) {
if (sc->sc_enabled)
error = wi_init(ifp);
else
error = 0;
}
break;
}
wi_mend_flags(sc, ic->ic_state);
wi_ioctl_exit(sc);
splx(s);
return error;
}
STATIC int
wi_media_change(struct ifnet *ifp)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error;
error = ieee80211_media_change(ifp);
if (error == ENETRESET) {
if (sc->sc_enabled)
error = wi_init(ifp);
else
error = 0;
}
ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media);
return error;
}
STATIC void
wi_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
u_int16_t val;
int rate;
if (sc->sc_enabled == 0) {
imr->ifm_active = IFM_IEEE80211 | IFM_NONE;
imr->ifm_status = 0;
return;
}
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN &&
(sc->sc_flags & WI_FLAGS_OUTRANGE) == 0)
imr->ifm_status |= IFM_ACTIVE;
if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) {
/* convert to 802.11 rate */
val = le16toh(val);
rate = val * 2;
if (sc->sc_firmware_type == WI_LUCENT) {
if (rate == 10)
rate = 11; /* 5.5Mbps */
} else {
if (rate == 4*2)
rate = 11; /* 5.5Mbps */
else if (rate == 8*2)
rate = 22; /* 11Mbps */
}
} else
rate = 0;
imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_AHDEMO:
imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0;
break;
case IEEE80211_M_HOSTAP:
imr->ifm_active |= IFM_IEEE80211_HOSTAP;
break;
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
}
}
STATIC struct ieee80211_node *
wi_node_alloc(struct ieee80211_node_table *nt)
{
struct wi_node *wn =
malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO);
return wn ? &wn->wn_node : NULL;
}
STATIC void
wi_node_free(struct ieee80211_node *ni)
{
struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int i;
for (i = 0; i < WI_NTXRSS; i++) {
if (sc->sc_rssd[i].rd_desc.id_node == ni)
sc->sc_rssd[i].rd_desc.id_node = NULL;
}
free(ni, M_DEVBUF);
}
STATIC void
wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN])
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct ifnet *ifp = &sc->sc_if;
if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid))
return;
DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid)));
DPRINTF(("%s ?\n", ether_sprintf(new_bssid)));
/* In promiscuous mode, the BSSID field is not a reliable
* indicator of the firmware's BSSID. Damp spurious
* change-of-BSSID indications.
*/
if ((ifp->if_flags & IFF_PROMISC) != 0 &&
!ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns,
WI_MAX_FALSE_SYNS))
return;
sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1);
/*
* XXX hack; we should create a new node with the new bssid
* and replace the existing ic_bss with it but since we don't
* process management frames to collect state we cheat by
* reusing the existing node as we know wi_newstate will be
* called and it will overwrite the node state.
*/
ieee80211_sta_join(ic, ieee80211_ref_node(ni));
}
static inline void
wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni,
struct ieee80211_frame *wh, int rssi)
{
struct wi_node *wn;
if (ni == NULL) {
printf("%s: null node", __func__);
return;
}
wn = (void*)ni;
ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi);
}
STATIC void
wi_rx_intr(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_node *ni;
struct wi_frame frmhdr;
struct mbuf *m;
struct ieee80211_frame *wh;
int fid, len, off, rssi;
u_int8_t dir;
u_int16_t status;
u_int32_t rstamp;
fid = CSR_READ_2(sc, WI_RX_FID);
/* First read in the frame header */
if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) {
aprint_error_dev(sc->sc_dev, "%s read fid %x failed\n",
__func__, fid);
ifp->if_ierrors++;
return;
}
if (IFF_DUMPPKTS(ifp))
wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal);
/*
* Drop undecryptable or packets with receive errors here
*/
status = le16toh(frmhdr.wi_status);
if ((status & WI_STAT_ERRSTAT) != 0 &&
ic->ic_opmode != IEEE80211_M_MONITOR) {
ifp->if_ierrors++;
DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status));
return;
}
rssi = frmhdr.wi_rx_signal;
rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) |
le16toh(frmhdr.wi_rx_tstamp1);
len = le16toh(frmhdr.wi_dat_len);
off = ALIGN(sizeof(struct ieee80211_frame));
/* Sometimes the PRISM2.x returns bogusly large frames. Except
* in monitor mode, just throw them away.
*/
if (off + len > MCLBYTES) {
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
ifp->if_ierrors++;
DPRINTF(("wi_rx_intr: oversized packet\n"));
return;
} else
len = 0;
}
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
ifp->if_ierrors++;
DPRINTF(("wi_rx_intr: MGET failed\n"));
return;
}
if (off + len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
ifp->if_ierrors++;
DPRINTF(("wi_rx_intr: MCLGET failed\n"));
return;
}
}
m->m_data += off - sizeof(struct ieee80211_frame);
memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame));
wi_read_bap(sc, fid, sizeof(frmhdr),
m->m_data + sizeof(struct ieee80211_frame), len);
m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len;
m->m_pkthdr.rcvif = ifp;
wh = mtod(m, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
/*
* WEP is decrypted by hardware. Clear WEP bit
* header for ieee80211_input().
*/
wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
}
if (sc->sc_drvbpf) {
struct wi_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_rate = frmhdr.wi_rx_rate / 5;
tap->wr_antsignal = frmhdr.wi_rx_signal;
tap->wr_antnoise = frmhdr.wi_rx_silence;
tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
if (frmhdr.wi_status & WI_STAT_PCF)
tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP;
/* XXX IEEE80211_RADIOTAP_F_WEP */
bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m);
}
/* synchronize driver's BSSID with firmware's BSSID */
dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK;
if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS)
wi_sync_bssid(sc, wh->i_addr3);
ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *));
ieee80211_input(ic, m, ni, rssi, rstamp);
wi_rssadapt_input(ic, ni, wh, rssi);
/*
* The frame may have caused the node to be marked for
* reclamation (e.g. in response to a DEAUTH message)
* so use release_node here instead of unref_node.
*/
ieee80211_free_node(ni);
}
STATIC void
wi_tx_ex_intr(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_node *ni;
struct ieee80211_rssdesc *id;
struct wi_rssdesc *rssd;
struct wi_frame frmhdr;
int fid;
u_int16_t status;
fid = CSR_READ_2(sc, WI_TX_CMP_FID);
/* Read in the frame header */
if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) {
aprint_error_dev(sc->sc_dev, "%s read fid %x failed\n",
__func__, fid);
wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
&sc->sc_txpending);
goto out;
}
if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
aprint_error_dev(sc->sc_dev, "%s bad idx %02x\n",
__func__, frmhdr.wi_tx_idx);
wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
&sc->sc_txpending);
goto out;
}
status = le16toh(frmhdr.wi_status);
/*
* Spontaneous station disconnects appear as xmit
* errors. Don't announce them and/or count them
* as an output error.
*/
if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) {
aprint_error_dev(sc->sc_dev, "tx failed");
if (status & WI_TXSTAT_RET_ERR)
printf(", retry limit exceeded");
if (status & WI_TXSTAT_AGED_ERR)
printf(", max transmit lifetime exceeded");
if (status & WI_TXSTAT_DISCONNECT)
printf(", port disconnected");
if (status & WI_TXSTAT_FORM_ERR)
printf(", invalid format (data len %u src %s)",
le16toh(frmhdr.wi_dat_len),
ether_sprintf(frmhdr.wi_ehdr.ether_shost));
if (status & ~0xf)
printf(", status=0x%x", status);
printf("\n");
}
ifp->if_oerrors++;
rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
id = &rssd->rd_desc;
if ((status & WI_TXSTAT_RET_ERR) != 0)
wi_lower_rate(ic, id);
ni = id->id_node;
id->id_node = NULL;
if (ni == NULL) {
aprint_error_dev(sc->sc_dev, "%s null node, rssdesc %02x\n",
__func__, frmhdr.wi_tx_idx);
goto out;
}
if (sc->sc_txpending[id->id_rateidx]-- == 0) {
aprint_error_dev(sc->sc_dev, "%s txpending[%i] wraparound",
__func__, id->id_rateidx);
sc->sc_txpending[id->id_rateidx] = 0;
}
if (ni != NULL)
ieee80211_free_node(ni);
SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
out:
ifp->if_flags &= ~IFF_OACTIVE;
}
STATIC void
wi_txalloc_intr(struct wi_softc *sc)
{
int fid, cur;
fid = CSR_READ_2(sc, WI_ALLOC_FID);
cur = sc->sc_txalloc;
#ifdef DIAGNOSTIC
if (sc->sc_txstarted == 0) {
printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
device_xname(sc->sc_dev), fid, sc->sc_txd[cur].d_fid, cur,
sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
return;
}
#endif
--sc->sc_txstarted;
++sc->sc_txalloced;
sc->sc_txd[cur].d_fid = fid;
sc->sc_txalloc = (cur + 1) % WI_NTXBUF;
#ifdef WI_RING_DEBUG
printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
device_xname(sc->sc_dev), fid,
sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
#endif
}
STATIC void
wi_cmd_intr(struct wi_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
if (sc->sc_invalid)
return;
#ifdef WI_DEBUG
if (wi_debug > 1)
printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds);
#endif
KASSERT(sc->sc_txcmds > 0);
--sc->sc_txcmds;
if (--sc->sc_txqueued == 0) {
sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
#ifdef WI_RING_DEBUG
printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n",
device_xname(sc->sc_dev),
sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
#endif
} else
wi_push_packet(sc);
}
STATIC void
wi_push_packet(struct wi_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
int cur, fid;
cur = sc->sc_txstart;
fid = sc->sc_txd[cur].d_fid;
KASSERT(sc->sc_txcmds == 0);
if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) {
aprint_error_dev(sc->sc_dev, "xmit failed\n");
/* XXX ring might have a hole */
}
if (sc->sc_txcmds++ > 0)
printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds);
++sc->sc_txstarted;
#ifdef DIAGNOSTIC
if (sc->sc_txstarted > WI_NTXBUF)
aprint_error_dev(sc->sc_dev, "too many buffers started\n");
#endif
sc->sc_txstart = (cur + 1) % WI_NTXBUF;
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
#ifdef WI_RING_DEBUG
printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n",
device_xname(sc->sc_dev), fid,
sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart,
sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted);
#endif
}
STATIC void
wi_tx_intr(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_node *ni;
struct ieee80211_rssdesc *id;
struct wi_rssdesc *rssd;
struct wi_frame frmhdr;
int fid;
fid = CSR_READ_2(sc, WI_TX_CMP_FID);
/* Read in the frame header */
if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2),
&frmhdr.wi_tx_swsup2, 2) != 0) {
aprint_error_dev(sc->sc_dev, "%s read fid %x failed\n",
__func__, fid);
wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
&sc->sc_txpending);
goto out;
}
if (frmhdr.wi_tx_idx >= WI_NTXRSS) {
aprint_error_dev(sc->sc_dev, "%s bad idx %02x\n",
__func__, frmhdr.wi_tx_idx);
wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree,
&sc->sc_txpending);
goto out;
}
rssd = &sc->sc_rssd[frmhdr.wi_tx_idx];
id = &rssd->rd_desc;
wi_raise_rate(ic, id);
ni = id->id_node;
id->id_node = NULL;
if (ni == NULL) {
aprint_error_dev(sc->sc_dev, "%s null node, rssdesc %02x\n",
__func__, frmhdr.wi_tx_idx);
goto out;
}
if (sc->sc_txpending[id->id_rateidx]-- == 0) {
aprint_error_dev(sc->sc_dev, "%s txpending[%i] wraparound",
__func__, id->id_rateidx);
sc->sc_txpending[id->id_rateidx] = 0;
}
if (ni != NULL)
ieee80211_free_node(ni);
SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next);
out:
ifp->if_flags &= ~IFF_OACTIVE;
}
STATIC void
wi_info_intr(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
int i, fid, len, off;
u_int16_t ltbuf[2];
u_int16_t stat;
u_int32_t *ptr;
fid = CSR_READ_2(sc, WI_INFO_FID);
wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf));
switch (le16toh(ltbuf[1])) {
case WI_INFO_LINK_STAT:
wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat));
DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat)));
switch (le16toh(stat)) {
case CONNECTED:
sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
if (ic->ic_state == IEEE80211_S_RUN &&
ic->ic_opmode != IEEE80211_M_IBSS)
break;
/* FALLTHROUGH */
case AP_CHANGE:
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
break;
case AP_IN_RANGE:
sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
break;
case AP_OUT_OF_RANGE:
if (sc->sc_firmware_type == WI_SYMBOL &&
sc->sc_scan_timer > 0) {
if (wi_cmd(sc, WI_CMD_INQUIRE,
WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0)
sc->sc_scan_timer = 0;
break;
}
if (ic->ic_opmode == IEEE80211_M_STA)
sc->sc_flags |= WI_FLAGS_OUTRANGE;
break;
case DISCONNECTED:
case ASSOC_FAILED:
if (ic->ic_opmode == IEEE80211_M_STA)
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
break;
}
break;
case WI_INFO_COUNTERS:
/* some card versions have a larger stats structure */
len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4);
ptr = (u_int32_t *)&sc->sc_stats;
off = sizeof(ltbuf);
for (i = 0; i < len; i++, off += 2, ptr++) {
wi_read_bap(sc, fid, off, &stat, sizeof(stat));
stat = le16toh(stat);
#ifdef WI_HERMES_STATS_WAR
if (stat & 0xf000)
stat = ~stat;
#endif
*ptr += stat;
}
ifp->if_collisions = sc->sc_stats.wi_tx_single_retries +
sc->sc_stats.wi_tx_multi_retries +
sc->sc_stats.wi_tx_retry_limit;
break;
case WI_INFO_SCAN_RESULTS:
case WI_INFO_HOST_SCAN_RESULTS:
wi_scan_result(sc, fid, le16toh(ltbuf[0]));
break;
default:
DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid,
le16toh(ltbuf[1]), le16toh(ltbuf[0])));
break;
}
}
STATIC int
wi_write_multi(struct wi_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
int n;
struct wi_mcast mlist;
struct ether_multi *enm;
struct ether_multistep estep;
if ((ifp->if_flags & IFF_PROMISC) != 0) {
allmulti:
ifp->if_flags |= IFF_ALLMULTI;
memset(&mlist, 0, sizeof(mlist));
return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
sizeof(mlist));
}
n = 0;
ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm);
while (enm != NULL) {
/* Punt on ranges or too many multicast addresses. */
if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) ||
n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0]))
goto allmulti;
IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo);
n++;
ETHER_NEXT_MULTI(estep, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist,
IEEE80211_ADDR_LEN * n);
}
STATIC void
wi_read_nicid(struct wi_softc *sc)
{
struct wi_card_ident *id;
char *p;
int len;
u_int16_t ver[4];
/* getting chip identity */
memset(ver, 0, sizeof(ver));
len = sizeof(ver);
wi_read_rid(sc, WI_RID_CARD_ID, ver, &len);
printf("%s: using ", device_xname(sc->sc_dev));
DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3])));
sc->sc_firmware_type = WI_NOTYPE;
for (id = wi_card_ident; id->card_name != NULL; id++) {
if (le16toh(ver[0]) == id->card_id) {
printf("%s", id->card_name);
sc->sc_firmware_type = id->firm_type;
break;
}
}
if (sc->sc_firmware_type == WI_NOTYPE) {
if (le16toh(ver[0]) & 0x8000) {
printf("Unknown PRISM2 chip");
sc->sc_firmware_type = WI_INTERSIL;
} else {
printf("Unknown Lucent chip");
sc->sc_firmware_type = WI_LUCENT;
}
}
/* get primary firmware version (Only Prism chips) */
if (sc->sc_firmware_type != WI_LUCENT) {
memset(ver, 0, sizeof(ver));
len = sizeof(ver);
wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len);
sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 +
le16toh(ver[3]) * 100 + le16toh(ver[1]);
}
/* get station firmware version */
memset(ver, 0, sizeof(ver));
len = sizeof(ver);
wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len);
sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 +
le16toh(ver[3]) * 100 + le16toh(ver[1]);
if (sc->sc_firmware_type == WI_INTERSIL &&
(sc->sc_sta_firmware_ver == 10102 ||
sc->sc_sta_firmware_ver == 20102)) {
char ident[12];
memset(ident, 0, sizeof(ident));
len = sizeof(ident);
/* value should be the format like "V2.00-11" */
if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 &&
*(p = (char *)ident) >= 'A' &&
p[2] == '.' && p[5] == '-' && p[8] == '\0') {
sc->sc_firmware_type = WI_SYMBOL;
sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 +
(p[3] - '0') * 1000 + (p[4] - '0') * 100 +
(p[6] - '0') * 10 + (p[7] - '0');
}
}
printf("\n%s: %s Firmware: ", device_xname(sc->sc_dev),
sc->sc_firmware_type == WI_LUCENT ? "Lucent" :
(sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil"));
if (sc->sc_firmware_type != WI_LUCENT) /* XXX */
printf("Primary (%u.%u.%u), ",
sc->sc_pri_firmware_ver / 10000,
(sc->sc_pri_firmware_ver % 10000) / 100,
sc->sc_pri_firmware_ver % 100);
printf("Station (%u.%u.%u)\n",
sc->sc_sta_firmware_ver / 10000,
(sc->sc_sta_firmware_ver % 10000) / 100,
sc->sc_sta_firmware_ver % 100);
}
STATIC int
wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen)
{
struct wi_ssid ssid;
if (buflen > IEEE80211_NWID_LEN)
return ENOBUFS;
memset(&ssid, 0, sizeof(ssid));
ssid.wi_len = htole16(buflen);
memcpy(ssid.wi_ssid, buf, buflen);
return wi_write_rid(sc, rid, &ssid, sizeof(ssid));
}
STATIC int
wi_get_cfg(struct ifnet *ifp, u_long cmd, void *data)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifreq *ifr = (struct ifreq *)data;
struct wi_req wreq;
int len, n, error;
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
return error;
len = (wreq.wi_len - 1) * 2;
if (len < sizeof(u_int16_t))
return ENOSPC;
if (len > sizeof(wreq.wi_val))
len = sizeof(wreq.wi_val);
switch (wreq.wi_type) {
case WI_RID_IFACE_STATS:
memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats));
if (len < sizeof(sc->sc_stats))
error = ENOSPC;
else
len = sizeof(sc->sc_stats);
break;
case WI_RID_ENCRYPTION:
case WI_RID_TX_CRYPT_KEY:
case WI_RID_DEFLT_CRYPT_KEYS:
case WI_RID_TX_RATE:
return ieee80211_cfgget(ic, cmd, data);
case WI_RID_MICROWAVE_OVEN:
if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
wreq.wi_val[0] = htole16(sc->sc_microwave_oven);
len = sizeof(u_int16_t);
break;
case WI_RID_DBM_ADJUST:
if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
wreq.wi_val[0] = htole16(sc->sc_dbm_offset);
len = sizeof(u_int16_t);
break;
case WI_RID_ROAMING_MODE:
if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
wreq.wi_val[0] = htole16(sc->sc_roaming_mode);
len = sizeof(u_int16_t);
break;
case WI_RID_SYSTEM_SCALE:
if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
wreq.wi_val[0] = htole16(sc->sc_system_scale);
len = sizeof(u_int16_t);
break;
case WI_RID_FRAG_THRESH:
if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
len = sizeof(u_int16_t);
break;
case WI_RID_READ_APS:
#ifndef IEEE80211_NO_HOSTAP
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
return ieee80211_cfgget(ic, cmd, data);
#endif /* !IEEE80211_NO_HOSTAP */
if (sc->sc_scan_timer > 0) {
error = EINPROGRESS;
break;
}
n = sc->sc_naps;
if (len < sizeof(n)) {
error = ENOSPC;
break;
}
if (len < sizeof(n) + sizeof(struct wi_apinfo) * n)
n = (len - sizeof(n)) / sizeof(struct wi_apinfo);
len = sizeof(n) + sizeof(struct wi_apinfo) * n;
memcpy(wreq.wi_val, &n, sizeof(n));
memcpy((char *)wreq.wi_val + sizeof(n), sc->sc_aps,
sizeof(struct wi_apinfo) * n);
break;
default:
if (sc->sc_enabled) {
error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val,
&len);
break;
}
switch (wreq.wi_type) {
case WI_RID_MAX_DATALEN:
wreq.wi_val[0] = htole16(sc->sc_max_datalen);
len = sizeof(u_int16_t);
break;
case WI_RID_FRAG_THRESH:
wreq.wi_val[0] = htole16(sc->sc_frag_thresh);
len = sizeof(u_int16_t);
break;
case WI_RID_RTS_THRESH:
wreq.wi_val[0] = htole16(sc->sc_rts_thresh);
len = sizeof(u_int16_t);
break;
case WI_RID_CNFAUTHMODE:
wreq.wi_val[0] = htole16(sc->sc_cnfauthmode);
len = sizeof(u_int16_t);
break;
case WI_RID_NODENAME:
if (len < sc->sc_nodelen + sizeof(u_int16_t)) {
error = ENOSPC;
break;
}
len = sc->sc_nodelen + sizeof(u_int16_t);
wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2);
memcpy(&wreq.wi_val[1], sc->sc_nodename,
sc->sc_nodelen);
break;
default:
return ieee80211_cfgget(ic, cmd, data);
}
break;
}
if (error)
return error;
wreq.wi_len = (len + 1) / 2 + 1;
return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2);
}
STATIC int
wi_set_cfg(struct ifnet *ifp, u_long cmd, void *data)
{
struct wi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ifreq *ifr = (struct ifreq *)data;
struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
struct wi_req wreq;
struct mbuf *m;
int i, len, error;
error = copyin(ifr->ifr_data, &wreq, sizeof(wreq));
if (error)
return error;
len = (wreq.wi_len - 1) * 2;
switch (wreq.wi_type) {
case WI_RID_MAC_NODE:
/* XXX convert to SIOCALIFADDR, AF_LINK, IFLR_ACTIVE */
(void)memcpy(ic->ic_myaddr, wreq.wi_val, ETHER_ADDR_LEN);
if_set_sadl(ifp, ic->ic_myaddr, ETHER_ADDR_LEN, false);
wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr,
IEEE80211_ADDR_LEN);
break;
case WI_RID_DBM_ADJUST:
return ENODEV;
case WI_RID_NODENAME:
if (le16toh(wreq.wi_val[0]) * 2 > len ||
le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) {
error = ENOSPC;
break;
}
if (sc->sc_enabled) {
error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
len);
if (error)
break;
}
sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2;
memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen);
break;
case WI_RID_MICROWAVE_OVEN:
case WI_RID_ROAMING_MODE:
case WI_RID_SYSTEM_SCALE:
case WI_RID_FRAG_THRESH:
if (wreq.wi_type == WI_RID_MICROWAVE_OVEN &&
(sc->sc_flags & WI_FLAGS_HAS_MOR) == 0)
break;
if (wreq.wi_type == WI_RID_ROAMING_MODE &&
(sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0)
break;
if (wreq.wi_type == WI_RID_SYSTEM_SCALE &&
(sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0)
break;
if (wreq.wi_type == WI_RID_FRAG_THRESH &&
(sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0)
break;
/* FALLTHROUGH */
case WI_RID_RTS_THRESH:
case WI_RID_CNFAUTHMODE:
case WI_RID_MAX_DATALEN:
if (sc->sc_enabled) {
error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
sizeof(u_int16_t));
if (error)
break;
}
switch (wreq.wi_type) {
case WI_RID_FRAG_THRESH:
sc->sc_frag_thresh = le16toh(wreq.wi_val[0]);
break;
case WI_RID_RTS_THRESH:
sc->sc_rts_thresh = le16toh(wreq.wi_val[0]);
break;
case WI_RID_MICROWAVE_OVEN:
sc->sc_microwave_oven = le16toh(wreq.wi_val[0]);
break;
case WI_RID_ROAMING_MODE:
sc->sc_roaming_mode = le16toh(wreq.wi_val[0]);
break;
case WI_RID_SYSTEM_SCALE:
sc->sc_system_scale = le16toh(wreq.wi_val[0]);
break;
case WI_RID_CNFAUTHMODE:
sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]);
break;
case WI_RID_MAX_DATALEN:
sc->sc_max_datalen = le16toh(wreq.wi_val[0]);
break;
}
break;
case WI_RID_TX_RATE:
switch (le16toh(wreq.wi_val[0])) {
case 3:
ic->ic_fixed_rate = -1;
break;
default:
for (i = 0; i < IEEE80211_RATE_SIZE; i++) {
if ((rs->rs_rates[i] & IEEE80211_RATE_VAL)
/ 2 == le16toh(wreq.wi_val[0]))
break;
}
if (i == IEEE80211_RATE_SIZE)
return EINVAL;
ic->ic_fixed_rate = i;
}
if (sc->sc_enabled)
error = wi_cfg_txrate(sc);
break;
case WI_RID_SCAN_APS:
if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP)
error = wi_scan_ap(sc, 0x3fff, 0x000f);
break;
case WI_RID_MGMT_XMIT:
if (!sc->sc_enabled) {
error = ENETDOWN;
break;
}
if (ic->ic_mgtq.ifq_len > 5) {
error = EAGAIN;
break;
}
/* XXX wi_len looks in u_int8_t, not in u_int16_t */
m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL);
if (m == NULL) {
error = ENOMEM;
break;
}
IF_ENQUEUE(&ic->ic_mgtq, m);
break;
default:
if (sc->sc_enabled) {
error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val,
len);
if (error)
break;
}
error = ieee80211_cfgset(ic, cmd, data);
break;
}
return error;
}
/* Rate is 0 for hardware auto-select, otherwise rate is
* 2, 4, 11, or 22 (units of 500Kbps).
*/
STATIC int
wi_write_txrate(struct wi_softc *sc, int rate)
{
u_int16_t hwrate;
/* rate: 0, 2, 4, 11, 22 */
switch (sc->sc_firmware_type) {
case WI_LUCENT:
switch (rate & IEEE80211_RATE_VAL) {
case 2:
hwrate = 1;
break;
case 4:
hwrate = 2;
break;
default:
hwrate = 3; /* auto */
break;
case 11:
hwrate = 4;
break;
case 22:
hwrate = 5;
break;
}
break;
default:
switch (rate & IEEE80211_RATE_VAL) {
case 2:
hwrate = 1;
break;
case 4:
hwrate = 2;
break;
case 11:
hwrate = 4;
break;
case 22:
hwrate = 8;
break;
default:
hwrate = 15; /* auto */
break;
}
break;
}
if (sc->sc_tx_rate == hwrate)
return 0;
if (sc->sc_if.if_flags & IFF_DEBUG)
printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate,
hwrate, rate);
sc->sc_tx_rate = hwrate;
return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate);
}
STATIC int
wi_cfg_txrate(struct wi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_rateset *rs;
int rate;
rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
sc->sc_tx_rate = 0; /* force write to RID */
if (ic->ic_fixed_rate < 0)
rate = 0; /* auto */
else
rate = rs->rs_rates[ic->ic_fixed_rate];
return wi_write_txrate(sc, rate);
}
STATIC int
wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
{
struct wi_softc *sc = ic->ic_ifp->if_softc;
u_int keyix = k->wk_keyix;
DPRINTF(("%s: delete key %u\n", __func__, keyix));
if (keyix >= IEEE80211_WEP_NKID)
return 0;
if (k->wk_keylen != 0)
sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
return 1;
}
static int
wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
const u_int8_t mac[IEEE80211_ADDR_LEN])
{
struct wi_softc *sc = ic->ic_ifp->if_softc;
DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix));
if (k->wk_keyix >= IEEE80211_WEP_NKID)
return 0;
sc->sc_flags &= ~WI_FLAGS_WEP_VALID;
return 1;
}
STATIC void
wi_key_update_begin(struct ieee80211com *ic)
{
DPRINTF(("%s:\n", __func__));
}
STATIC void
wi_key_update_end(struct ieee80211com *ic)
{
struct ifnet *ifp = ic->ic_ifp;
struct wi_softc *sc = ifp->if_softc;
DPRINTF(("%s:\n", __func__));
if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0)
return;
if ((ic->ic_caps & IEEE80211_C_WEP) != 0 && sc->sc_enabled &&
!sc->sc_invalid)
(void)wi_write_wep(sc);
}
STATIC int
wi_write_wep(struct wi_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct ieee80211com *ic = &sc->sc_ic;
int error = 0;
int i, keylen;
u_int16_t val;
struct wi_key wkey[IEEE80211_WEP_NKID];
if ((ifp->if_flags & IFF_RUNNING) != 0)
wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0);
switch (sc->sc_firmware_type) {
case WI_LUCENT:
val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0;
error = wi_write_val(sc, WI_RID_ENCRYPTION, val);
if (error)
break;
error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey);
if (error)
break;
memset(wkey, 0, sizeof(wkey));
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
keylen = ic->ic_nw_keys[i].wk_keylen;
wkey[i].wi_keylen = htole16(keylen);
memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key,
keylen);
}
error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS,
wkey, sizeof(wkey));
break;
case WI_INTERSIL:
case WI_SYMBOL:
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
/*
* ONLY HWB3163 EVAL-CARD Firmware version
* less than 0.8 variant2
*
* If promiscuous mode disable, Prism2 chip
* does not work with WEP .
* It is under investigation for details.
* (ichiro@NetBSD.org)
*/
if (sc->sc_firmware_type == WI_INTERSIL &&
sc->sc_sta_firmware_ver < 802 ) {
/* firm ver < 0.8 variant 2 */
wi_write_val(sc, WI_RID_PROMISC, 1);
}
wi_write_val(sc, WI_RID_CNFAUTHMODE,
sc->sc_cnfauthmode);
val = PRIVACY_INVOKED;
if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0)
val |= EXCLUDE_UNENCRYPTED;
#ifndef IEEE80211_NO_HOSTAP
/*
* Encryption firmware has a bug for HostAP mode.
*/
if (sc->sc_firmware_type == WI_INTERSIL &&
ic->ic_opmode == IEEE80211_M_HOSTAP)
val |= HOST_ENCRYPT;
#endif /* !IEEE80211_NO_HOSTAP */
} else {
wi_write_val(sc, WI_RID_CNFAUTHMODE,
IEEE80211_AUTH_OPEN);
val = HOST_ENCRYPT | HOST_DECRYPT;
}
error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val);
if (error)
break;
error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY,
ic->ic_def_txkey);
if (error)
break;
/*
* It seems that the firmware accept 104bit key only if
* all the keys have 104bit length. We get the length of
* the transmit key and use it for all other keys.
* Perhaps we should use software WEP for such situation.
*/
if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE ||
IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey]))
keylen = 13; /* No keys => 104bit ok */
else
keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen;
if (keylen > IEEE80211_WEP_KEYLEN)
keylen = 13; /* 104bit keys */
else
keylen = IEEE80211_WEP_KEYLEN;
for (i = 0; i < IEEE80211_WEP_NKID; i++) {
error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i,
ic->ic_nw_keys[i].wk_key, keylen);
if (error)
break;
}
break;
}
if ((ifp->if_flags & IFF_RUNNING) != 0)
wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0);
if (error == 0)
sc->sc_flags |= WI_FLAGS_WEP_VALID;
return error;
}
/* Must be called at proper protection level! */
STATIC int
wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
{
#ifdef WI_HISTOGRAM
static int hist1[11];
static int hist1count;
#endif
int i;
/* wait for the busy bit to clear */
for (i = 500; i > 0; i--) { /* 5s */
if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0)
break;
if (sc->sc_invalid)
return ENXIO;
DELAY(1000); /* 1 m sec */
}
if (i == 0) {
aprint_error_dev(sc->sc_dev, "wi_cmd: busy bit won't clear.\n");
return(ETIMEDOUT);
}
#ifdef WI_HISTOGRAM
if (i > 490)
hist1[500 - i]++;
else
hist1[10]++;
if (++hist1count == 1000) {
hist1count = 0;
printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n",
device_xname(sc->sc_dev),
hist1[0], hist1[1], hist1[2], hist1[3], hist1[4],
hist1[5], hist1[6], hist1[7], hist1[8], hist1[9],
hist1[10]);
}
#endif
CSR_WRITE_2(sc, WI_PARAM0, val0);
CSR_WRITE_2(sc, WI_PARAM1, val1);
CSR_WRITE_2(sc, WI_PARAM2, val2);
CSR_WRITE_2(sc, WI_COMMAND, cmd);
return 0;
}
STATIC int
wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2)
{
int rc;
#ifdef WI_DEBUG
if (wi_debug) {
printf("%s: [enter] %d txcmds outstanding\n", __func__,
sc->sc_txcmds);
}
#endif
if (sc->sc_txcmds > 0)
wi_txcmd_wait(sc);
if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0)
return rc;
if (cmd == WI_CMD_INI) {
/* XXX: should sleep here. */
if (sc->sc_invalid)
return ENXIO;
DELAY(100*1000);
}
rc = wi_cmd_wait(sc, cmd, val0);
#ifdef WI_DEBUG
if (wi_debug) {
printf("%s: [ ] %d txcmds outstanding\n", __func__,
sc->sc_txcmds);
}
#endif
if (sc->sc_txcmds > 0)
wi_cmd_intr(sc);
#ifdef WI_DEBUG
if (wi_debug) {
printf("%s: [leave] %d txcmds outstanding\n", __func__,
sc->sc_txcmds);
}
#endif
return rc;
}
STATIC int
wi_cmd_wait(struct wi_softc *sc, int cmd, int val0)
{
#ifdef WI_HISTOGRAM
static int hist2[11];
static int hist2count;
#endif
int i, status;
#ifdef WI_DEBUG
if (wi_debug > 1)
printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0);
#endif /* WI_DEBUG */
/* wait for the cmd completed bit */
for (i = 0; i < WI_TIMEOUT; i++) {
if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD)
break;
if (sc->sc_invalid)
return ENXIO;
DELAY(WI_DELAY);
}
#ifdef WI_HISTOGRAM
if (i < 100)
hist2[i/10]++;
else
hist2[10]++;
if (++hist2count == 1000) {
hist2count = 0;
printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n",
device_xname(sc->sc_dev),
hist2[0], hist2[1], hist2[2], hist2[3], hist2[4],
hist2[5], hist2[6], hist2[7], hist2[8], hist2[9],
hist2[10]);
}
#endif
status = CSR_READ_2(sc, WI_STATUS);
if (i == WI_TIMEOUT) {
aprint_error_dev(sc->sc_dev,
"command timed out, cmd=0x%x, arg=0x%x\n",
cmd, val0);
return ETIMEDOUT;
}
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD);
if (status & WI_STAT_CMD_RESULT) {
aprint_error_dev(sc->sc_dev,
"command failed, cmd=0x%x, arg=0x%x\n",
cmd, val0);
return EIO;
}
return 0;
}
STATIC int
wi_seek_bap(struct wi_softc *sc, int id, int off)
{
#ifdef WI_HISTOGRAM
static int hist4[11];
static int hist4count;
#endif
int i, status;
CSR_WRITE_2(sc, WI_SEL0, id);
CSR_WRITE_2(sc, WI_OFF0, off);
for (i = 0; ; i++) {
status = CSR_READ_2(sc, WI_OFF0);
if ((status & WI_OFF_BUSY) == 0)
break;
if (i == WI_TIMEOUT) {
aprint_error_dev(sc->sc_dev,
"timeout in wi_seek to %x/%x\n",
id, off);
sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
return ETIMEDOUT;
}
if (sc->sc_invalid)
return ENXIO;
DELAY(2);
}
#ifdef WI_HISTOGRAM
if (i < 100)
hist4[i/10]++;
else
hist4[10]++;
if (++hist4count == 2500) {
hist4count = 0;
printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n",
device_xname(sc->sc_dev),
hist4[0], hist4[1], hist4[2], hist4[3], hist4[4],
hist4[5], hist4[6], hist4[7], hist4[8], hist4[9],
hist4[10]);
}
#endif
if (status & WI_OFF_ERR) {
printf("%s: failed in wi_seek to %x/%x\n",
device_xname(sc->sc_dev), id, off);
sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
return EIO;
}
sc->sc_bap_id = id;
sc->sc_bap_off = off;
return 0;
}
STATIC int
wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
{
int error, cnt;
if (buflen == 0)
return 0;
if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
if ((error = wi_seek_bap(sc, id, off)) != 0)
return error;
}
cnt = (buflen + 1) / 2;
CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
sc->sc_bap_off += cnt * 2;
return 0;
}
STATIC int
wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen)
{
int error, cnt;
if (buflen == 0)
return 0;
#ifdef WI_HERMES_AUTOINC_WAR
again:
#endif
if (id != sc->sc_bap_id || off != sc->sc_bap_off) {
if ((error = wi_seek_bap(sc, id, off)) != 0)
return error;
}
cnt = (buflen + 1) / 2;
CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt);
sc->sc_bap_off += cnt * 2;
#ifdef WI_HERMES_AUTOINC_WAR
/*
* According to the comments in the HCF Light code, there is a bug
* in the Hermes (or possibly in certain Hermes firmware revisions)
* where the chip's internal autoincrement counter gets thrown off
* during data writes: the autoincrement is missed, causing one
* data word to be overwritten and subsequent words to be written to
* the wrong memory locations. The end result is that we could end
* up transmitting bogus frames without realizing it. The workaround
* for this is to write a couple of extra guard words after the end
* of the transfer, then attempt to read then back. If we fail to
* locate the guard words where we expect them, we preform the
* transfer over again.
*/
if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) {
CSR_WRITE_2(sc, WI_DATA0, 0x1234);
CSR_WRITE_2(sc, WI_DATA0, 0x5678);
wi_seek_bap(sc, id, sc->sc_bap_off);
sc->sc_bap_off = WI_OFF_ERR; /* invalidate */
if (CSR_READ_2(sc, WI_DATA0) != 0x1234 ||
CSR_READ_2(sc, WI_DATA0) != 0x5678) {
aprint_error_dev(sc->sc_dev,
"detect auto increment bug, try again\n");
goto again;
}
}
#endif
return 0;
}
STATIC int
wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen)
{
int error, len;
struct mbuf *m;
for (m = m0; m != NULL && totlen > 0; m = m->m_next) {
if (m->m_len == 0)
continue;
len = min(m->m_len, totlen);
if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) {
m_copydata(m, 0, totlen, (void *)&sc->sc_txbuf);
return wi_write_bap(sc, id, off, (void *)&sc->sc_txbuf,
totlen);
}
if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0)
return error;
off += m->m_len;
totlen -= len;
}
return 0;
}
STATIC int
wi_alloc_fid(struct wi_softc *sc, int len, int *idp)
{
int i;
if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) {
aprint_error_dev(sc->sc_dev, "failed to allocate %d bytes on NIC\n", len);
return ENOMEM;
}
for (i = 0; i < WI_TIMEOUT; i++) {
if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC)
break;
DELAY(1);
}
if (i == WI_TIMEOUT) {
aprint_error_dev(sc->sc_dev, "timeout in alloc\n");
return ETIMEDOUT;
}
*idp = CSR_READ_2(sc, WI_ALLOC_FID);
CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC);
return 0;
}
STATIC int
wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp)
{
int error, len;
u_int16_t ltbuf[2];
/* Tell the NIC to enter record read mode. */
error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0);
if (error)
return error;
error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
if (error)
return error;
if (le16toh(ltbuf[0]) == 0)
return EOPNOTSUPP;
if (le16toh(ltbuf[1]) != rid) {
aprint_error_dev(sc->sc_dev,
"record read mismatch, rid=%x, got=%x\n",
rid, le16toh(ltbuf[1]));
return EIO;
}
len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */
if (*buflenp < len) {
aprint_error_dev(sc->sc_dev, "record buffer is too small, "
"rid=%x, size=%d, len=%d\n",
rid, *buflenp, len);
return ENOSPC;
}
*buflenp = len;
return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len);
}
STATIC int
wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen)
{
int error;
u_int16_t ltbuf[2];
ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */
ltbuf[1] = htole16(rid);
error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf));
if (error)
return error;
error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen);
if (error)
return error;
return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0);
}
STATIC void
wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni)
{
struct wi_node *wn = (void*)ni;
ieee80211_rssadapt_updatestats(&wn->wn_rssadapt);
}
STATIC void
wi_rssadapt_updatestats(void *arg)
{
struct wi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg);
if (ic->ic_opmode != IEEE80211_M_MONITOR &&
ic->ic_state == IEEE80211_S_RUN)
callout_reset(&sc->sc_rssadapt_ch, hz / 10,
wi_rssadapt_updatestats, arg);
}
/*
* In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating
* with WEP enabled so that the AP drops unencoded frames at the
* 802.11 layer.
*
* In all other modes, clear IEEE80211_F_DROPUNENC when operating
* with WEP enabled so we don't drop unencoded frames at the 802.11
* layer. This is necessary because we must strip the WEP bit from
* the 802.11 header before passing frames to ieee80211_input
* because the card has already stripped the WEP crypto header from
* the packet.
*/
STATIC void
wi_mend_flags(struct wi_softc *sc, enum ieee80211_state nstate)
{
struct ieee80211com *ic = &sc->sc_ic;
if (nstate == IEEE80211_S_RUN &&
(ic->ic_flags & IEEE80211_F_PRIVACY) != 0 &&
ic->ic_opmode != IEEE80211_M_HOSTAP)
ic->ic_flags &= ~IEEE80211_F_DROPUNENC;
else
ic->ic_flags |= sc->sc_ic_flags;
DPRINTF(("%s: state %d, "
"ic->ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 ", "
"sc->sc_ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 "\n",
__func__, nstate,
ic->ic_flags & IEEE80211_F_DROPUNENC,
sc->sc_ic_flags & IEEE80211_F_DROPUNENC));
}
STATIC int
wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct wi_softc *sc = ifp->if_softc;
struct ieee80211_node *ni = ic->ic_bss;
u_int16_t val;
struct wi_ssid ssid;
struct wi_macaddr bssid, old_bssid;
enum ieee80211_state ostate __unused;
#ifdef WI_DEBUG
static const char *stname[] =
{ "INIT", "SCAN", "AUTH", "ASSOC", "RUN" };
#endif /* WI_DEBUG */
ostate = ic->ic_state;
DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate]));
switch (nstate) {
case IEEE80211_S_INIT:
if (ic->ic_opmode != IEEE80211_M_MONITOR)
callout_stop(&sc->sc_rssadapt_ch);
ic->ic_flags &= ~IEEE80211_F_SIBSS;
sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
break;
case IEEE80211_S_SCAN:
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */
wi_mend_flags(sc, nstate);
return 0;
case IEEE80211_S_RUN:
sc->sc_flags &= ~WI_FLAGS_OUTRANGE;
IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid);
wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid,
IEEE80211_ADDR_LEN);
IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid);
IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid);
wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val));
if (!isset(ic->ic_chan_avail, le16toh(val)))
panic("%s: invalid channel %d\n",
device_xname(sc->sc_dev), le16toh(val));
ni->ni_chan = &ic->ic_channels[le16toh(val)];
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
#ifndef IEEE80211_NO_HOSTAP
ni->ni_esslen = ic->ic_des_esslen;
memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen);
ni->ni_rates = ic->ic_sup_rates[
ieee80211_chan2mode(ic, ni->ni_chan)];
ni->ni_intval = ic->ic_lintval;
ni->ni_capinfo = IEEE80211_CAPINFO_ESS;
if (ic->ic_flags & IEEE80211_F_PRIVACY)
ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY;
#endif /* !IEEE80211_NO_HOSTAP */
} else {
wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid,
sizeof(ssid));
ni->ni_esslen = le16toh(ssid.wi_len);
if (ni->ni_esslen > IEEE80211_NWID_LEN)
ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/
memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen);
ni->ni_rates = ic->ic_sup_rates[
ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/
}
if (ic->ic_opmode != IEEE80211_M_MONITOR)
callout_reset(&sc->sc_rssadapt_ch, hz / 10,
wi_rssadapt_updatestats, sc);
/* Trigger routing socket messages. XXX Copied from
* ieee80211_newstate.
*/
if (ic->ic_opmode == IEEE80211_M_STA)
ieee80211_notify_node_join(ic, ic->ic_bss,
arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP);
break;
}
wi_mend_flags(sc, nstate);
return (*sc->sc_newstate)(ic, nstate, arg);
}
STATIC void
wi_set_tim(struct ieee80211_node *ni, int set)
{
struct ieee80211com *ic = ni->ni_ic;
struct wi_softc *sc = ic->ic_ifp->if_softc;
(*sc->sc_set_tim)(ni, set);
if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0)
return;
ic->ic_flags &= ~IEEE80211_F_TIMUPDATE;
(void)wi_write_val(sc, WI_RID_SET_TIM,
IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0));
}
STATIC int
wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate)
{
int error = 0;
u_int16_t val[2];
if (!sc->sc_enabled)
return ENXIO;
switch (sc->sc_firmware_type) {
case WI_LUCENT:
(void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0);
break;
case WI_INTERSIL:
val[0] = htole16(chanmask); /* channel */
val[1] = htole16(txrate); /* tx rate */
error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val));
break;
case WI_SYMBOL:
/*
* XXX only supported on 3.x ?
*/
val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME);
error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ,
val, sizeof(val[0]));
break;
}
if (error == 0) {
sc->sc_scan_timer = WI_SCAN_WAIT;
sc->sc_if.if_timer = 1;
DPRINTF(("wi_scan_ap: start scanning, "
"chanmask 0x%x txrate 0x%x\n", chanmask, txrate));
}
return error;
}
STATIC void
wi_scan_result(struct wi_softc *sc, int fid, int cnt)
{
#define N(a) (sizeof (a) / sizeof (a[0]))
int i, naps, off, szbuf;
struct wi_scan_header ws_hdr; /* Prism2 header */
struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/
struct wi_apinfo *ap;
off = sizeof(u_int16_t) * 2;
memset(&ws_hdr, 0, sizeof(ws_hdr));
switch (sc->sc_firmware_type) {
case WI_INTERSIL:
wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr));
off += sizeof(ws_hdr);
szbuf = sizeof(struct wi_scan_data_p2);
break;
case WI_SYMBOL:
szbuf = sizeof(struct wi_scan_data_p2) + 6;
break;
case WI_LUCENT:
szbuf = sizeof(struct wi_scan_data);
break;
default:
aprint_error_dev(sc->sc_dev,
"wi_scan_result: unknown firmware type %u\n",
sc->sc_firmware_type);
naps = 0;
goto done;
}
naps = (cnt * 2 + 2 - off) / szbuf;
if (naps > N(sc->sc_aps))
naps = N(sc->sc_aps);
sc->sc_naps = naps;
/* Read Data */
ap = sc->sc_aps;
memset(&ws_dat, 0, sizeof(ws_dat));
for (i = 0; i < naps; i++, ap++) {
wi_read_bap(sc, fid, off, &ws_dat,
(sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf));
DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off,
ether_sprintf(ws_dat.wi_bssid)));
off += szbuf;
ap->scanreason = le16toh(ws_hdr.wi_reason);
memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid));
ap->channel = le16toh(ws_dat.wi_chid);
ap->signal = le16toh(ws_dat.wi_signal);
ap->noise = le16toh(ws_dat.wi_noise);
ap->quality = ap->signal - ap->noise;
ap->capinfo = le16toh(ws_dat.wi_capinfo);
ap->interval = le16toh(ws_dat.wi_interval);
ap->rate = le16toh(ws_dat.wi_rate);
ap->namelen = le16toh(ws_dat.wi_namelen);
if (ap->namelen > sizeof(ap->name))
ap->namelen = sizeof(ap->name);
memcpy(ap->name, ws_dat.wi_name, ap->namelen);
}
done:
/* Done scanning */
sc->sc_scan_timer = 0;
DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps));
#undef N
}
STATIC void
wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi)
{
ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr),
ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL
: -1,
rssi);
printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n",
le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1),
le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence);
printf(" rx_signal %u rx_rate %u rx_flow %u\n",
wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow);
printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n",
wh->wi_tx_rtry, wh->wi_tx_rate,
le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len));
printf(" ehdr dst %s src %s type 0x%x\n",
ether_sprintf(wh->wi_ehdr.ether_dhost),
ether_sprintf(wh->wi_ehdr.ether_shost),
wh->wi_ehdr.ether_type);
}