NetBSD/sys/arch/x68k/dev/intio_dmac.c
isaki b50b2ac3ed Split device_t/softc for dmac_*_xfer().
Rename some variables to avoid confusing.
2008-06-25 13:30:24 +00:00

601 lines
16 KiB
C

/* $NetBSD: intio_dmac.c,v 1.31 2008/06/25 13:30:24 isaki Exp $ */
/*-
* Copyright (c) 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Minoura Makoto.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Hitachi HD63450 (= Motorola MC68450) DMAC driver for x68k.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: intio_dmac.c,v 1.31 2008/06/25 13:30:24 isaki Exp $");
#include "opt_m680x0.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <uvm/uvm_extern.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/frame.h>
#include <arch/x68k/dev/intiovar.h>
#include <arch/x68k/dev/dmacvar.h>
#ifdef DMAC_DEBUG
#define DPRINTF(n,x) if (dmacdebug>((n)&0x0f)) printf x
#define DDUMPREGS(n,x) if (dmacdebug>((n)&0x0f)) {printf x; dmac_dump_regs();}
int dmacdebug = 0;
#else
#define DPRINTF(n,x)
#define DDUMPREGS(n,x)
#endif
static void dmac_init_channels(struct dmac_softc *);
#ifdef DMAC_ARRAYCHAIN
static int dmac_program_arraychain(device_t, struct dmac_dma_xfer *,
u_int, u_int);
#endif
static int dmac_done(void *);
static int dmac_error(void *);
#ifdef DMAC_DEBUG
static int dmac_dump_regs(void);
#endif
/*
* autoconf stuff
*/
static int dmac_match(device_t, cfdata_t, void *);
static void dmac_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(dmac, sizeof(struct dmac_softc),
dmac_match, dmac_attach, NULL, NULL);
static int dmac_attached;
static int
dmac_match(device_t parent, cfdata_t cf, void *aux)
{
struct intio_attach_args *ia = aux;
if (strcmp(ia->ia_name, "dmac") != 0)
return (0);
if (dmac_attached)
return (0);
if (ia->ia_addr == INTIOCF_ADDR_DEFAULT)
ia->ia_addr = DMAC_ADDR;
/* fixed address */
if (ia->ia_addr != DMAC_ADDR)
return (0);
if (ia->ia_intr != INTIOCF_INTR_DEFAULT)
return (0);
return 1;
}
static void
dmac_attach(device_t parent, device_t self, void *aux)
{
struct dmac_softc *sc = device_private(self);
struct intio_attach_args *ia = aux;
struct intio_softc *intio;
int r;
sc->sc_dev = self;
dmac_attached = 1;
ia->ia_size = DMAC_CHAN_SIZE * DMAC_NCHAN;
r = intio_map_allocate_region(parent, ia, INTIO_MAP_ALLOCATE);
#ifdef DIAGNOSTIC
if (r)
panic("IO map for DMAC corruption??");
#endif
intio = device_private(parent);
intio->sc_dmac = self;
sc->sc_bst = ia->ia_bst;
bus_space_map(sc->sc_bst, ia->ia_addr, ia->ia_size, 0, &sc->sc_bht);
dmac_init_channels(sc);
aprint_normal(": HD63450 DMAC\n");
aprint_normal_dev(self, "4 channels available.\n");
}
static void
dmac_init_channels(struct dmac_softc *sc)
{
int i;
DPRINTF(3, ("dmac_init_channels\n"));
for (i=0; i<DMAC_NCHAN; i++) {
sc->sc_channels[i].ch_channel = i;
sc->sc_channels[i].ch_name[0] = 0;
sc->sc_channels[i].ch_softc = sc;
bus_space_subregion(sc->sc_bst, sc->sc_bht,
DMAC_CHAN_SIZE*i, DMAC_CHAN_SIZE,
&sc->sc_channels[i].ch_bht);
sc->sc_channels[i].ch_xfer.dx_dmamap = 0;
/* reset the status register */
bus_space_write_1(sc->sc_bst, sc->sc_channels[i].ch_bht,
DMAC_REG_CSR, 0xff);
}
return;
}
/*
* Channel initialization/deinitialization per user device.
*/
struct dmac_channel_stat *
dmac_alloc_channel(device_t self, int ch, const char *name, int normalv,
dmac_intr_handler_t normal, void *normalarg, int errorv,
dmac_intr_handler_t error, void *errorarg)
{
struct intio_softc *intio = device_private(self);
struct dmac_softc *sc = device_private(intio->sc_dmac);
struct dmac_channel_stat *chan = &sc->sc_channels[ch];
#ifdef DMAC_ARRAYCHAIN
int r, dummy;
#endif
aprint_normal_dev(sc->sc_dev, "allocating ch %d for %s.\n",
ch, name);
DPRINTF(3, ("dmamap=%p\n", (void *)chan->ch_xfer.dx_dmamap));
#ifdef DIAGNOSTIC
if (ch < 0 || ch >= DMAC_NCHAN)
panic("Invalid DMAC channel.");
if (chan->ch_name[0])
panic("DMAC: channel in use.");
if (strlen(name) > 8)
panic("DMAC: wrong user name.");
#endif
#ifdef DMAC_ARRAYCHAIN
/* allocate the DMAC arraychaining map */
r = bus_dmamem_alloc(intio->sc_dmat,
sizeof(struct dmac_sg_array) * DMAC_MAPSIZE,
4, 0, &chan->ch_seg[0], 1, &dummy,
BUS_DMA_NOWAIT);
if (r)
panic("DMAC: cannot alloc DMA safe memory");
r = bus_dmamem_map(intio->sc_dmat,
&chan->ch_seg[0], 1,
sizeof(struct dmac_sg_array) * DMAC_MAPSIZE,
(void **) &chan->ch_map,
BUS_DMA_NOWAIT|BUS_DMA_COHERENT);
if (r)
panic("DMAC: cannot map DMA safe memory");
#endif
/* fill the channel status structure by the default values. */
strcpy(chan->ch_name, name);
chan->ch_dcr = (DMAC_DCR_XRM_CSWH | DMAC_DCR_OTYP_EASYNC |
DMAC_DCR_OPS_8BIT);
chan->ch_ocr = (DMAC_OCR_SIZE_BYTE | DMAC_OCR_REQG_EXTERNAL);
chan->ch_normalv = normalv;
chan->ch_errorv = errorv;
chan->ch_normal = normal;
chan->ch_error = error;
chan->ch_normalarg = normalarg;
chan->ch_errorarg = errorarg;
chan->ch_xfer.dx_dmamap = 0;
/* setup the device-specific registers */
bus_space_write_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CSR, 0xff);
bus_space_write_1(sc->sc_bst, chan->ch_bht,
DMAC_REG_DCR, chan->ch_dcr);
bus_space_write_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CPR, 0);
/*
* X68k physical user space is a subset of the kernel space;
* the memory is always included in the physical user space,
* while the device is not.
*/
bus_space_write_1(sc->sc_bst, chan->ch_bht,
DMAC_REG_BFCR, DMAC_FC_USER_DATA);
bus_space_write_1(sc->sc_bst, chan->ch_bht,
DMAC_REG_MFCR, DMAC_FC_USER_DATA);
bus_space_write_1(sc->sc_bst, chan->ch_bht,
DMAC_REG_DFCR, DMAC_FC_KERNEL_DATA);
/* setup the interrupt handlers */
bus_space_write_1(sc->sc_bst, chan->ch_bht, DMAC_REG_NIVR, normalv);
bus_space_write_1(sc->sc_bst, chan->ch_bht, DMAC_REG_EIVR, errorv);
intio_intr_establish_ext(normalv, name, "dma", dmac_done, chan);
intio_intr_establish_ext(errorv, name, "dmaerr", dmac_error, chan);
return chan;
}
int
dmac_free_channel(device_t self, int ch, void *channel)
{
struct intio_softc *intio = device_private(self);
struct dmac_softc *dmac = device_private(intio->sc_dmac);
struct dmac_channel_stat *chan = &dmac->sc_channels[ch];
DPRINTF(3, ("dmac_free_channel, %d\n", ch));
DPRINTF(3, ("dmamap=%p\n", (void *)chan->ch_xfer.dx_dmamap));
if (chan != channel)
return -1;
if (ch != chan->ch_channel)
return -1;
#ifdef DMAC_ARRAYCHAIN
bus_dmamem_unmap(intio->sc_dmat, (void *)chan->ch_map,
sizeof(struct dmac_sg_array) * DMAC_MAPSIZE);
bus_dmamem_free(intio->sc_dmat, &chan->ch_seg[0], 1);
#endif
chan->ch_name[0] = 0;
intio_intr_disestablish(chan->ch_normalv, channel);
intio_intr_disestablish(chan->ch_errorv, channel);
return 0;
}
/*
* Initialization / deinitialization per transfer.
*/
struct dmac_dma_xfer *
dmac_alloc_xfer(struct dmac_channel_stat *chan, bus_dma_tag_t dmat,
bus_dmamap_t dmamap)
{
struct dmac_dma_xfer *xf = &chan->ch_xfer;
DPRINTF(3, ("dmac_alloc_xfer\n"));
xf->dx_channel = chan;
xf->dx_dmamap = dmamap;
xf->dx_tag = dmat;
#ifdef DMAC_ARRAYCHAIN
xf->dx_array = chan->ch_map;
xf->dx_done = 0;
#endif
xf->dx_nextoff = xf->dx_nextsize = -1;
return xf;
}
int
dmac_load_xfer(struct dmac_softc *dmac, struct dmac_dma_xfer *xf)
{
struct dmac_channel_stat *chan = xf->dx_channel;
DPRINTF(3, ("dmac_load_xfer\n"));
xf->dx_ocr &= ~DMAC_OCR_CHAIN_MASK;
if (xf->dx_dmamap->dm_nsegs == 1)
xf->dx_ocr |= DMAC_OCR_CHAIN_DISABLED;
else {
xf->dx_ocr |= DMAC_OCR_CHAIN_ARRAY;
xf->dx_nextoff = ~0;
xf->dx_nextsize = ~0;
}
bus_space_write_1(dmac->sc_bst, chan->ch_bht, DMAC_REG_CSR, 0xff);
bus_space_write_1(dmac->sc_bst, chan->ch_bht, DMAC_REG_SCR, xf->dx_scr);
bus_space_write_1(dmac->sc_bst, chan->ch_bht,
DMAC_REG_OCR, (xf->dx_ocr | chan->ch_ocr));
bus_space_write_4(dmac->sc_bst, chan->ch_bht,
DMAC_REG_DAR, (int) xf->dx_device);
return 0;
}
struct dmac_dma_xfer *
dmac_prepare_xfer(struct dmac_channel_stat *chan, bus_dma_tag_t dmat,
bus_dmamap_t dmamap, int dir, int scr, void *dar)
{
struct dmac_dma_xfer *xf;
struct dmac_softc *dmac = chan->ch_softc;
xf = dmac_alloc_xfer(chan, dmat, dmamap);
xf->dx_ocr = dir & DMAC_OCR_DIR_MASK;
xf->dx_scr = scr & (DMAC_SCR_MAC_MASK|DMAC_SCR_DAC_MASK);
xf->dx_device = dar;
dmac_load_xfer(dmac, xf);
return xf;
}
#ifdef DMAC_DEBUG
static struct dmac_channel_stat *debugchan = 0;
#endif
/*
* Do the actual transfer.
*/
int
dmac_start_xfer(struct dmac_softc *dmac, struct dmac_dma_xfer *xf)
{
return dmac_start_xfer_offset(dmac, xf, 0, 0);
}
int
dmac_start_xfer_offset(struct dmac_softc *dmac, struct dmac_dma_xfer *xf,
u_int offset, u_int size)
{
struct dmac_channel_stat *chan = xf->dx_channel;
struct x68k_bus_dmamap *dmamap = xf->dx_dmamap;
int go = DMAC_CCR_STR|DMAC_CCR_INT;
#ifdef DMAC_ARRAYCHAIN
int c;
#endif
DPRINTF(3, ("dmac_start_xfer\n"));
#ifdef DMAC_DEBUG
debugchan=chan;
#endif
if (size == 0) {
#ifdef DIAGNOSTIC
if (offset != 0)
panic("dmac_start_xfer_offset: invalid offset %x",
offset);
#endif
size = dmamap->dm_mapsize;
}
#ifdef DMAC_ARRAYCHAIN
#ifdef DIAGNOSTIC
if (xf->dx_done)
panic("dmac_start_xfer: DMA transfer in progress");
#endif
#endif
DPRINTF(3, ("First program:\n"));
#ifdef DIAGNOSTIC
if ((offset >= dmamap->dm_mapsize) ||
(offset + size > dmamap->dm_mapsize))
panic("dmac_start_xfer_offset: invalid offset: "
"offset=%d, size=%d, mapsize=%ld",
offset, size, dmamap->dm_mapsize);
#endif
/* program DMAC in single block mode or array chainning mode */
if (dmamap->dm_nsegs == 1) {
DPRINTF(3, ("single block mode\n"));
#ifdef DIAGNOSTIC
if (dmamap->dm_mapsize != dmamap->dm_segs[0].ds_len)
panic("dmac_start_xfer_offset: dmamap curruption");
#endif
if (offset == xf->dx_nextoff &&
size == xf->dx_nextsize) {
/* Use continued operation */
go |= DMAC_CCR_CNT;
xf->dx_nextoff += size;
} else {
bus_space_write_4(dmac->sc_bst, chan->ch_bht,
DMAC_REG_MAR,
(int) dmamap->dm_segs[0].ds_addr
+ offset);
bus_space_write_2(dmac->sc_bst, chan->ch_bht,
DMAC_REG_MTCR, (int) size);
xf->dx_nextoff = offset;
xf->dx_nextsize = size;
}
#ifdef DMAC_ARRAYCHAIN
xf->dx_done = 1;
#endif
} else {
#ifdef DMAC_ARRAYCHAIN
c = dmac_program_arraychain(self, xf, offset, size);
bus_space_write_4(dmac->sc_bst, chan->ch_bht,
DMAC_REG_BAR, (int) chan->ch_seg[0].ds_addr);
bus_space_write_2(dmac->sc_bst, chan->ch_bht,
DMAC_REG_BTCR, c);
#else
panic("DMAC: unexpected use of arraychaining mode");
#endif
}
bus_space_write_1(dmac->sc_bst, chan->ch_bht, DMAC_REG_CSR, 0xff);
/* START!! */
DDUMPREGS(3, ("first start\n"));
#ifdef DMAC_ARRAYCHAIN
#if defined(M68040) || defined(M68060)
/* flush data cache for the map */
if (dmamap->dm_nsegs != 1 && mmutype == MMU_68040)
dma_cachectl((void *) xf->dx_array,
sizeof(struct dmac_sg_array) * c);
#endif
#endif
bus_space_write_1(dmac->sc_bst, chan->ch_bht, DMAC_REG_CCR, go);
if (xf->dx_nextoff != ~0) {
bus_space_write_4(dmac->sc_bst, chan->ch_bht,
DMAC_REG_BAR, xf->dx_nextoff);
bus_space_write_2(dmac->sc_bst, chan->ch_bht,
DMAC_REG_BTCR, xf->dx_nextsize);
}
return 0;
}
#ifdef DMAC_ARRAYCHAIN
static int
dmac_program_arraychain(device_t self, struct dmac_dma_xfer *xf,
u_int offset, u_int size)
{
struct dmac_channel_stat *chan = xf->dx_channel;
int ch = chan->ch_channel;
struct x68k_bus_dmamap *map = xf->dx_dmamap;
int i, j;
/* XXX not yet!! */
if (offset != 0 || size != map->dm_mapsize)
panic("dmac_program_arraychain: unsupported offset/size");
DPRINTF(3, ("dmac_program_arraychain\n"));
for (i=0, j=xf->dx_done; i<DMAC_MAPSIZE && j<map->dm_nsegs;
i++, j++) {
xf->dx_array[i].da_addr = map->dm_segs[j].ds_addr;
#ifdef DIAGNOSTIC
if (map->dm_segs[j].ds_len > DMAC_MAXSEGSZ)
panic("dmac_program_arraychain: wrong map: %ld",
map->dm_segs[j].ds_len);
#endif
xf->dx_array[i].da_count = map->dm_segs[j].ds_len;
}
xf->dx_done = j;
return i;
}
#endif
/*
* interrupt handlers.
*/
static int
dmac_done(void *arg)
{
struct dmac_channel_stat *chan = arg;
struct dmac_softc *sc = chan->ch_softc;
#ifdef DMAC_ARRAYCHAIN
struct dmac_dma_xfer *xf = &chan->ch_xfer;
struct x68k_bus_dmamap *map = xf->dx_dmamap;
int c;
#endif
DPRINTF(3, ("dmac_done\n"));
bus_space_write_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CSR, 0xff);
#ifdef DMAC_ARRAYCHAIN
if (xf->dx_done == map->dm_nsegs) {
xf->dx_done = 0;
#endif
/* Done */
return (*chan->ch_normal)(chan->ch_normalarg);
#ifdef DMAC_ARRAYCHAIN
}
#endif
#ifdef DMAC_ARRAYCHAIN
/* Continue transfer */
DPRINTF(3, ("reprograming\n"));
c = dmac_program_arraychain(sc->sc_dev, xf, 0, map->dm_mapsize);
bus_space_write_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CSR, 0xff);
bus_space_write_4(sc->sc_bst, chan->ch_bht,
DMAC_REG_BAR, (int) chan->ch_map);
bus_space_write_4(sc->sc_bst, chan->ch_bht,
DMAC_REG_DAR, (int) xf->dx_device);
bus_space_write_2(sc->sc_bst, chan->ch_bht, DMAC_REG_BTCR, c);
/* START!! */
DDUMPREGS(3, ("restart\n"));
bus_space_write_1(sc->sc_bst, chan->ch_bht,
DMAC_REG_CCR, DMAC_CCR_STR|DMAC_CCR_INT);
return 1;
#endif
}
static int
dmac_error(void *arg)
{
struct dmac_channel_stat *chan = arg;
struct dmac_softc *sc = chan->ch_softc;
printf("DMAC transfer error CSR=%02x, CER=%02x\n",
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CSR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CER));
DDUMPREGS(3, ("registers were:\n"));
/* Clear the status bits */
bus_space_write_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CSR, 0xff);
#ifdef DMAC_ARRAYCHAIN
chan->ch_xfer.dx_done = 0;
#endif
return (*chan->ch_error)(chan->ch_errorarg);
}
int
dmac_abort_xfer(struct dmac_softc *dmac, struct dmac_dma_xfer *xf)
{
struct dmac_channel_stat *chan = xf->dx_channel;
bus_space_write_1(dmac->sc_bst, chan->ch_bht, DMAC_REG_CCR,
DMAC_CCR_INT | DMAC_CCR_HLT);
bus_space_write_1(dmac->sc_bst, chan->ch_bht, DMAC_REG_CSR, 0xff);
xf->dx_nextoff = xf->dx_nextsize = -1;
return 0;
}
#ifdef DMAC_DEBUG
static int
dmac_dump_regs(void)
{
struct dmac_channel_stat *chan = debugchan;
struct dmac_softc *sc;
if ((chan == 0) || (dmacdebug & 0xf0))
return 0;
sc = chan->ch_softc;
printf("DMAC channel %d registers\n", chan->ch_channel);
printf("CSR=%02x, CER=%02x, DCR=%02x, OCR=%02x, SCR=%02x, "
"CCR=%02x, CPR=%02x, GCR=%02x\n",
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CSR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CER),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_DCR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_OCR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_SCR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CCR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_CPR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_GCR));
printf("NIVR=%02x, EIVR=%02x, MTCR=%04x, BTCR=%04x, DFCR=%02x, "
"MFCR=%02x, BFCR=%02x\n",
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_NIVR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_EIVR),
bus_space_read_2(sc->sc_bst, chan->ch_bht, DMAC_REG_MTCR),
bus_space_read_2(sc->sc_bst, chan->ch_bht, DMAC_REG_BTCR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_DFCR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_MFCR),
bus_space_read_1(sc->sc_bst, chan->ch_bht, DMAC_REG_BFCR));
printf("DAR=%08x, MAR=%08x, BAR=%08x\n",
bus_space_read_4(sc->sc_bst, chan->ch_bht, DMAC_REG_DAR),
bus_space_read_4(sc->sc_bst, chan->ch_bht, DMAC_REG_MAR),
bus_space_read_4(sc->sc_bst, chan->ch_bht, DMAC_REG_BAR));
return 0;
}
#endif