/* $NetBSD: wi.c,v 1.237 2014/02/25 18:30:09 pooka Exp $ */ /*- * Copyright (c) 2004 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Copyright (c) 1997, 1998, 1999 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ /* * Lucent WaveLAN/IEEE 802.11 PCMCIA driver for NetBSD. * * Original FreeBSD driver written by Bill Paul * Electrical Engineering Department * Columbia University, New York City */ /* * The WaveLAN/IEEE adapter is the second generation of the WaveLAN * from Lucent. Unlike the older cards, the new ones are programmed * entirely via a firmware-driven controller called the Hermes. * Unfortunately, Lucent will not release the Hermes programming manual * without an NDA (if at all). What they do release is an API library * called the HCF (Hardware Control Functions) which is supposed to * do the device-specific operations of a device driver for you. The * publically available version of the HCF library (the 'HCF Light') is * a) extremely gross, b) lacks certain features, particularly support * for 802.11 frames, and c) is contaminated by the GNU Public License. * * This driver does not use the HCF or HCF Light at all. Instead, it * programs the Hermes controller directly, using information gleaned * from the HCF Light code and corresponding documentation. * * This driver supports both the PCMCIA and ISA versions of the * WaveLAN/IEEE cards. Note however that the ISA card isn't really * anything of the sort: it's actually a PCMCIA bridge adapter * that fits into an ISA slot, into which a PCMCIA WaveLAN card is * inserted. Consequently, you need to use the pccard support for * both the ISA and PCMCIA adapters. */ /* * FreeBSD driver ported to NetBSD by Bill Sommerfeld in the back of the * Oslo IETF plenary meeting. */ #include __KERNEL_RCSID(0, "$NetBSD: wi.c,v 1.237 2014/02/25 18:30:09 pooka Exp $"); #define WI_HERMES_AUTOINC_WAR /* Work around data write autoinc bug. */ #define WI_HERMES_STATS_WAR /* Work around stats counter bug. */ #undef WI_HISTOGRAM #undef WI_RING_DEBUG #define STATIC static #include #include #include #include #include #include #include #include #include /* for hz */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include STATIC int wi_init(struct ifnet *); STATIC void wi_stop(struct ifnet *, int); STATIC void wi_start(struct ifnet *); STATIC int wi_reset(struct wi_softc *); STATIC void wi_watchdog(struct ifnet *); STATIC int wi_ioctl(struct ifnet *, u_long, void *); STATIC int wi_media_change(struct ifnet *); STATIC void wi_media_status(struct ifnet *, struct ifmediareq *); static void wi_ioctl_init(struct wi_softc *); static int wi_ioctl_enter(struct wi_softc *); static void wi_ioctl_exit(struct wi_softc *); static void wi_ioctl_drain(struct wi_softc *); STATIC struct ieee80211_node *wi_node_alloc(struct ieee80211_node_table *); STATIC void wi_node_free(struct ieee80211_node *); STATIC void wi_raise_rate(struct ieee80211com *, struct ieee80211_rssdesc *); STATIC void wi_lower_rate(struct ieee80211com *, struct ieee80211_rssdesc *); STATIC int wi_choose_rate(struct ieee80211com *, struct ieee80211_node *, struct ieee80211_frame *, u_int); STATIC void wi_rssadapt_updatestats_cb(void *, struct ieee80211_node *); STATIC void wi_rssadapt_updatestats(void *); STATIC void wi_rssdescs_init(struct wi_rssdesc (*)[], wi_rssdescq_t *); STATIC void wi_rssdescs_reset(struct ieee80211com *, struct wi_rssdesc (*)[], wi_rssdescq_t *, u_int8_t (*)[]); STATIC void wi_sync_bssid(struct wi_softc *, u_int8_t new_bssid[]); STATIC void wi_rx_intr(struct wi_softc *); STATIC void wi_txalloc_intr(struct wi_softc *); STATIC void wi_cmd_intr(struct wi_softc *); STATIC void wi_tx_intr(struct wi_softc *); STATIC void wi_tx_ex_intr(struct wi_softc *); STATIC void wi_info_intr(struct wi_softc *); STATIC int wi_key_delete(struct ieee80211com *, const struct ieee80211_key *); STATIC int wi_key_set(struct ieee80211com *, const struct ieee80211_key *, const u_int8_t[IEEE80211_ADDR_LEN]); STATIC void wi_key_update_begin(struct ieee80211com *); STATIC void wi_key_update_end(struct ieee80211com *); STATIC void wi_push_packet(struct wi_softc *); STATIC int wi_get_cfg(struct ifnet *, u_long, void *); STATIC int wi_set_cfg(struct ifnet *, u_long, void *); STATIC int wi_cfg_txrate(struct wi_softc *); STATIC int wi_write_txrate(struct wi_softc *, int); STATIC int wi_write_wep(struct wi_softc *); STATIC int wi_write_multi(struct wi_softc *); STATIC int wi_alloc_fid(struct wi_softc *, int, int *); STATIC void wi_read_nicid(struct wi_softc *); STATIC int wi_write_ssid(struct wi_softc *, int, u_int8_t *, int); STATIC int wi_cmd(struct wi_softc *, int, int, int, int); STATIC int wi_cmd_start(struct wi_softc *, int, int, int, int); STATIC int wi_cmd_wait(struct wi_softc *, int, int); STATIC int wi_seek_bap(struct wi_softc *, int, int); STATIC int wi_read_bap(struct wi_softc *, int, int, void *, int); STATIC int wi_write_bap(struct wi_softc *, int, int, void *, int); STATIC int wi_mwrite_bap(struct wi_softc *, int, int, struct mbuf *, int); STATIC int wi_read_rid(struct wi_softc *, int, void *, int *); STATIC int wi_write_rid(struct wi_softc *, int, void *, int); STATIC int wi_newstate(struct ieee80211com *, enum ieee80211_state, int); STATIC void wi_set_tim(struct ieee80211_node *, int); STATIC int wi_scan_ap(struct wi_softc *, u_int16_t, u_int16_t); STATIC void wi_scan_result(struct wi_softc *, int, int); STATIC void wi_dump_pkt(struct wi_frame *, struct ieee80211_node *, int rssi); STATIC void wi_mend_flags(struct wi_softc *, enum ieee80211_state); static inline int wi_write_val(struct wi_softc *sc, int rid, u_int16_t val) { val = htole16(val); return wi_write_rid(sc, rid, &val, sizeof(val)); } static struct timeval lasttxerror; /* time of last tx error msg */ static int curtxeps = 0; /* current tx error msgs/sec */ static int wi_txerate = 0; /* tx error rate: max msgs/sec */ #ifdef WI_DEBUG #define WI_DEBUG_MAX 2 int wi_debug = 0; #define DPRINTF(X) if (wi_debug) printf X #define DPRINTF2(X) if (wi_debug > 1) printf X #define IFF_DUMPPKTS(_ifp) \ (((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2)) static int wi_sysctl_verify_debug(SYSCTLFN_PROTO); #else #define DPRINTF(X) #define DPRINTF2(X) #define IFF_DUMPPKTS(_ifp) 0 #endif #define WI_INTRS (WI_EV_RX | WI_EV_ALLOC | WI_EV_INFO | \ WI_EV_TX | WI_EV_TX_EXC | WI_EV_CMD) struct wi_card_ident wi_card_ident[] = { /* CARD_ID CARD_NAME FIRM_TYPE */ { WI_NIC_LUCENT_ID, WI_NIC_LUCENT_STR, WI_LUCENT }, { WI_NIC_SONY_ID, WI_NIC_SONY_STR, WI_LUCENT }, { WI_NIC_LUCENT_EMB_ID, WI_NIC_LUCENT_EMB_STR, WI_LUCENT }, { WI_NIC_EVB2_ID, WI_NIC_EVB2_STR, WI_INTERSIL }, { WI_NIC_HWB3763_ID, WI_NIC_HWB3763_STR, WI_INTERSIL }, { WI_NIC_HWB3163_ID, WI_NIC_HWB3163_STR, WI_INTERSIL }, { WI_NIC_HWB3163B_ID, WI_NIC_HWB3163B_STR, WI_INTERSIL }, { WI_NIC_EVB3_ID, WI_NIC_EVB3_STR, WI_INTERSIL }, { WI_NIC_HWB1153_ID, WI_NIC_HWB1153_STR, WI_INTERSIL }, { WI_NIC_P2_SST_ID, WI_NIC_P2_SST_STR, WI_INTERSIL }, { WI_NIC_EVB2_SST_ID, WI_NIC_EVB2_SST_STR, WI_INTERSIL }, { WI_NIC_3842_EVA_ID, WI_NIC_3842_EVA_STR, WI_INTERSIL }, { WI_NIC_3842_PCMCIA_AMD_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_3842_PCMCIA_SST_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_3842_PCMCIA_ATM_ID, WI_NIC_3842_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_3842_MINI_AMD_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, { WI_NIC_3842_MINI_SST_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, { WI_NIC_3842_MINI_ATM_ID, WI_NIC_3842_MINI_STR, WI_INTERSIL }, { WI_NIC_3842_PCI_AMD_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, { WI_NIC_3842_PCI_SST_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, { WI_NIC_3842_PCI_ATM_ID, WI_NIC_3842_PCI_STR, WI_INTERSIL }, { WI_NIC_P3_PCMCIA_AMD_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_P3_PCMCIA_SST_ID, WI_NIC_P3_PCMCIA_STR, WI_INTERSIL }, { WI_NIC_P3_MINI_AMD_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, { WI_NIC_P3_MINI_SST_ID, WI_NIC_P3_MINI_STR, WI_INTERSIL }, { 0, NULL, 0 }, }; #ifndef _MODULE /* * Setup sysctl(3) MIB, hw.wi.* * * TBD condition CTLFLAG_PERMANENT on being a module or not */ SYSCTL_SETUP(sysctl_wi, "sysctl wi(4) subtree setup") { int rc; const struct sysctlnode *rnode; #ifdef WI_DEBUG const struct sysctlnode *cnode; #endif /* WI_DEBUG */ if ((rc = sysctl_createv(clog, 0, NULL, &rnode, CTLFLAG_PERMANENT, CTLTYPE_NODE, "wi", "Lucent/Prism/Symbol 802.11 controls", NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) goto err; #ifdef WI_DEBUG /* control debugging printfs */ if ((rc = sysctl_createv(clog, 0, &rnode, &cnode, CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "debug", SYSCTL_DESCR("Enable debugging output"), wi_sysctl_verify_debug, 0, &wi_debug, 0, CTL_CREATE, CTL_EOL)) != 0) goto err; #endif /* WI_DEBUG */ return; err: printf("%s: sysctl_createv failed (rc = %d)\n", __func__, rc); } #endif #ifdef WI_DEBUG static int wi_sysctl_verify(SYSCTLFN_ARGS, int lower, int upper) { int error, t; struct sysctlnode node; node = *rnode; t = *(int*)rnode->sysctl_data; node.sysctl_data = &t; error = sysctl_lookup(SYSCTLFN_CALL(&node)); if (error || newp == NULL) return (error); if (t < lower || t > upper) return (EINVAL); *(int*)rnode->sysctl_data = t; return (0); } static int wi_sysctl_verify_debug(SYSCTLFN_ARGS) { return wi_sysctl_verify(SYSCTLFN_CALL(__UNCONST(rnode)), 0, WI_DEBUG_MAX); } #endif /* WI_DEBUG */ STATIC int wi_read_xrid(struct wi_softc *sc, int rid, void *buf, int ebuflen) { int buflen, rc; buflen = ebuflen; if ((rc = wi_read_rid(sc, rid, buf, &buflen)) != 0) return rc; if (buflen < ebuflen) { #ifdef WI_DEBUG printf("%s: rid=%#04x read %d, expected %d\n", __func__, rid, buflen, ebuflen); #endif return -1; } return 0; } int wi_attach(struct wi_softc *sc, const u_int8_t *macaddr) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; int chan, nrate, buflen; u_int16_t val, chanavail; struct { u_int16_t nrates; char rates[IEEE80211_RATE_SIZE]; } ratebuf; static const u_int8_t empty_macaddr[IEEE80211_ADDR_LEN] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; int s; wi_ioctl_init(sc); s = splnet(); /* Make sure interrupts are disabled. */ CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); sc->sc_invalid = 0; /* Reset the NIC. */ if (wi_reset(sc) != 0) { sc->sc_invalid = 1; splx(s); return 1; } if (wi_read_xrid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN) != 0 || IEEE80211_ADDR_EQ(ic->ic_myaddr, empty_macaddr)) { if (macaddr != NULL) memcpy(ic->ic_myaddr, macaddr, IEEE80211_ADDR_LEN); else { printf(" could not get mac address, attach failed\n"); splx(s); return 1; } } printf(" 802.11 address %s\n", ether_sprintf(ic->ic_myaddr)); /* Read NIC identification */ wi_read_nicid(sc); memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ); ifp->if_softc = sc; ifp->if_start = wi_start; ifp->if_ioctl = wi_ioctl; ifp->if_watchdog = wi_watchdog; ifp->if_init = wi_init; ifp->if_stop = wi_stop; ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS; IFQ_SET_READY(&ifp->if_snd); ic->ic_ifp = ifp; ic->ic_phytype = IEEE80211_T_DS; ic->ic_opmode = IEEE80211_M_STA; ic->ic_caps = IEEE80211_C_AHDEMO; ic->ic_state = IEEE80211_S_INIT; ic->ic_max_aid = WI_MAX_AID; /* Find available channel */ if (wi_read_xrid(sc, WI_RID_CHANNEL_LIST, &chanavail, sizeof(chanavail)) != 0) { aprint_normal_dev(sc->sc_dev, "using default channel list\n"); chanavail = htole16(0x1fff); /* assume 1-13 */ } for (chan = 16; chan > 0; chan--) { if (!isset((u_int8_t*)&chanavail, chan - 1)) continue; ic->ic_ibss_chan = &ic->ic_channels[chan]; ic->ic_channels[chan].ic_freq = ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ); ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_B; } /* Find default IBSS channel */ if (wi_read_xrid(sc, WI_RID_OWN_CHNL, &val, sizeof(val)) == 0) { chan = le16toh(val); if (isset((u_int8_t*)&chanavail, chan - 1)) ic->ic_ibss_chan = &ic->ic_channels[chan]; } if (ic->ic_ibss_chan == NULL) { aprint_error_dev(sc->sc_dev, "no available channel\n"); return 1; } if (sc->sc_firmware_type == WI_LUCENT) { sc->sc_dbm_offset = WI_LUCENT_DBM_OFFSET; } else { if ((sc->sc_flags & WI_FLAGS_HAS_DBMADJUST) && wi_read_xrid(sc, WI_RID_DBM_ADJUST, &val, sizeof(val)) == 0) sc->sc_dbm_offset = le16toh(val); else sc->sc_dbm_offset = WI_PRISM_DBM_OFFSET; } sc->sc_flags |= WI_FLAGS_RSSADAPTSTA; /* * Set flags based on firmware version. */ switch (sc->sc_firmware_type) { case WI_LUCENT: sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; #ifdef WI_HERMES_AUTOINC_WAR /* XXX: not confirmed, but never seen for recent firmware */ if (sc->sc_sta_firmware_ver < 40000) { sc->sc_flags |= WI_FLAGS_BUG_AUTOINC; } #endif if (sc->sc_sta_firmware_ver >= 60000) sc->sc_flags |= WI_FLAGS_HAS_MOR; if (sc->sc_sta_firmware_ver >= 60006) { ic->ic_caps |= IEEE80211_C_IBSS; ic->ic_caps |= IEEE80211_C_MONITOR; } ic->ic_caps |= IEEE80211_C_PMGT; sc->sc_ibss_port = 1; break; case WI_INTERSIL: sc->sc_flags |= WI_FLAGS_HAS_FRAGTHR; sc->sc_flags |= WI_FLAGS_HAS_ROAMING; sc->sc_flags |= WI_FLAGS_HAS_SYSSCALE; if (sc->sc_sta_firmware_ver > 10101) sc->sc_flags |= WI_FLAGS_HAS_DBMADJUST; if (sc->sc_sta_firmware_ver >= 800) { if (sc->sc_sta_firmware_ver != 10402) ic->ic_caps |= IEEE80211_C_HOSTAP; ic->ic_caps |= IEEE80211_C_IBSS; ic->ic_caps |= IEEE80211_C_MONITOR; } ic->ic_caps |= IEEE80211_C_PMGT; sc->sc_ibss_port = 0; sc->sc_alt_retry = 2; break; case WI_SYMBOL: sc->sc_flags |= WI_FLAGS_HAS_DIVERSITY; if (sc->sc_sta_firmware_ver >= 20000) ic->ic_caps |= IEEE80211_C_IBSS; sc->sc_ibss_port = 4; break; } /* * Find out if we support WEP on this card. */ if (wi_read_xrid(sc, WI_RID_WEP_AVAIL, &val, sizeof(val)) == 0 && val != htole16(0)) ic->ic_caps |= IEEE80211_C_WEP; /* Find supported rates. */ buflen = sizeof(ratebuf); if (wi_read_rid(sc, WI_RID_DATA_RATES, &ratebuf, &buflen) == 0 && buflen > 2) { nrate = le16toh(ratebuf.nrates); if (nrate > IEEE80211_RATE_SIZE) nrate = IEEE80211_RATE_SIZE; memcpy(ic->ic_sup_rates[IEEE80211_MODE_11B].rs_rates, &ratebuf.rates[0], nrate); ic->ic_sup_rates[IEEE80211_MODE_11B].rs_nrates = nrate; } else { aprint_error_dev(sc->sc_dev, "no supported rate list\n"); return 1; } sc->sc_max_datalen = 2304; sc->sc_rts_thresh = 2347; sc->sc_frag_thresh = 2346; sc->sc_system_scale = 1; sc->sc_cnfauthmode = IEEE80211_AUTH_OPEN; sc->sc_roaming_mode = 1; callout_init(&sc->sc_rssadapt_ch, 0); /* * Call MI attach routines. */ if_attach(ifp); ieee80211_ifattach(ic); sc->sc_newstate = ic->ic_newstate; sc->sc_set_tim = ic->ic_set_tim; ic->ic_newstate = wi_newstate; ic->ic_node_alloc = wi_node_alloc; ic->ic_node_free = wi_node_free; ic->ic_set_tim = wi_set_tim; ic->ic_crypto.cs_key_delete = wi_key_delete; ic->ic_crypto.cs_key_set = wi_key_set; ic->ic_crypto.cs_key_update_begin = wi_key_update_begin; ic->ic_crypto.cs_key_update_end = wi_key_update_end; ieee80211_media_init(ic, wi_media_change, wi_media_status); bpf_attach2(ifp, DLT_IEEE802_11_RADIO, sizeof(struct ieee80211_frame) + 64, &sc->sc_drvbpf); memset(&sc->sc_rxtapu, 0, sizeof(sc->sc_rxtapu)); sc->sc_rxtap.wr_ihdr.it_len = htole16(sizeof(sc->sc_rxtapu)); sc->sc_rxtap.wr_ihdr.it_present = htole32(WI_RX_RADIOTAP_PRESENT); memset(&sc->sc_txtapu, 0, sizeof(sc->sc_txtapu)); sc->sc_txtap.wt_ihdr.it_len = htole16(sizeof(sc->sc_txtapu)); sc->sc_txtap.wt_ihdr.it_present = htole32(WI_TX_RADIOTAP_PRESENT); /* Attach is successful. */ sc->sc_attached = 1; splx(s); ieee80211_announce(ic); return 0; } int wi_detach(struct wi_softc *sc) { struct ifnet *ifp = &sc->sc_if; int s; if (!sc->sc_attached) return 0; sc->sc_invalid = 1; s = splnet(); wi_stop(ifp, 1); ieee80211_ifdetach(&sc->sc_ic); if_detach(ifp); splx(s); wi_ioctl_drain(sc); return 0; } int wi_activate(device_t self, enum devact act) { struct wi_softc *sc = device_private(self); switch (act) { case DVACT_DEACTIVATE: if_deactivate(&sc->sc_if); return 0; default: return EOPNOTSUPP; } } int wi_intr(void *arg) { int i; struct wi_softc *sc = arg; struct ifnet *ifp = &sc->sc_if; u_int16_t status; if (sc->sc_enabled == 0 || !device_is_active(sc->sc_dev) || (ifp->if_flags & IFF_RUNNING) == 0) return 0; if ((ifp->if_flags & IFF_UP) == 0) { CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); return 1; } /* This is superfluous on Prism, but Lucent breaks if we * do not disable interrupts. */ CSR_WRITE_2(sc, WI_INT_EN, 0); /* maximum 10 loops per interrupt */ for (i = 0; i < 10; i++) { status = CSR_READ_2(sc, WI_EVENT_STAT); #ifdef WI_DEBUG if (wi_debug > 1) { printf("%s: iter %d status %#04x\n", __func__, i, status); } #endif /* WI_DEBUG */ if ((status & WI_INTRS) == 0) break; sc->sc_status = status; if (status & WI_EV_RX) wi_rx_intr(sc); if (status & WI_EV_ALLOC) wi_txalloc_intr(sc); if (status & WI_EV_TX) wi_tx_intr(sc); if (status & WI_EV_TX_EXC) wi_tx_ex_intr(sc); if (status & WI_EV_INFO) wi_info_intr(sc); CSR_WRITE_2(sc, WI_EVENT_ACK, sc->sc_status); if (sc->sc_status & WI_EV_CMD) wi_cmd_intr(sc); if ((ifp->if_flags & IFF_OACTIVE) == 0 && (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0 && !IFQ_IS_EMPTY(&ifp->if_snd)) wi_start(ifp); sc->sc_status = 0; } /* re-enable interrupts */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); sc->sc_status = 0; return 1; } #define arraylen(a) (sizeof(a) / sizeof((a)[0])) STATIC void wi_rssdescs_init(struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree) { int i; SLIST_INIT(rssdfree); for (i = 0; i < arraylen(*rssd); i++) { SLIST_INSERT_HEAD(rssdfree, &(*rssd)[i], rd_next); } } STATIC void wi_rssdescs_reset(struct ieee80211com *ic, struct wi_rssdesc (*rssd)[WI_NTXRSS], wi_rssdescq_t *rssdfree, u_int8_t (*txpending)[IEEE80211_RATE_MAXSIZE]) { struct ieee80211_node *ni; int i; for (i = 0; i < arraylen(*rssd); i++) { ni = (*rssd)[i].rd_desc.id_node; (*rssd)[i].rd_desc.id_node = NULL; if (ni != NULL && (ic->ic_ifp->if_flags & IFF_DEBUG) != 0) printf("%s: cleaning outstanding rssadapt " "descriptor for %s\n", ic->ic_ifp->if_xname, ether_sprintf(ni->ni_macaddr)); if (ni != NULL) ieee80211_free_node(ni); } memset(*txpending, 0, sizeof(*txpending)); wi_rssdescs_init(rssd, rssdfree); } STATIC int wi_init(struct ifnet *ifp) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct wi_joinreq join; int i; int error = 0, wasenabled; DPRINTF(("wi_init: enabled %d\n", sc->sc_enabled)); wasenabled = sc->sc_enabled; if (!sc->sc_enabled) { if ((error = (*sc->sc_enable)(sc->sc_dev, 1)) != 0) goto out; sc->sc_enabled = 1; } else wi_stop(ifp, 0); /* Symbol firmware cannot be initialized more than once */ if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) if ((error = wi_reset(sc)) != 0) goto out; /* common 802.11 configuration */ ic->ic_flags &= ~IEEE80211_F_IBSSON; sc->sc_flags &= ~WI_FLAGS_OUTRANGE; switch (ic->ic_opmode) { case IEEE80211_M_STA: wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_BSS); break; case IEEE80211_M_IBSS: wi_write_val(sc, WI_RID_PORTTYPE, sc->sc_ibss_port); ic->ic_flags |= IEEE80211_F_IBSSON; break; case IEEE80211_M_AHDEMO: wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); break; case IEEE80211_M_HOSTAP: wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_HOSTAP); break; case IEEE80211_M_MONITOR: if (sc->sc_firmware_type == WI_LUCENT) wi_write_val(sc, WI_RID_PORTTYPE, WI_PORTTYPE_ADHOC); wi_cmd(sc, WI_CMD_TEST | (WI_TEST_MONITOR << 8), 0, 0, 0); break; } /* Intersil interprets this RID as joining ESS even in IBSS mode */ if (sc->sc_firmware_type == WI_LUCENT && (ic->ic_flags & IEEE80211_F_IBSSON) && ic->ic_des_esslen > 0) wi_write_val(sc, WI_RID_CREATE_IBSS, 1); else wi_write_val(sc, WI_RID_CREATE_IBSS, 0); wi_write_val(sc, WI_RID_MAX_SLEEP, ic->ic_lintval); wi_write_ssid(sc, WI_RID_DESIRED_SSID, ic->ic_des_essid, ic->ic_des_esslen); wi_write_val(sc, WI_RID_OWN_CHNL, ieee80211_chan2ieee(ic, ic->ic_ibss_chan)); wi_write_ssid(sc, WI_RID_OWN_SSID, ic->ic_des_essid, ic->ic_des_esslen); IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl)); wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN); if (ic->ic_caps & IEEE80211_C_PMGT) wi_write_val(sc, WI_RID_PM_ENABLED, (ic->ic_flags & IEEE80211_F_PMGTON) ? 1 : 0); /* not yet common 802.11 configuration */ wi_write_val(sc, WI_RID_MAX_DATALEN, sc->sc_max_datalen); wi_write_val(sc, WI_RID_RTS_THRESH, sc->sc_rts_thresh); if (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) wi_write_val(sc, WI_RID_FRAG_THRESH, sc->sc_frag_thresh); /* driver specific 802.11 configuration */ if (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) wi_write_val(sc, WI_RID_SYSTEM_SCALE, sc->sc_system_scale); if (sc->sc_flags & WI_FLAGS_HAS_ROAMING) wi_write_val(sc, WI_RID_ROAMING_MODE, sc->sc_roaming_mode); if (sc->sc_flags & WI_FLAGS_HAS_MOR) wi_write_val(sc, WI_RID_MICROWAVE_OVEN, sc->sc_microwave_oven); wi_cfg_txrate(sc); wi_write_ssid(sc, WI_RID_NODENAME, sc->sc_nodename, sc->sc_nodelen); #ifndef IEEE80211_NO_HOSTAP if (ic->ic_opmode == IEEE80211_M_HOSTAP && sc->sc_firmware_type == WI_INTERSIL) { wi_write_val(sc, WI_RID_OWN_BEACON_INT, ic->ic_lintval); wi_write_val(sc, WI_RID_DTIM_PERIOD, 1); } #endif /* !IEEE80211_NO_HOSTAP */ if (sc->sc_firmware_type == WI_INTERSIL) { struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; u_int16_t basic = 0, supported = 0, rate; for (i = 0; i < rs->rs_nrates; i++) { switch (rs->rs_rates[i] & IEEE80211_RATE_VAL) { case 2: rate = 1; break; case 4: rate = 2; break; case 11: rate = 4; break; case 22: rate = 8; break; default: rate = 0; break; } if (rs->rs_rates[i] & IEEE80211_RATE_BASIC) basic |= rate; supported |= rate; } wi_write_val(sc, WI_RID_BASIC_RATE, basic); wi_write_val(sc, WI_RID_SUPPORT_RATE, supported); wi_write_val(sc, WI_RID_ALT_RETRY_COUNT, sc->sc_alt_retry); } /* * Initialize promisc mode. * Being in Host-AP mode causes a great * deal of pain if promiscuous mode is set. * Therefore we avoid confusing the firmware * and always reset promisc mode in Host-AP * mode. Host-AP sees all the packets anyway. */ if (ic->ic_opmode != IEEE80211_M_HOSTAP && (ifp->if_flags & IFF_PROMISC) != 0) { wi_write_val(sc, WI_RID_PROMISC, 1); } else { wi_write_val(sc, WI_RID_PROMISC, 0); } /* Configure WEP. */ if (ic->ic_caps & IEEE80211_C_WEP) { sc->sc_cnfauthmode = ic->ic_bss->ni_authmode; wi_write_wep(sc); } /* Set multicast filter. */ wi_write_multi(sc); sc->sc_txalloc = 0; sc->sc_txalloced = 0; sc->sc_txqueue = 0; sc->sc_txqueued = 0; sc->sc_txstart = 0; sc->sc_txstarted = 0; if (sc->sc_firmware_type != WI_SYMBOL || !wasenabled) { sc->sc_buflen = IEEE80211_MAX_LEN + sizeof(struct wi_frame); if (sc->sc_firmware_type == WI_SYMBOL) sc->sc_buflen = 1585; /* XXX */ for (i = 0; i < WI_NTXBUF; i++) { error = wi_alloc_fid(sc, sc->sc_buflen, &sc->sc_txd[i].d_fid); if (error) { aprint_error_dev(sc->sc_dev, "tx buffer allocation failed\n"); goto out; } DPRINTF2(("wi_init: txbuf %d allocated %x\n", i, sc->sc_txd[i].d_fid)); ++sc->sc_txalloced; } } wi_rssdescs_init(&sc->sc_rssd, &sc->sc_rssdfree); /* Enable desired port */ wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); ifp->if_flags |= IFF_RUNNING; ifp->if_flags &= ~IFF_OACTIVE; ic->ic_state = IEEE80211_S_INIT; if (ic->ic_opmode == IEEE80211_M_AHDEMO || ic->ic_opmode == IEEE80211_M_IBSS || ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_opmode == IEEE80211_M_HOSTAP) ieee80211_create_ibss(ic, ic->ic_ibss_chan); /* Enable interrupts */ CSR_WRITE_2(sc, WI_INT_EN, WI_INTRS); #ifndef IEEE80211_NO_HOSTAP if (!wasenabled && ic->ic_opmode == IEEE80211_M_HOSTAP && sc->sc_firmware_type == WI_INTERSIL) { /* XXX: some card need to be re-enabled for hostap */ wi_cmd(sc, WI_CMD_DISABLE | WI_PORT0, 0, 0, 0); wi_cmd(sc, WI_CMD_ENABLE | WI_PORT0, 0, 0, 0); } #endif /* !IEEE80211_NO_HOSTAP */ if (ic->ic_opmode == IEEE80211_M_STA && ((ic->ic_flags & IEEE80211_F_DESBSSID) || ic->ic_des_chan != IEEE80211_CHAN_ANYC)) { memset(&join, 0, sizeof(join)); if (ic->ic_flags & IEEE80211_F_DESBSSID) IEEE80211_ADDR_COPY(&join.wi_bssid, ic->ic_des_bssid); if (ic->ic_des_chan != IEEE80211_CHAN_ANYC) join.wi_chan = htole16(ieee80211_chan2ieee(ic, ic->ic_des_chan)); /* Lucent firmware does not support the JOIN RID. */ if (sc->sc_firmware_type != WI_LUCENT) wi_write_rid(sc, WI_RID_JOIN_REQ, &join, sizeof(join)); } out: if (error) { printf("%s: interface not running\n", device_xname(sc->sc_dev)); wi_stop(ifp, 0); } DPRINTF(("wi_init: return %d\n", error)); return error; } STATIC void wi_txcmd_wait(struct wi_softc *sc) { KASSERT(sc->sc_txcmds == 1); if (sc->sc_status & WI_EV_CMD) { sc->sc_status &= ~WI_EV_CMD; CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); } else (void)wi_cmd_wait(sc, WI_CMD_TX | WI_RECLAIM, 0); } STATIC void wi_stop(struct ifnet *ifp, int disable) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int s; if (!sc->sc_enabled) return; s = splnet(); DPRINTF(("wi_stop: disable %d\n", disable)); ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* wait for tx command completion (deassoc, deauth) */ while (sc->sc_txcmds > 0) { wi_txcmd_wait(sc); wi_cmd_intr(sc); } /* TBD wait for deassoc, deauth tx completion? */ if (!sc->sc_invalid) { CSR_WRITE_2(sc, WI_INT_EN, 0); wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); } wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, &sc->sc_txpending); sc->sc_tx_timer = 0; sc->sc_scan_timer = 0; sc->sc_false_syns = 0; sc->sc_naps = 0; ifp->if_flags &= ~(IFF_OACTIVE | IFF_RUNNING); ifp->if_timer = 0; if (disable) { (*sc->sc_enable)(sc->sc_dev, 0); sc->sc_enabled = 0; } splx(s); } /* * Choose a data rate for a packet len bytes long that suits the packet * type and the wireless conditions. * * TBD Adapt fragmentation threshold. */ STATIC int wi_choose_rate(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_frame *wh, u_int len) { struct wi_softc *sc = ic->ic_ifp->if_softc; struct wi_node *wn = (void*)ni; struct ieee80211_rssadapt *ra = &wn->wn_rssadapt; int do_not_adapt, i, rateidx, s; do_not_adapt = (ic->ic_opmode != IEEE80211_M_HOSTAP) && (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) == 0; s = splnet(); rateidx = ieee80211_rssadapt_choose(ra, &ni->ni_rates, wh, len, ic->ic_fixed_rate, ((ic->ic_ifp->if_flags & IFF_DEBUG) == 0) ? NULL : ic->ic_ifp->if_xname, do_not_adapt); ni->ni_txrate = rateidx; if (ic->ic_opmode != IEEE80211_M_HOSTAP) { /* choose the slowest pending rate so that we don't * accidentally send a packet on the MAC's queue * too fast. TBD find out if the MAC labels Tx * packets w/ rate when enqueued or dequeued. */ for (i = 0; i < rateidx && sc->sc_txpending[i] == 0; i++); rateidx = i; } splx(s); return (rateidx); } STATIC void wi_raise_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) { struct wi_node *wn; if (id->id_node == NULL) return; wn = (void*)id->id_node; ieee80211_rssadapt_raise_rate(ic, &wn->wn_rssadapt, id); } STATIC void wi_lower_rate(struct ieee80211com *ic, struct ieee80211_rssdesc *id) { struct ieee80211_node *ni; struct wi_node *wn; int s; s = splnet(); if ((ni = id->id_node) == NULL) { DPRINTF(("wi_lower_rate: missing node\n")); goto out; } wn = (void *)ni; ieee80211_rssadapt_lower_rate(ic, ni, &wn->wn_rssadapt, id); out: splx(s); return; } STATIC void wi_start(struct ifnet *ifp) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ether_header *eh; struct ieee80211_node *ni; struct ieee80211_frame *wh; struct ieee80211_rateset *rs; struct wi_rssdesc *rd; struct ieee80211_rssdesc *id; struct mbuf *m0; struct wi_frame frmhdr; int cur, fid, off, rateidx; if (!sc->sc_enabled || sc->sc_invalid) return; if (sc->sc_flags & WI_FLAGS_OUTRANGE) return; memset(&frmhdr, 0, sizeof(frmhdr)); cur = sc->sc_txqueue; for (;;) { ni = ic->ic_bss; if (sc->sc_txalloced == 0 || SLIST_EMPTY(&sc->sc_rssdfree)) { ifp->if_flags |= IFF_OACTIVE; break; } if (!IF_IS_EMPTY(&ic->ic_mgtq)) { IF_DEQUEUE(&ic->ic_mgtq, m0); m_copydata(m0, 4, ETHER_ADDR_LEN * 2, (void *)&frmhdr.wi_ehdr); frmhdr.wi_ehdr.ether_type = 0; wh = mtod(m0, struct ieee80211_frame *); ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif; m0->m_pkthdr.rcvif = NULL; } else if (ic->ic_state == IEEE80211_S_RUN) { IFQ_POLL(&ifp->if_snd, m0); if (m0 == NULL) break; IFQ_DEQUEUE(&ifp->if_snd, m0); ifp->if_opackets++; m_copydata(m0, 0, ETHER_HDR_LEN, (void *)&frmhdr.wi_ehdr); bpf_mtap(ifp, m0); eh = mtod(m0, struct ether_header *); ni = ieee80211_find_txnode(ic, eh->ether_dhost); if (ni == NULL) { ifp->if_oerrors++; continue; } if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) && (m0->m_flags & M_PWR_SAV) == 0) { ieee80211_pwrsave(ic, ni, m0); goto next; } if ((m0 = ieee80211_encap(ic, m0, ni)) == NULL) { ieee80211_free_node(ni); ifp->if_oerrors++; continue; } wh = mtod(m0, struct ieee80211_frame *); } else break; bpf_mtap3(ic->ic_rawbpf, m0); frmhdr.wi_tx_ctl = htole16(WI_ENC_TX_802_11|WI_TXCNTL_TX_EX|WI_TXCNTL_TX_OK); #ifndef IEEE80211_NO_HOSTAP if (ic->ic_opmode == IEEE80211_M_HOSTAP) frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_ALTRTRY); if (ic->ic_opmode == IEEE80211_M_HOSTAP && (wh->i_fc[1] & IEEE80211_FC1_WEP)) { if (ieee80211_crypto_encap(ic, ni, m0) == NULL) { m_freem(m0); ifp->if_oerrors++; goto next; } frmhdr.wi_tx_ctl |= htole16(WI_TXCNTL_NOCRYPT); } #endif /* !IEEE80211_NO_HOSTAP */ rateidx = wi_choose_rate(ic, ni, wh, m0->m_pkthdr.len); rs = &ni->ni_rates; if (sc->sc_drvbpf) { struct wi_tx_radiotap_header *tap = &sc->sc_txtap; tap->wt_rate = rs->rs_rates[rateidx]; tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); /* TBD tap->wt_flags */ bpf_mtap2(sc->sc_drvbpf, tap, tap->wt_ihdr.it_len, m0); } rd = SLIST_FIRST(&sc->sc_rssdfree); id = &rd->rd_desc; id->id_len = m0->m_pkthdr.len; id->id_rateidx = ni->ni_txrate; id->id_rssi = ni->ni_rssi; frmhdr.wi_tx_idx = rd - sc->sc_rssd; if (ic->ic_opmode == IEEE80211_M_HOSTAP) frmhdr.wi_tx_rate = 5 * (rs->rs_rates[rateidx] & IEEE80211_RATE_VAL); else if (sc->sc_flags & WI_FLAGS_RSSADAPTSTA) (void)wi_write_txrate(sc, rs->rs_rates[rateidx]); m_copydata(m0, 0, sizeof(struct ieee80211_frame), (void *)&frmhdr.wi_whdr); m_adj(m0, sizeof(struct ieee80211_frame)); frmhdr.wi_dat_len = htole16(m0->m_pkthdr.len); if (IFF_DUMPPKTS(ifp)) wi_dump_pkt(&frmhdr, ni, -1); fid = sc->sc_txd[cur].d_fid; off = sizeof(frmhdr); if (wi_write_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0 || wi_mwrite_bap(sc, fid, off, m0, m0->m_pkthdr.len) != 0) { aprint_error_dev(sc->sc_dev, "%s write fid %x failed\n", __func__, fid); ifp->if_oerrors++; m_freem(m0); goto next; } m_freem(m0); sc->sc_txpending[ni->ni_txrate]++; --sc->sc_txalloced; if (sc->sc_txqueued++ == 0) { #ifdef DIAGNOSTIC if (cur != sc->sc_txstart) printf("%s: ring is desynchronized\n", device_xname(sc->sc_dev)); #endif wi_push_packet(sc); } else { #ifdef WI_RING_DEBUG printf("%s: queue %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", device_xname(sc->sc_dev), fid, sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); #endif } sc->sc_txqueue = cur = (cur + 1) % WI_NTXBUF; SLIST_REMOVE_HEAD(&sc->sc_rssdfree, rd_next); id->id_node = ni; continue; next: if (ni != NULL) ieee80211_free_node(ni); } } STATIC int wi_reset(struct wi_softc *sc) { int i, error; DPRINTF(("wi_reset\n")); if (sc->sc_reset) (*sc->sc_reset)(sc); error = 0; for (i = 0; i < 5; i++) { if (sc->sc_invalid) return ENXIO; DELAY(20*1000); /* XXX: way too long! */ if ((error = wi_cmd(sc, WI_CMD_INI, 0, 0, 0)) == 0) break; } if (error) { aprint_error_dev(sc->sc_dev, "init failed\n"); return error; } CSR_WRITE_2(sc, WI_INT_EN, 0); CSR_WRITE_2(sc, WI_EVENT_ACK, ~0); /* Calibrate timer. */ wi_write_val(sc, WI_RID_TICK_TIME, 0); return 0; } STATIC void wi_watchdog(struct ifnet *ifp) { struct wi_softc *sc = ifp->if_softc; ifp->if_timer = 0; if (!sc->sc_enabled) return; if (sc->sc_tx_timer) { if (--sc->sc_tx_timer == 0) { printf("%s: device timeout\n", ifp->if_xname); ifp->if_oerrors++; wi_init(ifp); return; } ifp->if_timer = 1; } if (sc->sc_scan_timer) { if (--sc->sc_scan_timer <= WI_SCAN_WAIT - WI_SCAN_INQWAIT && sc->sc_firmware_type == WI_INTERSIL) { DPRINTF(("wi_watchdog: inquire scan\n")); wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); } if (sc->sc_scan_timer) ifp->if_timer = 1; } /* TODO: rate control */ ieee80211_watchdog(&sc->sc_ic); } static int wi_ioctl_enter(struct wi_softc *sc) { int rc = 0; mutex_enter(&sc->sc_ioctl_mtx); sc->sc_ioctl_nwait++; while (sc->sc_ioctl_lwp != NULL && sc->sc_ioctl_lwp != curlwp) { rc = sc->sc_ioctl_gone ? ENXIO : cv_wait_sig(&sc->sc_ioctl_cv, &sc->sc_ioctl_mtx); if (rc != 0) break; } if (rc == 0) { sc->sc_ioctl_lwp = curlwp; sc->sc_ioctl_depth++; } if (--sc->sc_ioctl_nwait == 0) cv_signal(&sc->sc_ioctl_cv); mutex_exit(&sc->sc_ioctl_mtx); return rc; } static void wi_ioctl_exit(struct wi_softc *sc) { KASSERT(sc->sc_ioctl_lwp == curlwp); mutex_enter(&sc->sc_ioctl_mtx); if (--sc->sc_ioctl_depth == 0) { sc->sc_ioctl_lwp = NULL; cv_signal(&sc->sc_ioctl_cv); } mutex_exit(&sc->sc_ioctl_mtx); } static void wi_ioctl_init(struct wi_softc *sc) { mutex_init(&sc->sc_ioctl_mtx, MUTEX_DEFAULT, IPL_NONE); cv_init(&sc->sc_ioctl_cv, device_xname(sc->sc_dev)); } static void wi_ioctl_drain(struct wi_softc *sc) { wi_ioctl_enter(sc); mutex_enter(&sc->sc_ioctl_mtx); sc->sc_ioctl_gone = true; cv_broadcast(&sc->sc_ioctl_cv); while (sc->sc_ioctl_nwait != 0) cv_wait(&sc->sc_ioctl_cv, &sc->sc_ioctl_mtx); mutex_exit(&sc->sc_ioctl_mtx); wi_ioctl_exit(sc); mutex_destroy(&sc->sc_ioctl_mtx); cv_destroy(&sc->sc_ioctl_cv); } STATIC int wi_ioctl(struct ifnet *ifp, u_long cmd, void *data) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr = (struct ifreq *)data; int s, error = 0; if (!device_is_active(sc->sc_dev)) return ENXIO; s = splnet(); if ((error = wi_ioctl_enter(sc)) != 0) return error; switch (cmd) { case SIOCSIFFLAGS: if ((error = ifioctl_common(ifp, cmd, data)) != 0) break; /* * Can't do promisc and hostap at the same time. If all that's * changing is the promisc flag, try to short-circuit a call to * wi_init() by just setting PROMISC in the hardware. */ if (ifp->if_flags & IFF_UP) { if (sc->sc_enabled) { if (ic->ic_opmode != IEEE80211_M_HOSTAP && (ifp->if_flags & IFF_PROMISC) != 0) wi_write_val(sc, WI_RID_PROMISC, 1); else wi_write_val(sc, WI_RID_PROMISC, 0); } else error = wi_init(ifp); } else if (sc->sc_enabled) wi_stop(ifp, 1); break; case SIOCSIFMEDIA: case SIOCGIFMEDIA: error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd); break; case SIOCADDMULTI: case SIOCDELMULTI: if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) { /* do not rescan */ error = wi_write_multi(sc); } else error = 0; } break; case SIOCGIFGENERIC: error = wi_get_cfg(ifp, cmd, data); break; case SIOCSIFGENERIC: error = kauth_authorize_network(curlwp->l_cred, KAUTH_NETWORK_INTERFACE, KAUTH_REQ_NETWORK_INTERFACE_SETPRIV, ifp, KAUTH_ARG(cmd), NULL); if (error) break; error = wi_set_cfg(ifp, cmd, data); if (error == ENETRESET) { if (ifp->if_flags & IFF_RUNNING) error = wi_init(ifp); else error = 0; } break; case SIOCS80211BSSID: if (sc->sc_firmware_type == WI_LUCENT) { error = ENODEV; break; } /* fall through */ default: ic->ic_flags |= sc->sc_ic_flags; error = ieee80211_ioctl(&sc->sc_ic, cmd, data); sc->sc_ic_flags = ic->ic_flags & IEEE80211_F_DROPUNENC; if (error == ENETRESET) { if (sc->sc_enabled) error = wi_init(ifp); else error = 0; } break; } wi_mend_flags(sc, ic->ic_state); wi_ioctl_exit(sc); splx(s); return error; } STATIC int wi_media_change(struct ifnet *ifp) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; int error; error = ieee80211_media_change(ifp); if (error == ENETRESET) { if (sc->sc_enabled) error = wi_init(ifp); else error = 0; } ifp->if_baudrate = ifmedia_baudrate(ic->ic_media.ifm_cur->ifm_media); return error; } STATIC void wi_media_status(struct ifnet *ifp, struct ifmediareq *imr) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; u_int16_t val; int rate; if (sc->sc_enabled == 0) { imr->ifm_active = IFM_IEEE80211 | IFM_NONE; imr->ifm_status = 0; return; } imr->ifm_status = IFM_AVALID; imr->ifm_active = IFM_IEEE80211; if (ic->ic_state == IEEE80211_S_RUN && (sc->sc_flags & WI_FLAGS_OUTRANGE) == 0) imr->ifm_status |= IFM_ACTIVE; if (wi_read_xrid(sc, WI_RID_CUR_TX_RATE, &val, sizeof(val)) == 0) { /* convert to 802.11 rate */ val = le16toh(val); rate = val * 2; if (sc->sc_firmware_type == WI_LUCENT) { if (rate == 10) rate = 11; /* 5.5Mbps */ } else { if (rate == 4*2) rate = 11; /* 5.5Mbps */ else if (rate == 8*2) rate = 22; /* 11Mbps */ } } else rate = 0; imr->ifm_active |= ieee80211_rate2media(ic, rate, IEEE80211_MODE_11B); switch (ic->ic_opmode) { case IEEE80211_M_STA: break; case IEEE80211_M_IBSS: imr->ifm_active |= IFM_IEEE80211_ADHOC; break; case IEEE80211_M_AHDEMO: imr->ifm_active |= IFM_IEEE80211_ADHOC | IFM_FLAG0; break; case IEEE80211_M_HOSTAP: imr->ifm_active |= IFM_IEEE80211_HOSTAP; break; case IEEE80211_M_MONITOR: imr->ifm_active |= IFM_IEEE80211_MONITOR; break; } } STATIC struct ieee80211_node * wi_node_alloc(struct ieee80211_node_table *nt) { struct wi_node *wn = malloc(sizeof(struct wi_node), M_DEVBUF, M_NOWAIT | M_ZERO); return wn ? &wn->wn_node : NULL; } STATIC void wi_node_free(struct ieee80211_node *ni) { struct wi_softc *sc = ni->ni_ic->ic_ifp->if_softc; int i; for (i = 0; i < WI_NTXRSS; i++) { if (sc->sc_rssd[i].rd_desc.id_node == ni) sc->sc_rssd[i].rd_desc.id_node = NULL; } free(ni, M_DEVBUF); } STATIC void wi_sync_bssid(struct wi_softc *sc, u_int8_t new_bssid[IEEE80211_ADDR_LEN]) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_node *ni = ic->ic_bss; struct ifnet *ifp = &sc->sc_if; if (IEEE80211_ADDR_EQ(new_bssid, ni->ni_bssid)) return; DPRINTF(("wi_sync_bssid: bssid %s -> ", ether_sprintf(ni->ni_bssid))); DPRINTF(("%s ?\n", ether_sprintf(new_bssid))); /* In promiscuous mode, the BSSID field is not a reliable * indicator of the firmware's BSSID. Damp spurious * change-of-BSSID indications. */ if ((ifp->if_flags & IFF_PROMISC) != 0 && !ppsratecheck(&sc->sc_last_syn, &sc->sc_false_syns, WI_MAX_FALSE_SYNS)) return; sc->sc_false_syns = MAX(0, sc->sc_false_syns - 1); /* * XXX hack; we should create a new node with the new bssid * and replace the existing ic_bss with it but since we don't * process management frames to collect state we cheat by * reusing the existing node as we know wi_newstate will be * called and it will overwrite the node state. */ ieee80211_sta_join(ic, ieee80211_ref_node(ni)); } static inline void wi_rssadapt_input(struct ieee80211com *ic, struct ieee80211_node *ni, struct ieee80211_frame *wh, int rssi) { struct wi_node *wn; if (ni == NULL) { printf("%s: null node", __func__); return; } wn = (void*)ni; ieee80211_rssadapt_input(ic, ni, &wn->wn_rssadapt, rssi); } STATIC void wi_rx_intr(struct wi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct ieee80211_node *ni; struct wi_frame frmhdr; struct mbuf *m; struct ieee80211_frame *wh; int fid, len, off, rssi; u_int8_t dir; u_int16_t status; u_int32_t rstamp; fid = CSR_READ_2(sc, WI_RX_FID); /* First read in the frame header */ if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr))) { aprint_error_dev(sc->sc_dev, "%s read fid %x failed\n", __func__, fid); ifp->if_ierrors++; return; } if (IFF_DUMPPKTS(ifp)) wi_dump_pkt(&frmhdr, NULL, frmhdr.wi_rx_signal); /* * Drop undecryptable or packets with receive errors here */ status = le16toh(frmhdr.wi_status); if ((status & WI_STAT_ERRSTAT) != 0 && ic->ic_opmode != IEEE80211_M_MONITOR) { ifp->if_ierrors++; DPRINTF(("wi_rx_intr: fid %x error status %x\n", fid, status)); return; } rssi = frmhdr.wi_rx_signal; rstamp = (le16toh(frmhdr.wi_rx_tstamp0) << 16) | le16toh(frmhdr.wi_rx_tstamp1); len = le16toh(frmhdr.wi_dat_len); off = ALIGN(sizeof(struct ieee80211_frame)); /* Sometimes the PRISM2.x returns bogusly large frames. Except * in monitor mode, just throw them away. */ if (off + len > MCLBYTES) { if (ic->ic_opmode != IEEE80211_M_MONITOR) { ifp->if_ierrors++; DPRINTF(("wi_rx_intr: oversized packet\n")); return; } else len = 0; } MGETHDR(m, M_DONTWAIT, MT_DATA); if (m == NULL) { ifp->if_ierrors++; DPRINTF(("wi_rx_intr: MGET failed\n")); return; } if (off + len > MHLEN) { MCLGET(m, M_DONTWAIT); if ((m->m_flags & M_EXT) == 0) { m_freem(m); ifp->if_ierrors++; DPRINTF(("wi_rx_intr: MCLGET failed\n")); return; } } m->m_data += off - sizeof(struct ieee80211_frame); memcpy(m->m_data, &frmhdr.wi_whdr, sizeof(struct ieee80211_frame)); wi_read_bap(sc, fid, sizeof(frmhdr), m->m_data + sizeof(struct ieee80211_frame), len); m->m_pkthdr.len = m->m_len = sizeof(struct ieee80211_frame) + len; m->m_pkthdr.rcvif = ifp; wh = mtod(m, struct ieee80211_frame *); if (wh->i_fc[1] & IEEE80211_FC1_WEP) { /* * WEP is decrypted by hardware. Clear WEP bit * header for ieee80211_input(). */ wh->i_fc[1] &= ~IEEE80211_FC1_WEP; } if (sc->sc_drvbpf) { struct wi_rx_radiotap_header *tap = &sc->sc_rxtap; tap->wr_rate = frmhdr.wi_rx_rate / 5; tap->wr_antsignal = frmhdr.wi_rx_signal; tap->wr_antnoise = frmhdr.wi_rx_silence; tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); if (frmhdr.wi_status & WI_STAT_PCF) tap->wr_flags |= IEEE80211_RADIOTAP_F_CFP; /* XXX IEEE80211_RADIOTAP_F_WEP */ bpf_mtap2(sc->sc_drvbpf, tap, tap->wr_ihdr.it_len, m); } /* synchronize driver's BSSID with firmware's BSSID */ dir = wh->i_fc[1] & IEEE80211_FC1_DIR_MASK; if (ic->ic_opmode == IEEE80211_M_IBSS && dir == IEEE80211_FC1_DIR_NODS) wi_sync_bssid(sc, wh->i_addr3); ni = ieee80211_find_rxnode(ic, mtod(m, struct ieee80211_frame_min *)); ieee80211_input(ic, m, ni, rssi, rstamp); wi_rssadapt_input(ic, ni, wh, rssi); /* * The frame may have caused the node to be marked for * reclamation (e.g. in response to a DEAUTH message) * so use release_node here instead of unref_node. */ ieee80211_free_node(ni); } STATIC void wi_tx_ex_intr(struct wi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct ieee80211_node *ni; struct ieee80211_rssdesc *id; struct wi_rssdesc *rssd; struct wi_frame frmhdr; int fid; u_int16_t status; fid = CSR_READ_2(sc, WI_TX_CMP_FID); /* Read in the frame header */ if (wi_read_bap(sc, fid, 0, &frmhdr, sizeof(frmhdr)) != 0) { aprint_error_dev(sc->sc_dev, "%s read fid %x failed\n", __func__, fid); wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, &sc->sc_txpending); goto out; } if (frmhdr.wi_tx_idx >= WI_NTXRSS) { aprint_error_dev(sc->sc_dev, "%s bad idx %02x\n", __func__, frmhdr.wi_tx_idx); wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, &sc->sc_txpending); goto out; } status = le16toh(frmhdr.wi_status); /* * Spontaneous station disconnects appear as xmit * errors. Don't announce them and/or count them * as an output error. */ if (ppsratecheck(&lasttxerror, &curtxeps, wi_txerate)) { aprint_error_dev(sc->sc_dev, "tx failed"); if (status & WI_TXSTAT_RET_ERR) printf(", retry limit exceeded"); if (status & WI_TXSTAT_AGED_ERR) printf(", max transmit lifetime exceeded"); if (status & WI_TXSTAT_DISCONNECT) printf(", port disconnected"); if (status & WI_TXSTAT_FORM_ERR) printf(", invalid format (data len %u src %s)", le16toh(frmhdr.wi_dat_len), ether_sprintf(frmhdr.wi_ehdr.ether_shost)); if (status & ~0xf) printf(", status=0x%x", status); printf("\n"); } ifp->if_oerrors++; rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; id = &rssd->rd_desc; if ((status & WI_TXSTAT_RET_ERR) != 0) wi_lower_rate(ic, id); ni = id->id_node; id->id_node = NULL; if (ni == NULL) { aprint_error_dev(sc->sc_dev, "%s null node, rssdesc %02x\n", __func__, frmhdr.wi_tx_idx); goto out; } if (sc->sc_txpending[id->id_rateidx]-- == 0) { aprint_error_dev(sc->sc_dev, "%s txpending[%i] wraparound", __func__, id->id_rateidx); sc->sc_txpending[id->id_rateidx] = 0; } if (ni != NULL) ieee80211_free_node(ni); SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); out: ifp->if_flags &= ~IFF_OACTIVE; } STATIC void wi_txalloc_intr(struct wi_softc *sc) { int fid, cur; fid = CSR_READ_2(sc, WI_ALLOC_FID); cur = sc->sc_txalloc; #ifdef DIAGNOSTIC if (sc->sc_txstarted == 0) { printf("%s: spurious alloc %x != %x, alloc %d queue %d start %d alloced %d queued %d started %d\n", device_xname(sc->sc_dev), fid, sc->sc_txd[cur].d_fid, cur, sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); return; } #endif --sc->sc_txstarted; ++sc->sc_txalloced; sc->sc_txd[cur].d_fid = fid; sc->sc_txalloc = (cur + 1) % WI_NTXBUF; #ifdef WI_RING_DEBUG printf("%s: alloc %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", device_xname(sc->sc_dev), fid, sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); #endif } STATIC void wi_cmd_intr(struct wi_softc *sc) { struct ifnet *ifp = &sc->sc_if; if (sc->sc_invalid) return; #ifdef WI_DEBUG if (wi_debug > 1) printf("%s: %d txcmds outstanding\n", __func__, sc->sc_txcmds); #endif KASSERT(sc->sc_txcmds > 0); --sc->sc_txcmds; if (--sc->sc_txqueued == 0) { sc->sc_tx_timer = 0; ifp->if_flags &= ~IFF_OACTIVE; #ifdef WI_RING_DEBUG printf("%s: cmd , alloc %d queue %d start %d alloced %d queued %d started %d\n", device_xname(sc->sc_dev), sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); #endif } else wi_push_packet(sc); } STATIC void wi_push_packet(struct wi_softc *sc) { struct ifnet *ifp = &sc->sc_if; int cur, fid; cur = sc->sc_txstart; fid = sc->sc_txd[cur].d_fid; KASSERT(sc->sc_txcmds == 0); if (wi_cmd_start(sc, WI_CMD_TX | WI_RECLAIM, fid, 0, 0)) { aprint_error_dev(sc->sc_dev, "xmit failed\n"); /* XXX ring might have a hole */ } if (sc->sc_txcmds++ > 0) printf("%s: %d tx cmds pending!!!\n", __func__, sc->sc_txcmds); ++sc->sc_txstarted; #ifdef DIAGNOSTIC if (sc->sc_txstarted > WI_NTXBUF) aprint_error_dev(sc->sc_dev, "too many buffers started\n"); #endif sc->sc_txstart = (cur + 1) % WI_NTXBUF; sc->sc_tx_timer = 5; ifp->if_timer = 1; #ifdef WI_RING_DEBUG printf("%s: push %04x, alloc %d queue %d start %d alloced %d queued %d started %d\n", device_xname(sc->sc_dev), fid, sc->sc_txalloc, sc->sc_txqueue, sc->sc_txstart, sc->sc_txalloced, sc->sc_txqueued, sc->sc_txstarted); #endif } STATIC void wi_tx_intr(struct wi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; struct ieee80211_node *ni; struct ieee80211_rssdesc *id; struct wi_rssdesc *rssd; struct wi_frame frmhdr; int fid; fid = CSR_READ_2(sc, WI_TX_CMP_FID); /* Read in the frame header */ if (wi_read_bap(sc, fid, offsetof(struct wi_frame, wi_tx_swsup2), &frmhdr.wi_tx_swsup2, 2) != 0) { aprint_error_dev(sc->sc_dev, "%s read fid %x failed\n", __func__, fid); wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, &sc->sc_txpending); goto out; } if (frmhdr.wi_tx_idx >= WI_NTXRSS) { aprint_error_dev(sc->sc_dev, "%s bad idx %02x\n", __func__, frmhdr.wi_tx_idx); wi_rssdescs_reset(ic, &sc->sc_rssd, &sc->sc_rssdfree, &sc->sc_txpending); goto out; } rssd = &sc->sc_rssd[frmhdr.wi_tx_idx]; id = &rssd->rd_desc; wi_raise_rate(ic, id); ni = id->id_node; id->id_node = NULL; if (ni == NULL) { aprint_error_dev(sc->sc_dev, "%s null node, rssdesc %02x\n", __func__, frmhdr.wi_tx_idx); goto out; } if (sc->sc_txpending[id->id_rateidx]-- == 0) { aprint_error_dev(sc->sc_dev, "%s txpending[%i] wraparound", __func__, id->id_rateidx); sc->sc_txpending[id->id_rateidx] = 0; } if (ni != NULL) ieee80211_free_node(ni); SLIST_INSERT_HEAD(&sc->sc_rssdfree, rssd, rd_next); out: ifp->if_flags &= ~IFF_OACTIVE; } STATIC void wi_info_intr(struct wi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ifnet *ifp = &sc->sc_if; int i, fid, len, off; u_int16_t ltbuf[2]; u_int16_t stat; u_int32_t *ptr; fid = CSR_READ_2(sc, WI_INFO_FID); wi_read_bap(sc, fid, 0, ltbuf, sizeof(ltbuf)); switch (le16toh(ltbuf[1])) { case WI_INFO_LINK_STAT: wi_read_bap(sc, fid, sizeof(ltbuf), &stat, sizeof(stat)); DPRINTF(("wi_info_intr: LINK_STAT 0x%x\n", le16toh(stat))); switch (le16toh(stat)) { case CONNECTED: sc->sc_flags &= ~WI_FLAGS_OUTRANGE; if (ic->ic_state == IEEE80211_S_RUN && ic->ic_opmode != IEEE80211_M_IBSS) break; /* FALLTHROUGH */ case AP_CHANGE: ieee80211_new_state(ic, IEEE80211_S_RUN, -1); break; case AP_IN_RANGE: sc->sc_flags &= ~WI_FLAGS_OUTRANGE; break; case AP_OUT_OF_RANGE: if (sc->sc_firmware_type == WI_SYMBOL && sc->sc_scan_timer > 0) { if (wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_HOST_SCAN_RESULTS, 0, 0) != 0) sc->sc_scan_timer = 0; break; } if (ic->ic_opmode == IEEE80211_M_STA) sc->sc_flags |= WI_FLAGS_OUTRANGE; break; case DISCONNECTED: case ASSOC_FAILED: if (ic->ic_opmode == IEEE80211_M_STA) ieee80211_new_state(ic, IEEE80211_S_INIT, -1); break; } break; case WI_INFO_COUNTERS: /* some card versions have a larger stats structure */ len = min(le16toh(ltbuf[0]) - 1, sizeof(sc->sc_stats) / 4); ptr = (u_int32_t *)&sc->sc_stats; off = sizeof(ltbuf); for (i = 0; i < len; i++, off += 2, ptr++) { wi_read_bap(sc, fid, off, &stat, sizeof(stat)); stat = le16toh(stat); #ifdef WI_HERMES_STATS_WAR if (stat & 0xf000) stat = ~stat; #endif *ptr += stat; } ifp->if_collisions = sc->sc_stats.wi_tx_single_retries + sc->sc_stats.wi_tx_multi_retries + sc->sc_stats.wi_tx_retry_limit; break; case WI_INFO_SCAN_RESULTS: case WI_INFO_HOST_SCAN_RESULTS: wi_scan_result(sc, fid, le16toh(ltbuf[0])); break; default: DPRINTF(("wi_info_intr: got fid %x type %x len %d\n", fid, le16toh(ltbuf[1]), le16toh(ltbuf[0]))); break; } } STATIC int wi_write_multi(struct wi_softc *sc) { struct ifnet *ifp = &sc->sc_if; int n; struct wi_mcast mlist; struct ether_multi *enm; struct ether_multistep estep; if ((ifp->if_flags & IFF_PROMISC) != 0) { allmulti: ifp->if_flags |= IFF_ALLMULTI; memset(&mlist, 0, sizeof(mlist)); return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, sizeof(mlist)); } n = 0; ETHER_FIRST_MULTI(estep, &sc->sc_ec, enm); while (enm != NULL) { /* Punt on ranges or too many multicast addresses. */ if (!IEEE80211_ADDR_EQ(enm->enm_addrlo, enm->enm_addrhi) || n >= sizeof(mlist) / sizeof(mlist.wi_mcast[0])) goto allmulti; IEEE80211_ADDR_COPY(&mlist.wi_mcast[n], enm->enm_addrlo); n++; ETHER_NEXT_MULTI(estep, enm); } ifp->if_flags &= ~IFF_ALLMULTI; return wi_write_rid(sc, WI_RID_MCAST_LIST, &mlist, IEEE80211_ADDR_LEN * n); } STATIC void wi_read_nicid(struct wi_softc *sc) { struct wi_card_ident *id; char *p; int len; u_int16_t ver[4]; /* getting chip identity */ memset(ver, 0, sizeof(ver)); len = sizeof(ver); wi_read_rid(sc, WI_RID_CARD_ID, ver, &len); printf("%s: using ", device_xname(sc->sc_dev)); DPRINTF2(("wi_read_nicid: CARD_ID: %x %x %x %x\n", le16toh(ver[0]), le16toh(ver[1]), le16toh(ver[2]), le16toh(ver[3]))); sc->sc_firmware_type = WI_NOTYPE; for (id = wi_card_ident; id->card_name != NULL; id++) { if (le16toh(ver[0]) == id->card_id) { printf("%s", id->card_name); sc->sc_firmware_type = id->firm_type; break; } } if (sc->sc_firmware_type == WI_NOTYPE) { if (le16toh(ver[0]) & 0x8000) { printf("Unknown PRISM2 chip"); sc->sc_firmware_type = WI_INTERSIL; } else { printf("Unknown Lucent chip"); sc->sc_firmware_type = WI_LUCENT; } } /* get primary firmware version (Only Prism chips) */ if (sc->sc_firmware_type != WI_LUCENT) { memset(ver, 0, sizeof(ver)); len = sizeof(ver); wi_read_rid(sc, WI_RID_PRI_IDENTITY, ver, &len); sc->sc_pri_firmware_ver = le16toh(ver[2]) * 10000 + le16toh(ver[3]) * 100 + le16toh(ver[1]); } /* get station firmware version */ memset(ver, 0, sizeof(ver)); len = sizeof(ver); wi_read_rid(sc, WI_RID_STA_IDENTITY, ver, &len); sc->sc_sta_firmware_ver = le16toh(ver[2]) * 10000 + le16toh(ver[3]) * 100 + le16toh(ver[1]); if (sc->sc_firmware_type == WI_INTERSIL && (sc->sc_sta_firmware_ver == 10102 || sc->sc_sta_firmware_ver == 20102)) { char ident[12]; memset(ident, 0, sizeof(ident)); len = sizeof(ident); /* value should be the format like "V2.00-11" */ if (wi_read_rid(sc, WI_RID_SYMBOL_IDENTITY, ident, &len) == 0 && *(p = (char *)ident) >= 'A' && p[2] == '.' && p[5] == '-' && p[8] == '\0') { sc->sc_firmware_type = WI_SYMBOL; sc->sc_sta_firmware_ver = (p[1] - '0') * 10000 + (p[3] - '0') * 1000 + (p[4] - '0') * 100 + (p[6] - '0') * 10 + (p[7] - '0'); } } printf("\n%s: %s Firmware: ", device_xname(sc->sc_dev), sc->sc_firmware_type == WI_LUCENT ? "Lucent" : (sc->sc_firmware_type == WI_SYMBOL ? "Symbol" : "Intersil")); if (sc->sc_firmware_type != WI_LUCENT) /* XXX */ printf("Primary (%u.%u.%u), ", sc->sc_pri_firmware_ver / 10000, (sc->sc_pri_firmware_ver % 10000) / 100, sc->sc_pri_firmware_ver % 100); printf("Station (%u.%u.%u)\n", sc->sc_sta_firmware_ver / 10000, (sc->sc_sta_firmware_ver % 10000) / 100, sc->sc_sta_firmware_ver % 100); } STATIC int wi_write_ssid(struct wi_softc *sc, int rid, u_int8_t *buf, int buflen) { struct wi_ssid ssid; if (buflen > IEEE80211_NWID_LEN) return ENOBUFS; memset(&ssid, 0, sizeof(ssid)); ssid.wi_len = htole16(buflen); memcpy(ssid.wi_ssid, buf, buflen); return wi_write_rid(sc, rid, &ssid, sizeof(ssid)); } STATIC int wi_get_cfg(struct ifnet *ifp, u_long cmd, void *data) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr = (struct ifreq *)data; struct wi_req wreq; int len, n, error; error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) return error; len = (wreq.wi_len - 1) * 2; if (len < sizeof(u_int16_t)) return ENOSPC; if (len > sizeof(wreq.wi_val)) len = sizeof(wreq.wi_val); switch (wreq.wi_type) { case WI_RID_IFACE_STATS: memcpy(wreq.wi_val, &sc->sc_stats, sizeof(sc->sc_stats)); if (len < sizeof(sc->sc_stats)) error = ENOSPC; else len = sizeof(sc->sc_stats); break; case WI_RID_ENCRYPTION: case WI_RID_TX_CRYPT_KEY: case WI_RID_DEFLT_CRYPT_KEYS: case WI_RID_TX_RATE: return ieee80211_cfgget(ic, cmd, data); case WI_RID_MICROWAVE_OVEN: if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_MOR)) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } wreq.wi_val[0] = htole16(sc->sc_microwave_oven); len = sizeof(u_int16_t); break; case WI_RID_DBM_ADJUST: if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_DBMADJUST)) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } wreq.wi_val[0] = htole16(sc->sc_dbm_offset); len = sizeof(u_int16_t); break; case WI_RID_ROAMING_MODE: if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_ROAMING)) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } wreq.wi_val[0] = htole16(sc->sc_roaming_mode); len = sizeof(u_int16_t); break; case WI_RID_SYSTEM_SCALE: if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE)) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } wreq.wi_val[0] = htole16(sc->sc_system_scale); len = sizeof(u_int16_t); break; case WI_RID_FRAG_THRESH: if (sc->sc_enabled && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR)) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } wreq.wi_val[0] = htole16(sc->sc_frag_thresh); len = sizeof(u_int16_t); break; case WI_RID_READ_APS: #ifndef IEEE80211_NO_HOSTAP if (ic->ic_opmode == IEEE80211_M_HOSTAP) return ieee80211_cfgget(ic, cmd, data); #endif /* !IEEE80211_NO_HOSTAP */ if (sc->sc_scan_timer > 0) { error = EINPROGRESS; break; } n = sc->sc_naps; if (len < sizeof(n)) { error = ENOSPC; break; } if (len < sizeof(n) + sizeof(struct wi_apinfo) * n) n = (len - sizeof(n)) / sizeof(struct wi_apinfo); len = sizeof(n) + sizeof(struct wi_apinfo) * n; memcpy(wreq.wi_val, &n, sizeof(n)); memcpy((char *)wreq.wi_val + sizeof(n), sc->sc_aps, sizeof(struct wi_apinfo) * n); break; default: if (sc->sc_enabled) { error = wi_read_rid(sc, wreq.wi_type, wreq.wi_val, &len); break; } switch (wreq.wi_type) { case WI_RID_MAX_DATALEN: wreq.wi_val[0] = htole16(sc->sc_max_datalen); len = sizeof(u_int16_t); break; case WI_RID_FRAG_THRESH: wreq.wi_val[0] = htole16(sc->sc_frag_thresh); len = sizeof(u_int16_t); break; case WI_RID_RTS_THRESH: wreq.wi_val[0] = htole16(sc->sc_rts_thresh); len = sizeof(u_int16_t); break; case WI_RID_CNFAUTHMODE: wreq.wi_val[0] = htole16(sc->sc_cnfauthmode); len = sizeof(u_int16_t); break; case WI_RID_NODENAME: if (len < sc->sc_nodelen + sizeof(u_int16_t)) { error = ENOSPC; break; } len = sc->sc_nodelen + sizeof(u_int16_t); wreq.wi_val[0] = htole16((sc->sc_nodelen + 1) / 2); memcpy(&wreq.wi_val[1], sc->sc_nodename, sc->sc_nodelen); break; default: return ieee80211_cfgget(ic, cmd, data); } break; } if (error) return error; wreq.wi_len = (len + 1) / 2 + 1; return copyout(&wreq, ifr->ifr_data, (wreq.wi_len + 1) * 2); } STATIC int wi_set_cfg(struct ifnet *ifp, u_long cmd, void *data) { struct wi_softc *sc = ifp->if_softc; struct ieee80211com *ic = &sc->sc_ic; struct ifreq *ifr = (struct ifreq *)data; struct ieee80211_rateset *rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; struct wi_req wreq; struct mbuf *m; int i, len, error; error = copyin(ifr->ifr_data, &wreq, sizeof(wreq)); if (error) return error; len = (wreq.wi_len - 1) * 2; switch (wreq.wi_type) { case WI_RID_MAC_NODE: /* XXX convert to SIOCALIFADDR, AF_LINK, IFLR_ACTIVE */ (void)memcpy(ic->ic_myaddr, wreq.wi_val, ETHER_ADDR_LEN); if_set_sadl(ifp, ic->ic_myaddr, ETHER_ADDR_LEN, false); wi_write_rid(sc, WI_RID_MAC_NODE, ic->ic_myaddr, IEEE80211_ADDR_LEN); break; case WI_RID_DBM_ADJUST: return ENODEV; case WI_RID_NODENAME: if (le16toh(wreq.wi_val[0]) * 2 > len || le16toh(wreq.wi_val[0]) > sizeof(sc->sc_nodename)) { error = ENOSPC; break; } if (sc->sc_enabled) { error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, len); if (error) break; } sc->sc_nodelen = le16toh(wreq.wi_val[0]) * 2; memcpy(sc->sc_nodename, &wreq.wi_val[1], sc->sc_nodelen); break; case WI_RID_MICROWAVE_OVEN: case WI_RID_ROAMING_MODE: case WI_RID_SYSTEM_SCALE: case WI_RID_FRAG_THRESH: if (wreq.wi_type == WI_RID_MICROWAVE_OVEN && (sc->sc_flags & WI_FLAGS_HAS_MOR) == 0) break; if (wreq.wi_type == WI_RID_ROAMING_MODE && (sc->sc_flags & WI_FLAGS_HAS_ROAMING) == 0) break; if (wreq.wi_type == WI_RID_SYSTEM_SCALE && (sc->sc_flags & WI_FLAGS_HAS_SYSSCALE) == 0) break; if (wreq.wi_type == WI_RID_FRAG_THRESH && (sc->sc_flags & WI_FLAGS_HAS_FRAGTHR) == 0) break; /* FALLTHROUGH */ case WI_RID_RTS_THRESH: case WI_RID_CNFAUTHMODE: case WI_RID_MAX_DATALEN: if (sc->sc_enabled) { error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, sizeof(u_int16_t)); if (error) break; } switch (wreq.wi_type) { case WI_RID_FRAG_THRESH: sc->sc_frag_thresh = le16toh(wreq.wi_val[0]); break; case WI_RID_RTS_THRESH: sc->sc_rts_thresh = le16toh(wreq.wi_val[0]); break; case WI_RID_MICROWAVE_OVEN: sc->sc_microwave_oven = le16toh(wreq.wi_val[0]); break; case WI_RID_ROAMING_MODE: sc->sc_roaming_mode = le16toh(wreq.wi_val[0]); break; case WI_RID_SYSTEM_SCALE: sc->sc_system_scale = le16toh(wreq.wi_val[0]); break; case WI_RID_CNFAUTHMODE: sc->sc_cnfauthmode = le16toh(wreq.wi_val[0]); break; case WI_RID_MAX_DATALEN: sc->sc_max_datalen = le16toh(wreq.wi_val[0]); break; } break; case WI_RID_TX_RATE: switch (le16toh(wreq.wi_val[0])) { case 3: ic->ic_fixed_rate = -1; break; default: for (i = 0; i < IEEE80211_RATE_SIZE; i++) { if ((rs->rs_rates[i] & IEEE80211_RATE_VAL) / 2 == le16toh(wreq.wi_val[0])) break; } if (i == IEEE80211_RATE_SIZE) return EINVAL; ic->ic_fixed_rate = i; } if (sc->sc_enabled) error = wi_cfg_txrate(sc); break; case WI_RID_SCAN_APS: if (sc->sc_enabled && ic->ic_opmode != IEEE80211_M_HOSTAP) error = wi_scan_ap(sc, 0x3fff, 0x000f); break; case WI_RID_MGMT_XMIT: if (!sc->sc_enabled) { error = ENETDOWN; break; } if (ic->ic_mgtq.ifq_len > 5) { error = EAGAIN; break; } /* XXX wi_len looks in u_int8_t, not in u_int16_t */ m = m_devget((char *)&wreq.wi_val, wreq.wi_len, 0, ifp, NULL); if (m == NULL) { error = ENOMEM; break; } IF_ENQUEUE(&ic->ic_mgtq, m); break; default: if (sc->sc_enabled) { error = wi_write_rid(sc, wreq.wi_type, wreq.wi_val, len); if (error) break; } error = ieee80211_cfgset(ic, cmd, data); break; } return error; } /* Rate is 0 for hardware auto-select, otherwise rate is * 2, 4, 11, or 22 (units of 500Kbps). */ STATIC int wi_write_txrate(struct wi_softc *sc, int rate) { u_int16_t hwrate; /* rate: 0, 2, 4, 11, 22 */ switch (sc->sc_firmware_type) { case WI_LUCENT: switch (rate & IEEE80211_RATE_VAL) { case 2: hwrate = 1; break; case 4: hwrate = 2; break; default: hwrate = 3; /* auto */ break; case 11: hwrate = 4; break; case 22: hwrate = 5; break; } break; default: switch (rate & IEEE80211_RATE_VAL) { case 2: hwrate = 1; break; case 4: hwrate = 2; break; case 11: hwrate = 4; break; case 22: hwrate = 8; break; default: hwrate = 15; /* auto */ break; } break; } if (sc->sc_tx_rate == hwrate) return 0; if (sc->sc_if.if_flags & IFF_DEBUG) printf("%s: tx rate %d -> %d (%d)\n", __func__, sc->sc_tx_rate, hwrate, rate); sc->sc_tx_rate = hwrate; return wi_write_val(sc, WI_RID_TX_RATE, sc->sc_tx_rate); } STATIC int wi_cfg_txrate(struct wi_softc *sc) { struct ieee80211com *ic = &sc->sc_ic; struct ieee80211_rateset *rs; int rate; rs = &ic->ic_sup_rates[IEEE80211_MODE_11B]; sc->sc_tx_rate = 0; /* force write to RID */ if (ic->ic_fixed_rate < 0) rate = 0; /* auto */ else rate = rs->rs_rates[ic->ic_fixed_rate]; return wi_write_txrate(sc, rate); } STATIC int wi_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k) { struct wi_softc *sc = ic->ic_ifp->if_softc; u_int keyix = k->wk_keyix; DPRINTF(("%s: delete key %u\n", __func__, keyix)); if (keyix >= IEEE80211_WEP_NKID) return 0; if (k->wk_keylen != 0) sc->sc_flags &= ~WI_FLAGS_WEP_VALID; return 1; } static int wi_key_set(struct ieee80211com *ic, const struct ieee80211_key *k, const u_int8_t mac[IEEE80211_ADDR_LEN]) { struct wi_softc *sc = ic->ic_ifp->if_softc; DPRINTF(("%s: set key %u\n", __func__, k->wk_keyix)); if (k->wk_keyix >= IEEE80211_WEP_NKID) return 0; sc->sc_flags &= ~WI_FLAGS_WEP_VALID; return 1; } STATIC void wi_key_update_begin(struct ieee80211com *ic) { DPRINTF(("%s:\n", __func__)); } STATIC void wi_key_update_end(struct ieee80211com *ic) { struct ifnet *ifp = ic->ic_ifp; struct wi_softc *sc = ifp->if_softc; DPRINTF(("%s:\n", __func__)); if ((sc->sc_flags & WI_FLAGS_WEP_VALID) != 0) return; if ((ic->ic_caps & IEEE80211_C_WEP) != 0 && sc->sc_enabled && !sc->sc_invalid) (void)wi_write_wep(sc); } STATIC int wi_write_wep(struct wi_softc *sc) { struct ifnet *ifp = &sc->sc_if; struct ieee80211com *ic = &sc->sc_ic; int error = 0; int i, keylen; u_int16_t val; struct wi_key wkey[IEEE80211_WEP_NKID]; if ((ifp->if_flags & IFF_RUNNING) != 0) wi_cmd(sc, WI_CMD_DISABLE | sc->sc_portnum, 0, 0, 0); switch (sc->sc_firmware_type) { case WI_LUCENT: val = (ic->ic_flags & IEEE80211_F_PRIVACY) ? 1 : 0; error = wi_write_val(sc, WI_RID_ENCRYPTION, val); if (error) break; error = wi_write_val(sc, WI_RID_TX_CRYPT_KEY, ic->ic_def_txkey); if (error) break; memset(wkey, 0, sizeof(wkey)); for (i = 0; i < IEEE80211_WEP_NKID; i++) { keylen = ic->ic_nw_keys[i].wk_keylen; wkey[i].wi_keylen = htole16(keylen); memcpy(wkey[i].wi_keydat, ic->ic_nw_keys[i].wk_key, keylen); } error = wi_write_rid(sc, WI_RID_DEFLT_CRYPT_KEYS, wkey, sizeof(wkey)); break; case WI_INTERSIL: case WI_SYMBOL: if (ic->ic_flags & IEEE80211_F_PRIVACY) { /* * ONLY HWB3163 EVAL-CARD Firmware version * less than 0.8 variant2 * * If promiscuous mode disable, Prism2 chip * does not work with WEP . * It is under investigation for details. * (ichiro@NetBSD.org) */ if (sc->sc_firmware_type == WI_INTERSIL && sc->sc_sta_firmware_ver < 802 ) { /* firm ver < 0.8 variant 2 */ wi_write_val(sc, WI_RID_PROMISC, 1); } wi_write_val(sc, WI_RID_CNFAUTHMODE, sc->sc_cnfauthmode); val = PRIVACY_INVOKED; if ((sc->sc_ic_flags & IEEE80211_F_DROPUNENC) != 0) val |= EXCLUDE_UNENCRYPTED; #ifndef IEEE80211_NO_HOSTAP /* * Encryption firmware has a bug for HostAP mode. */ if (sc->sc_firmware_type == WI_INTERSIL && ic->ic_opmode == IEEE80211_M_HOSTAP) val |= HOST_ENCRYPT; #endif /* !IEEE80211_NO_HOSTAP */ } else { wi_write_val(sc, WI_RID_CNFAUTHMODE, IEEE80211_AUTH_OPEN); val = HOST_ENCRYPT | HOST_DECRYPT; } error = wi_write_val(sc, WI_RID_P2_ENCRYPTION, val); if (error) break; error = wi_write_val(sc, WI_RID_P2_TX_CRYPT_KEY, ic->ic_def_txkey); if (error) break; /* * It seems that the firmware accept 104bit key only if * all the keys have 104bit length. We get the length of * the transmit key and use it for all other keys. * Perhaps we should use software WEP for such situation. */ if (ic->ic_def_txkey == IEEE80211_KEYIX_NONE || IEEE80211_KEY_UNDEFINED(ic->ic_nw_keys[ic->ic_def_txkey])) keylen = 13; /* No keys => 104bit ok */ else keylen = ic->ic_nw_keys[ic->ic_def_txkey].wk_keylen; if (keylen > IEEE80211_WEP_KEYLEN) keylen = 13; /* 104bit keys */ else keylen = IEEE80211_WEP_KEYLEN; for (i = 0; i < IEEE80211_WEP_NKID; i++) { error = wi_write_rid(sc, WI_RID_P2_CRYPT_KEY0 + i, ic->ic_nw_keys[i].wk_key, keylen); if (error) break; } break; } if ((ifp->if_flags & IFF_RUNNING) != 0) wi_cmd(sc, WI_CMD_ENABLE | sc->sc_portnum, 0, 0, 0); if (error == 0) sc->sc_flags |= WI_FLAGS_WEP_VALID; return error; } /* Must be called at proper protection level! */ STATIC int wi_cmd_start(struct wi_softc *sc, int cmd, int val0, int val1, int val2) { #ifdef WI_HISTOGRAM static int hist1[11]; static int hist1count; #endif int i; /* wait for the busy bit to clear */ for (i = 500; i > 0; i--) { /* 5s */ if ((CSR_READ_2(sc, WI_COMMAND) & WI_CMD_BUSY) == 0) break; if (sc->sc_invalid) return ENXIO; DELAY(1000); /* 1 m sec */ } if (i == 0) { aprint_error_dev(sc->sc_dev, "wi_cmd: busy bit won't clear.\n"); return(ETIMEDOUT); } #ifdef WI_HISTOGRAM if (i > 490) hist1[500 - i]++; else hist1[10]++; if (++hist1count == 1000) { hist1count = 0; printf("%s: hist1: %d %d %d %d %d %d %d %d %d %d %d\n", device_xname(sc->sc_dev), hist1[0], hist1[1], hist1[2], hist1[3], hist1[4], hist1[5], hist1[6], hist1[7], hist1[8], hist1[9], hist1[10]); } #endif CSR_WRITE_2(sc, WI_PARAM0, val0); CSR_WRITE_2(sc, WI_PARAM1, val1); CSR_WRITE_2(sc, WI_PARAM2, val2); CSR_WRITE_2(sc, WI_COMMAND, cmd); return 0; } STATIC int wi_cmd(struct wi_softc *sc, int cmd, int val0, int val1, int val2) { int rc; #ifdef WI_DEBUG if (wi_debug) { printf("%s: [enter] %d txcmds outstanding\n", __func__, sc->sc_txcmds); } #endif if (sc->sc_txcmds > 0) wi_txcmd_wait(sc); if ((rc = wi_cmd_start(sc, cmd, val0, val1, val2)) != 0) return rc; if (cmd == WI_CMD_INI) { /* XXX: should sleep here. */ if (sc->sc_invalid) return ENXIO; DELAY(100*1000); } rc = wi_cmd_wait(sc, cmd, val0); #ifdef WI_DEBUG if (wi_debug) { printf("%s: [ ] %d txcmds outstanding\n", __func__, sc->sc_txcmds); } #endif if (sc->sc_txcmds > 0) wi_cmd_intr(sc); #ifdef WI_DEBUG if (wi_debug) { printf("%s: [leave] %d txcmds outstanding\n", __func__, sc->sc_txcmds); } #endif return rc; } STATIC int wi_cmd_wait(struct wi_softc *sc, int cmd, int val0) { #ifdef WI_HISTOGRAM static int hist2[11]; static int hist2count; #endif int i, status; #ifdef WI_DEBUG if (wi_debug > 1) printf("%s: cmd=%#x, arg=%#x\n", __func__, cmd, val0); #endif /* WI_DEBUG */ /* wait for the cmd completed bit */ for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_CMD) break; if (sc->sc_invalid) return ENXIO; DELAY(WI_DELAY); } #ifdef WI_HISTOGRAM if (i < 100) hist2[i/10]++; else hist2[10]++; if (++hist2count == 1000) { hist2count = 0; printf("%s: hist2: %d %d %d %d %d %d %d %d %d %d %d\n", device_xname(sc->sc_dev), hist2[0], hist2[1], hist2[2], hist2[3], hist2[4], hist2[5], hist2[6], hist2[7], hist2[8], hist2[9], hist2[10]); } #endif status = CSR_READ_2(sc, WI_STATUS); if (i == WI_TIMEOUT) { aprint_error_dev(sc->sc_dev, "command timed out, cmd=0x%x, arg=0x%x\n", cmd, val0); return ETIMEDOUT; } CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_CMD); if (status & WI_STAT_CMD_RESULT) { aprint_error_dev(sc->sc_dev, "command failed, cmd=0x%x, arg=0x%x\n", cmd, val0); return EIO; } return 0; } STATIC int wi_seek_bap(struct wi_softc *sc, int id, int off) { #ifdef WI_HISTOGRAM static int hist4[11]; static int hist4count; #endif int i, status; CSR_WRITE_2(sc, WI_SEL0, id); CSR_WRITE_2(sc, WI_OFF0, off); for (i = 0; ; i++) { status = CSR_READ_2(sc, WI_OFF0); if ((status & WI_OFF_BUSY) == 0) break; if (i == WI_TIMEOUT) { aprint_error_dev(sc->sc_dev, "timeout in wi_seek to %x/%x\n", id, off); sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ return ETIMEDOUT; } if (sc->sc_invalid) return ENXIO; DELAY(2); } #ifdef WI_HISTOGRAM if (i < 100) hist4[i/10]++; else hist4[10]++; if (++hist4count == 2500) { hist4count = 0; printf("%s: hist4: %d %d %d %d %d %d %d %d %d %d %d\n", device_xname(sc->sc_dev), hist4[0], hist4[1], hist4[2], hist4[3], hist4[4], hist4[5], hist4[6], hist4[7], hist4[8], hist4[9], hist4[10]); } #endif if (status & WI_OFF_ERR) { printf("%s: failed in wi_seek to %x/%x\n", device_xname(sc->sc_dev), id, off); sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ return EIO; } sc->sc_bap_id = id; sc->sc_bap_off = off; return 0; } STATIC int wi_read_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) { int error, cnt; if (buflen == 0) return 0; if (id != sc->sc_bap_id || off != sc->sc_bap_off) { if ((error = wi_seek_bap(sc, id, off)) != 0) return error; } cnt = (buflen + 1) / 2; CSR_READ_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); sc->sc_bap_off += cnt * 2; return 0; } STATIC int wi_write_bap(struct wi_softc *sc, int id, int off, void *buf, int buflen) { int error, cnt; if (buflen == 0) return 0; #ifdef WI_HERMES_AUTOINC_WAR again: #endif if (id != sc->sc_bap_id || off != sc->sc_bap_off) { if ((error = wi_seek_bap(sc, id, off)) != 0) return error; } cnt = (buflen + 1) / 2; CSR_WRITE_MULTI_STREAM_2(sc, WI_DATA0, (u_int16_t *)buf, cnt); sc->sc_bap_off += cnt * 2; #ifdef WI_HERMES_AUTOINC_WAR /* * According to the comments in the HCF Light code, there is a bug * in the Hermes (or possibly in certain Hermes firmware revisions) * where the chip's internal autoincrement counter gets thrown off * during data writes: the autoincrement is missed, causing one * data word to be overwritten and subsequent words to be written to * the wrong memory locations. The end result is that we could end * up transmitting bogus frames without realizing it. The workaround * for this is to write a couple of extra guard words after the end * of the transfer, then attempt to read then back. If we fail to * locate the guard words where we expect them, we preform the * transfer over again. */ if ((sc->sc_flags & WI_FLAGS_BUG_AUTOINC) && (id & 0xf000) == 0) { CSR_WRITE_2(sc, WI_DATA0, 0x1234); CSR_WRITE_2(sc, WI_DATA0, 0x5678); wi_seek_bap(sc, id, sc->sc_bap_off); sc->sc_bap_off = WI_OFF_ERR; /* invalidate */ if (CSR_READ_2(sc, WI_DATA0) != 0x1234 || CSR_READ_2(sc, WI_DATA0) != 0x5678) { aprint_error_dev(sc->sc_dev, "detect auto increment bug, try again\n"); goto again; } } #endif return 0; } STATIC int wi_mwrite_bap(struct wi_softc *sc, int id, int off, struct mbuf *m0, int totlen) { int error, len; struct mbuf *m; for (m = m0; m != NULL && totlen > 0; m = m->m_next) { if (m->m_len == 0) continue; len = min(m->m_len, totlen); if (((u_long)m->m_data) % 2 != 0 || len % 2 != 0) { m_copydata(m, 0, totlen, (void *)&sc->sc_txbuf); return wi_write_bap(sc, id, off, (void *)&sc->sc_txbuf, totlen); } if ((error = wi_write_bap(sc, id, off, m->m_data, len)) != 0) return error; off += m->m_len; totlen -= len; } return 0; } STATIC int wi_alloc_fid(struct wi_softc *sc, int len, int *idp) { int i; if (wi_cmd(sc, WI_CMD_ALLOC_MEM, len, 0, 0)) { aprint_error_dev(sc->sc_dev, "failed to allocate %d bytes on NIC\n", len); return ENOMEM; } for (i = 0; i < WI_TIMEOUT; i++) { if (CSR_READ_2(sc, WI_EVENT_STAT) & WI_EV_ALLOC) break; DELAY(1); } if (i == WI_TIMEOUT) { aprint_error_dev(sc->sc_dev, "timeout in alloc\n"); return ETIMEDOUT; } *idp = CSR_READ_2(sc, WI_ALLOC_FID); CSR_WRITE_2(sc, WI_EVENT_ACK, WI_EV_ALLOC); return 0; } STATIC int wi_read_rid(struct wi_softc *sc, int rid, void *buf, int *buflenp) { int error, len; u_int16_t ltbuf[2]; /* Tell the NIC to enter record read mode. */ error = wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_READ, rid, 0, 0); if (error) return error; error = wi_read_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); if (error) return error; if (le16toh(ltbuf[0]) == 0) return EOPNOTSUPP; if (le16toh(ltbuf[1]) != rid) { aprint_error_dev(sc->sc_dev, "record read mismatch, rid=%x, got=%x\n", rid, le16toh(ltbuf[1])); return EIO; } len = (le16toh(ltbuf[0]) - 1) * 2; /* already got rid */ if (*buflenp < len) { aprint_error_dev(sc->sc_dev, "record buffer is too small, " "rid=%x, size=%d, len=%d\n", rid, *buflenp, len); return ENOSPC; } *buflenp = len; return wi_read_bap(sc, rid, sizeof(ltbuf), buf, len); } STATIC int wi_write_rid(struct wi_softc *sc, int rid, void *buf, int buflen) { int error; u_int16_t ltbuf[2]; ltbuf[0] = htole16((buflen + 1) / 2 + 1); /* includes rid */ ltbuf[1] = htole16(rid); error = wi_write_bap(sc, rid, 0, ltbuf, sizeof(ltbuf)); if (error) return error; error = wi_write_bap(sc, rid, sizeof(ltbuf), buf, buflen); if (error) return error; return wi_cmd(sc, WI_CMD_ACCESS | WI_ACCESS_WRITE, rid, 0, 0); } STATIC void wi_rssadapt_updatestats_cb(void *arg, struct ieee80211_node *ni) { struct wi_node *wn = (void*)ni; ieee80211_rssadapt_updatestats(&wn->wn_rssadapt); } STATIC void wi_rssadapt_updatestats(void *arg) { struct wi_softc *sc = arg; struct ieee80211com *ic = &sc->sc_ic; ieee80211_iterate_nodes(&ic->ic_sta, wi_rssadapt_updatestats_cb, arg); if (ic->ic_opmode != IEEE80211_M_MONITOR && ic->ic_state == IEEE80211_S_RUN) callout_reset(&sc->sc_rssadapt_ch, hz / 10, wi_rssadapt_updatestats, arg); } /* * In HOSTAP mode, restore IEEE80211_F_DROPUNENC when operating * with WEP enabled so that the AP drops unencoded frames at the * 802.11 layer. * * In all other modes, clear IEEE80211_F_DROPUNENC when operating * with WEP enabled so we don't drop unencoded frames at the 802.11 * layer. This is necessary because we must strip the WEP bit from * the 802.11 header before passing frames to ieee80211_input * because the card has already stripped the WEP crypto header from * the packet. */ STATIC void wi_mend_flags(struct wi_softc *sc, enum ieee80211_state nstate) { struct ieee80211com *ic = &sc->sc_ic; if (nstate == IEEE80211_S_RUN && (ic->ic_flags & IEEE80211_F_PRIVACY) != 0 && ic->ic_opmode != IEEE80211_M_HOSTAP) ic->ic_flags &= ~IEEE80211_F_DROPUNENC; else ic->ic_flags |= sc->sc_ic_flags; DPRINTF(("%s: state %d, " "ic->ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 ", " "sc->sc_ic_flags & IEEE80211_F_DROPUNENC = %#" PRIx32 "\n", __func__, nstate, ic->ic_flags & IEEE80211_F_DROPUNENC, sc->sc_ic_flags & IEEE80211_F_DROPUNENC)); } STATIC int wi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) { struct ifnet *ifp = ic->ic_ifp; struct wi_softc *sc = ifp->if_softc; struct ieee80211_node *ni = ic->ic_bss; u_int16_t val; struct wi_ssid ssid; struct wi_macaddr bssid, old_bssid; enum ieee80211_state ostate __unused; #ifdef WI_DEBUG static const char *stname[] = { "INIT", "SCAN", "AUTH", "ASSOC", "RUN" }; #endif /* WI_DEBUG */ ostate = ic->ic_state; DPRINTF(("wi_newstate: %s -> %s\n", stname[ostate], stname[nstate])); switch (nstate) { case IEEE80211_S_INIT: if (ic->ic_opmode != IEEE80211_M_MONITOR) callout_stop(&sc->sc_rssadapt_ch); ic->ic_flags &= ~IEEE80211_F_SIBSS; sc->sc_flags &= ~WI_FLAGS_OUTRANGE; break; case IEEE80211_S_SCAN: case IEEE80211_S_AUTH: case IEEE80211_S_ASSOC: ic->ic_state = nstate; /* NB: skip normal ieee80211 handling */ wi_mend_flags(sc, nstate); return 0; case IEEE80211_S_RUN: sc->sc_flags &= ~WI_FLAGS_OUTRANGE; IEEE80211_ADDR_COPY(old_bssid.wi_mac_addr, ni->ni_bssid); wi_read_xrid(sc, WI_RID_CURRENT_BSSID, &bssid, IEEE80211_ADDR_LEN); IEEE80211_ADDR_COPY(ni->ni_bssid, &bssid); IEEE80211_ADDR_COPY(ni->ni_macaddr, &bssid); wi_read_xrid(sc, WI_RID_CURRENT_CHAN, &val, sizeof(val)); if (!isset(ic->ic_chan_avail, le16toh(val))) panic("%s: invalid channel %d\n", device_xname(sc->sc_dev), le16toh(val)); ni->ni_chan = &ic->ic_channels[le16toh(val)]; if (ic->ic_opmode == IEEE80211_M_HOSTAP) { #ifndef IEEE80211_NO_HOSTAP ni->ni_esslen = ic->ic_des_esslen; memcpy(ni->ni_essid, ic->ic_des_essid, ni->ni_esslen); ni->ni_rates = ic->ic_sup_rates[ ieee80211_chan2mode(ic, ni->ni_chan)]; ni->ni_intval = ic->ic_lintval; ni->ni_capinfo = IEEE80211_CAPINFO_ESS; if (ic->ic_flags & IEEE80211_F_PRIVACY) ni->ni_capinfo |= IEEE80211_CAPINFO_PRIVACY; #endif /* !IEEE80211_NO_HOSTAP */ } else { wi_read_xrid(sc, WI_RID_CURRENT_SSID, &ssid, sizeof(ssid)); ni->ni_esslen = le16toh(ssid.wi_len); if (ni->ni_esslen > IEEE80211_NWID_LEN) ni->ni_esslen = IEEE80211_NWID_LEN; /*XXX*/ memcpy(ni->ni_essid, ssid.wi_ssid, ni->ni_esslen); ni->ni_rates = ic->ic_sup_rates[ ieee80211_chan2mode(ic, ni->ni_chan)]; /*XXX*/ } if (ic->ic_opmode != IEEE80211_M_MONITOR) callout_reset(&sc->sc_rssadapt_ch, hz / 10, wi_rssadapt_updatestats, sc); /* Trigger routing socket messages. XXX Copied from * ieee80211_newstate. */ if (ic->ic_opmode == IEEE80211_M_STA) ieee80211_notify_node_join(ic, ic->ic_bss, arg == IEEE80211_FC0_SUBTYPE_ASSOC_RESP); break; } wi_mend_flags(sc, nstate); return (*sc->sc_newstate)(ic, nstate, arg); } STATIC void wi_set_tim(struct ieee80211_node *ni, int set) { struct ieee80211com *ic = ni->ni_ic; struct wi_softc *sc = ic->ic_ifp->if_softc; (*sc->sc_set_tim)(ni, set); if ((ic->ic_flags & IEEE80211_F_TIMUPDATE) == 0) return; ic->ic_flags &= ~IEEE80211_F_TIMUPDATE; (void)wi_write_val(sc, WI_RID_SET_TIM, IEEE80211_AID(ni->ni_associd) | (set ? 0x8000 : 0)); } STATIC int wi_scan_ap(struct wi_softc *sc, u_int16_t chanmask, u_int16_t txrate) { int error = 0; u_int16_t val[2]; if (!sc->sc_enabled) return ENXIO; switch (sc->sc_firmware_type) { case WI_LUCENT: (void)wi_cmd(sc, WI_CMD_INQUIRE, WI_INFO_SCAN_RESULTS, 0, 0); break; case WI_INTERSIL: val[0] = htole16(chanmask); /* channel */ val[1] = htole16(txrate); /* tx rate */ error = wi_write_rid(sc, WI_RID_SCAN_REQ, val, sizeof(val)); break; case WI_SYMBOL: /* * XXX only supported on 3.x ? */ val[0] = htole16(BSCAN_BCAST | BSCAN_ONETIME); error = wi_write_rid(sc, WI_RID_BCAST_SCAN_REQ, val, sizeof(val[0])); break; } if (error == 0) { sc->sc_scan_timer = WI_SCAN_WAIT; sc->sc_if.if_timer = 1; DPRINTF(("wi_scan_ap: start scanning, " "chanmask 0x%x txrate 0x%x\n", chanmask, txrate)); } return error; } STATIC void wi_scan_result(struct wi_softc *sc, int fid, int cnt) { #define N(a) (sizeof (a) / sizeof (a[0])) int i, naps, off, szbuf; struct wi_scan_header ws_hdr; /* Prism2 header */ struct wi_scan_data_p2 ws_dat; /* Prism2 scantable*/ struct wi_apinfo *ap; off = sizeof(u_int16_t) * 2; memset(&ws_hdr, 0, sizeof(ws_hdr)); switch (sc->sc_firmware_type) { case WI_INTERSIL: wi_read_bap(sc, fid, off, &ws_hdr, sizeof(ws_hdr)); off += sizeof(ws_hdr); szbuf = sizeof(struct wi_scan_data_p2); break; case WI_SYMBOL: szbuf = sizeof(struct wi_scan_data_p2) + 6; break; case WI_LUCENT: szbuf = sizeof(struct wi_scan_data); break; default: aprint_error_dev(sc->sc_dev, "wi_scan_result: unknown firmware type %u\n", sc->sc_firmware_type); naps = 0; goto done; } naps = (cnt * 2 + 2 - off) / szbuf; if (naps > N(sc->sc_aps)) naps = N(sc->sc_aps); sc->sc_naps = naps; /* Read Data */ ap = sc->sc_aps; memset(&ws_dat, 0, sizeof(ws_dat)); for (i = 0; i < naps; i++, ap++) { wi_read_bap(sc, fid, off, &ws_dat, (sizeof(ws_dat) < szbuf ? sizeof(ws_dat) : szbuf)); DPRINTF2(("wi_scan_result: #%d: off %d bssid %s\n", i, off, ether_sprintf(ws_dat.wi_bssid))); off += szbuf; ap->scanreason = le16toh(ws_hdr.wi_reason); memcpy(ap->bssid, ws_dat.wi_bssid, sizeof(ap->bssid)); ap->channel = le16toh(ws_dat.wi_chid); ap->signal = le16toh(ws_dat.wi_signal); ap->noise = le16toh(ws_dat.wi_noise); ap->quality = ap->signal - ap->noise; ap->capinfo = le16toh(ws_dat.wi_capinfo); ap->interval = le16toh(ws_dat.wi_interval); ap->rate = le16toh(ws_dat.wi_rate); ap->namelen = le16toh(ws_dat.wi_namelen); if (ap->namelen > sizeof(ap->name)) ap->namelen = sizeof(ap->name); memcpy(ap->name, ws_dat.wi_name, ap->namelen); } done: /* Done scanning */ sc->sc_scan_timer = 0; DPRINTF(("wi_scan_result: scan complete: ap %d\n", naps)); #undef N } STATIC void wi_dump_pkt(struct wi_frame *wh, struct ieee80211_node *ni, int rssi) { ieee80211_dump_pkt((u_int8_t *) &wh->wi_whdr, sizeof(wh->wi_whdr), ni ? ni->ni_rates.rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL : -1, rssi); printf(" status 0x%x rx_tstamp1 %u rx_tstamp0 0x%u rx_silence %u\n", le16toh(wh->wi_status), le16toh(wh->wi_rx_tstamp1), le16toh(wh->wi_rx_tstamp0), wh->wi_rx_silence); printf(" rx_signal %u rx_rate %u rx_flow %u\n", wh->wi_rx_signal, wh->wi_rx_rate, wh->wi_rx_flow); printf(" tx_rtry %u tx_rate %u tx_ctl 0x%x dat_len %u\n", wh->wi_tx_rtry, wh->wi_tx_rate, le16toh(wh->wi_tx_ctl), le16toh(wh->wi_dat_len)); printf(" ehdr dst %s src %s type 0x%x\n", ether_sprintf(wh->wi_ehdr.ether_dhost), ether_sprintf(wh->wi_ehdr.ether_shost), wh->wi_ehdr.ether_type); }