NetBSD/usr.sbin/npf/npfctl/npf_build.c

727 lines
17 KiB
C

/* $NetBSD: npf_build.c,v 1.24 2013/05/19 20:45:34 rmind Exp $ */
/*-
* Copyright (c) 2011-2013 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This material is based upon work partially supported by The
* NetBSD Foundation under a contract with Mindaugas Rasiukevicius.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* npfctl(8) building of the configuration.
*/
#include <sys/cdefs.h>
__RCSID("$NetBSD: npf_build.c,v 1.24 2013/05/19 20:45:34 rmind Exp $");
#include <sys/types.h>
#include <sys/ioctl.h>
#include <stdlib.h>
#include <inttypes.h>
#include <string.h>
#include <errno.h>
#include <err.h>
#include "npfctl.h"
#define MAX_RULE_NESTING 16
static nl_config_t * npf_conf = NULL;
static bool npf_debug = false;
static nl_rule_t * the_rule = NULL;
static nl_rule_t * current_group[MAX_RULE_NESTING];
static unsigned rule_nesting_level = 0;
static nl_rule_t * defgroup = NULL;
void
npfctl_config_init(bool debug)
{
npf_conf = npf_config_create();
if (npf_conf == NULL) {
errx(EXIT_FAILURE, "npf_config_create failed");
}
npf_debug = debug;
memset(current_group, 0, sizeof(current_group));
}
int
npfctl_config_send(int fd, const char *out)
{
int error;
if (out) {
_npf_config_setsubmit(npf_conf, out);
printf("\nSaving to %s\n", out);
}
if (!defgroup) {
errx(EXIT_FAILURE, "default group was not defined");
}
npf_rule_insert(npf_conf, NULL, defgroup);
error = npf_config_submit(npf_conf, fd);
if (error) {
nl_error_t ne;
_npf_config_error(npf_conf, &ne);
npfctl_print_error(&ne);
}
npf_config_destroy(npf_conf);
return error;
}
nl_config_t *
npfctl_config_ref(void)
{
return npf_conf;
}
nl_rule_t *
npfctl_rule_ref(void)
{
return the_rule;
}
unsigned long
npfctl_debug_addif(const char *ifname)
{
char tname[] = "npftest";
const size_t tnamelen = sizeof(tname) - 1;
if (!npf_debug || strncmp(ifname, tname, tnamelen) != 0) {
return 0;
}
struct ifaddrs ifa = {
.ifa_name = __UNCONST(ifname),
.ifa_flags = 0
};
unsigned long if_idx = atol(ifname + tnamelen) + 1;
_npf_debug_addif(npf_conf, &ifa, if_idx);
return if_idx;
}
bool
npfctl_table_exists_p(const char *id)
{
return npf_table_exists_p(npf_conf, atoi(id));
}
static in_port_t
npfctl_get_singleport(const npfvar_t *vp)
{
port_range_t *pr;
in_port_t *port;
if (npfvar_get_count(vp) > 1) {
yyerror("multiple ports are not valid");
}
pr = npfvar_get_data(vp, NPFVAR_PORT_RANGE, 0);
if (pr->pr_start != pr->pr_end) {
yyerror("port range is not valid");
}
port = &pr->pr_start;
return *port;
}
static fam_addr_mask_t *
npfctl_get_singlefam(const npfvar_t *vp)
{
if (npfvar_get_count(vp) > 1) {
yyerror("multiple addresses are not valid");
}
return npfvar_get_data(vp, NPFVAR_FAM, 0);
}
static bool
npfctl_build_fam(nc_ctx_t *nc, sa_family_t family,
fam_addr_mask_t *fam, int opts)
{
/*
* If family is specified, address does not match it and the
* address is extracted from the interface, then simply ignore.
* Otherwise, address of invalid family was passed manually.
*/
if (family != AF_UNSPEC && family != fam->fam_family) {
if (!fam->fam_ifindex) {
yyerror("specified address is not of the required "
"family %d", family);
}
return false;
}
/*
* Optimise 0.0.0.0/0 case to be NOP. Otherwise, address with
* zero mask would never match and therefore is not valid.
*/
if (fam->fam_mask == 0) {
npf_addr_t zero;
memset(&zero, 0, sizeof(npf_addr_t));
if (memcmp(&fam->fam_addr, &zero, sizeof(npf_addr_t))) {
yyerror("filter criterion would never match");
}
return false;
}
switch (fam->fam_family) {
case AF_INET:
npfctl_gennc_v4cidr(nc, opts,
&fam->fam_addr, fam->fam_mask);
break;
case AF_INET6:
npfctl_gennc_v6cidr(nc, opts,
&fam->fam_addr, fam->fam_mask);
break;
default:
yyerror("family %d is not supported", fam->fam_family);
}
return true;
}
static void
npfctl_build_vars(nc_ctx_t *nc, sa_family_t family, npfvar_t *vars, int opts)
{
const int type = npfvar_get_type(vars, 0);
size_t i;
npfctl_ncgen_group(nc);
for (i = 0; i < npfvar_get_count(vars); i++) {
void *data = npfvar_get_data(vars, type, i);
assert(data != NULL);
switch (type) {
case NPFVAR_FAM: {
fam_addr_mask_t *fam = data;
npfctl_build_fam(nc, family, fam, opts);
break;
}
case NPFVAR_PORT_RANGE: {
port_range_t *pr = data;
if (opts & NC_MATCH_TCP) {
npfctl_gennc_ports(nc, opts & ~NC_MATCH_UDP,
pr->pr_start, pr->pr_end);
}
if (opts & NC_MATCH_UDP) {
npfctl_gennc_ports(nc, opts & ~NC_MATCH_TCP,
pr->pr_start, pr->pr_end);
}
break;
}
case NPFVAR_TABLE: {
u_int tid = atoi(data);
npfctl_gennc_tbl(nc, opts, tid);
break;
}
default:
assert(false);
}
}
npfctl_ncgen_endgroup(nc);
}
static int
npfctl_build_proto(nc_ctx_t *nc, sa_family_t family,
const opt_proto_t *op, bool noaddrs, bool noports)
{
const npfvar_t *popts = op->op_opts;
const int proto = op->op_proto;
int pflag = 0;
switch (proto) {
case IPPROTO_TCP:
pflag = NC_MATCH_TCP;
if (!popts) {
break;
}
assert(npfvar_get_count(popts) == 2);
/* Build TCP flags block (optional). */
uint8_t *tf, *tf_mask;
tf = npfvar_get_data(popts, NPFVAR_TCPFLAG, 0);
tf_mask = npfvar_get_data(popts, NPFVAR_TCPFLAG, 1);
npfctl_gennc_tcpfl(nc, *tf, *tf_mask);
noports = false;
break;
case IPPROTO_UDP:
pflag = NC_MATCH_UDP;
break;
case IPPROTO_ICMP:
/*
* Build ICMP block.
*/
if (!noports) {
goto invop;
}
assert(npfvar_get_count(popts) == 2);
int *icmp_type, *icmp_code;
icmp_type = npfvar_get_data(popts, NPFVAR_ICMP, 0);
icmp_code = npfvar_get_data(popts, NPFVAR_ICMP, 1);
npfctl_gennc_icmp(nc, *icmp_type, *icmp_code);
noports = false;
break;
case IPPROTO_ICMPV6:
/*
* Build ICMP block.
*/
if (!noports) {
goto invop;
}
assert(npfvar_get_count(popts) == 2);
int *icmp6_type, *icmp6_code;
icmp6_type = npfvar_get_data(popts, NPFVAR_ICMP6, 0);
icmp6_code = npfvar_get_data(popts, NPFVAR_ICMP6, 1);
npfctl_gennc_icmp6(nc, *icmp6_type, *icmp6_code);
noports = false;
break;
case -1:
pflag = NC_MATCH_TCP | NC_MATCH_UDP;
noports = false;
break;
default:
/*
* No filter options are supported for other protocols,
* only the IP addresses are allowed.
*/
if (noports) {
break;
}
invop:
yyerror("invalid filter options for protocol %d", proto);
}
/*
* Build the protocol block, unless other blocks will implicitly
* perform the family/protocol checks for us.
*/
if ((family != AF_UNSPEC && noaddrs) || (proto != -1 && noports)) {
uint8_t addrlen;
switch (family) {
case AF_INET:
addrlen = sizeof(struct in_addr);
break;
case AF_INET6:
addrlen = sizeof(struct in6_addr);
break;
default:
addrlen = 0;
}
npfctl_gennc_proto(nc,
noaddrs ? addrlen : 0,
noports ? proto : 0xff);
}
return pflag;
}
static bool
npfctl_build_ncode(nl_rule_t *rl, sa_family_t family, const opt_proto_t *op,
const filt_opts_t *fopts, bool invert)
{
const addr_port_t *apfrom = &fopts->fo_from;
const addr_port_t *apto = &fopts->fo_to;
const int proto = op->op_proto;
bool noaddrs, noports;
nc_ctx_t *nc;
void *code;
size_t len;
/*
* If none specified, no n-code.
*/
noaddrs = !apfrom->ap_netaddr && !apto->ap_netaddr;
noports = !apfrom->ap_portrange && !apto->ap_portrange;
if (family == AF_UNSPEC && proto == -1 && !op->op_opts &&
noaddrs && noports)
return false;
int srcflag = NC_MATCH_SRC;
int dstflag = NC_MATCH_DST;
if (invert) {
srcflag = NC_MATCH_DST;
dstflag = NC_MATCH_SRC;
}
nc = npfctl_ncgen_create();
/* Build layer 4 protocol blocks. */
int pflag = npfctl_build_proto(nc, family, op, noaddrs, noports);
/* Build IP address blocks. */
npfctl_build_vars(nc, family, apfrom->ap_netaddr, srcflag);
npfctl_build_vars(nc, family, apto->ap_netaddr, dstflag);
/* Build port-range blocks. */
npfctl_build_vars(nc, family, apfrom->ap_portrange, srcflag | pflag);
npfctl_build_vars(nc, family, apto->ap_portrange, dstflag | pflag);
/*
* Complete n-code (destroys the context) and pass to the rule.
*/
code = npfctl_ncgen_complete(nc, &len);
if (npf_debug) {
extern char *yytext;
extern int yylineno;
printf("RULE AT LINE %d\n", yylineno - (int)(*yytext == '\n'));
npfctl_ncgen_print(code, len);
}
assert(code && len > 0);
if (npf_rule_setcode(rl, NPF_CODE_NC, code, len) == -1) {
errx(EXIT_FAILURE, "npf_rule_setcode failed");
}
free(code);
return true;
}
static void
npfctl_build_rpcall(nl_rproc_t *rp, const char *name, npfvar_t *args)
{
npf_extmod_t *extmod;
nl_ext_t *extcall;
int error;
extmod = npf_extmod_get(name, &extcall);
if (extmod == NULL) {
yyerror("unknown rule procedure '%s'", name);
}
for (size_t i = 0; i < npfvar_get_count(args); i++) {
const char *param, *value;
proc_param_t *p;
p = npfvar_get_data(args, NPFVAR_PROC_PARAM, i);
param = p->pp_param;
value = p->pp_value;
error = npf_extmod_param(extmod, extcall, param, value);
switch (error) {
case EINVAL:
yyerror("invalid parameter '%s'", param);
default:
break;
}
}
error = npf_rproc_extcall(rp, extcall);
if (error) {
yyerror(error == EEXIST ?
"duplicate procedure call" : "unexpected error");
}
}
/*
* npfctl_build_rproc: create and insert a rule procedure.
*/
void
npfctl_build_rproc(const char *name, npfvar_t *procs)
{
nl_rproc_t *rp;
size_t i;
rp = npf_rproc_create(name);
if (rp == NULL) {
errx(EXIT_FAILURE, "%s failed", __func__);
}
npf_rproc_insert(npf_conf, rp);
for (i = 0; i < npfvar_get_count(procs); i++) {
proc_call_t *pc = npfvar_get_data(procs, NPFVAR_PROC, i);
npfctl_build_rpcall(rp, pc->pc_name, pc->pc_opts);
}
}
void
npfctl_build_maprset(const char *name, int attr, u_int if_idx)
{
const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT);
nl_rule_t *rl;
/* If no direction is not specified, then both. */
if ((attr & attr_di) == 0) {
attr |= attr_di;
}
/* Allow only "in/out" attributes. */
attr = NPF_RULE_GROUP | NPF_RULE_GROUP | (attr & attr_di);
rl = npf_rule_create(name, attr, if_idx);
npf_nat_insert(npf_conf, rl, NPF_PRI_LAST);
}
/*
* npfctl_build_group: create a group, insert into the global ruleset,
* update the current group pointer and increase the nesting level.
*/
void
npfctl_build_group(const char *name, int attr, u_int if_idx, bool def)
{
const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT);
nl_rule_t *rl;
if (def || (attr & attr_di) == 0) {
attr |= attr_di;
}
rl = npf_rule_create(name, attr | NPF_RULE_GROUP, if_idx);
npf_rule_setprio(rl, NPF_PRI_LAST);
if (def) {
if (defgroup) {
yyerror("multiple default groups are not valid");
}
if (rule_nesting_level) {
yyerror("default group can only be at the top level");
}
defgroup = rl;
} else {
nl_rule_t *cg = current_group[rule_nesting_level];
npf_rule_insert(npf_conf, cg, rl);
}
/* Set the current group and increase the nesting level. */
if (rule_nesting_level >= MAX_RULE_NESTING) {
yyerror("rule nesting limit reached");
}
current_group[++rule_nesting_level] = rl;
}
void
npfctl_build_group_end(void)
{
assert(rule_nesting_level > 0);
current_group[rule_nesting_level--] = NULL;
}
/*
* npfctl_build_rule: create a rule, build n-code from filter options,
* if any, and insert into the ruleset of current group, or set the rule.
*/
void
npfctl_build_rule(uint32_t attr, u_int if_idx, sa_family_t family,
const opt_proto_t *op, const filt_opts_t *fopts, const char *rproc)
{
nl_rule_t *rl;
attr |= (npf_conf ? 0 : NPF_RULE_DYNAMIC);
rl = npf_rule_create(NULL, attr, if_idx);
npfctl_build_ncode(rl, family, op, fopts, false);
if (rproc) {
npf_rule_setproc(rl, rproc);
}
if (npf_conf) {
nl_rule_t *cg = current_group[rule_nesting_level];
if (rproc && !npf_rproc_exists_p(npf_conf, rproc)) {
yyerror("rule procedure '%s' is not defined", rproc);
}
assert(cg != NULL);
npf_rule_setprio(rl, NPF_PRI_LAST);
npf_rule_insert(npf_conf, cg, rl);
} else {
/* We have parsed a single rule - set it. */
the_rule = rl;
}
}
/*
* npfctl_build_nat: create a single NAT policy of a specified
* type with a given filter options.
*/
static void
npfctl_build_nat(int type, u_int if_idx, sa_family_t family,
const addr_port_t *ap, const filt_opts_t *fopts, bool binat)
{
const opt_proto_t op = { .op_proto = -1, .op_opts = NULL };
fam_addr_mask_t *am;
in_port_t port;
nl_nat_t *nat;
if (!ap->ap_netaddr) {
yyerror("%s network segment is not specified",
type == NPF_NATIN ? "inbound" : "outbound");
}
am = npfctl_get_singlefam(ap->ap_netaddr);
if (am->fam_family != family) {
yyerror("IPv6 NAT is not supported");
}
switch (type) {
case NPF_NATOUT:
/*
* Outbound NAT (or source NAT) policy, usually used for the
* traditional NAPT. If it is a half for bi-directional NAT,
* then no port translation with mapping.
*/
nat = npf_nat_create(NPF_NATOUT, !binat ?
(NPF_NAT_PORTS | NPF_NAT_PORTMAP) : 0,
if_idx, &am->fam_addr, am->fam_family, 0);
break;
case NPF_NATIN:
/*
* Inbound NAT (or destination NAT). Unless bi-NAT, a port
* must be specified, since it has to be redirection.
*/
port = 0;
if (!binat) {
if (!ap->ap_portrange) {
yyerror("inbound port is not specified");
}
port = npfctl_get_singleport(ap->ap_portrange);
}
nat = npf_nat_create(NPF_NATIN, !binat ? NPF_NAT_PORTS : 0,
if_idx, &am->fam_addr, am->fam_family, port);
break;
default:
assert(false);
}
npfctl_build_ncode(nat, family, &op, fopts, false);
npf_nat_insert(npf_conf, nat, NPF_PRI_LAST);
}
/*
* npfctl_build_natseg: validate and create NAT policies.
*/
void
npfctl_build_natseg(int sd, int type, u_int if_idx, const addr_port_t *ap1,
const addr_port_t *ap2, const filt_opts_t *fopts)
{
sa_family_t af = AF_INET;
filt_opts_t imfopts;
bool binat;
if (sd == NPFCTL_NAT_STATIC) {
yyerror("static NAT is not yet supported");
}
assert(sd == NPFCTL_NAT_DYNAMIC);
assert(if_idx != 0);
/*
* Bi-directional NAT is a combination of inbound NAT and outbound
* NAT policies. Note that the translation address is local IP and
* the filter criteria is inverted accordingly.
*/
binat = (NPF_NATIN | NPF_NATOUT) == type;
/*
* If the filter criteria is not specified explicitly, apply implicit
* filtering according to the given network segments.
*
* Note: filled below, depending on the type.
*/
if (__predict_true(!fopts)) {
fopts = &imfopts;
}
if (type & NPF_NATIN) {
memset(&imfopts, 0, sizeof(filt_opts_t));
memcpy(&imfopts.fo_to, ap2, sizeof(addr_port_t));
npfctl_build_nat(NPF_NATIN, if_idx, af, ap1, fopts, binat);
}
if (type & NPF_NATOUT) {
memset(&imfopts, 0, sizeof(filt_opts_t));
memcpy(&imfopts.fo_from, ap1, sizeof(addr_port_t));
npfctl_build_nat(NPF_NATOUT, if_idx, af, ap2, fopts, binat);
}
}
/*
* npfctl_fill_table: fill NPF table with entries from a specified file.
*/
static void
npfctl_fill_table(nl_table_t *tl, u_int type, const char *fname)
{
char *buf = NULL;
int l = 0;
FILE *fp;
size_t n;
fp = fopen(fname, "r");
if (fp == NULL) {
err(EXIT_FAILURE, "open '%s'", fname);
}
while (l++, getline(&buf, &n, fp) != -1) {
fam_addr_mask_t fam;
int alen;
if (*buf == '\n' || *buf == '#') {
continue;
}
if (!npfctl_parse_cidr(buf, &fam, &alen)) {
errx(EXIT_FAILURE,
"%s:%d: invalid table entry", fname, l);
}
if (type == NPF_TABLE_HASH && fam.fam_mask != NPF_NO_NETMASK) {
errx(EXIT_FAILURE,
"%s:%d: mask used with the hash table", fname, l);
}
/* Create and add a table entry. */
npf_table_add_entry(tl, fam.fam_family,
&fam.fam_addr, fam.fam_mask);
}
if (buf != NULL) {
free(buf);
}
}
/*
* npfctl_build_table: create an NPF table, add to the configuration and,
* if required, fill with contents from a file.
*/
void
npfctl_build_table(const char *tid, u_int type, const char *fname)
{
nl_table_t *tl;
u_int id;
id = atoi(tid);
tl = npf_table_create(id, type);
assert(tl != NULL);
if (npf_table_insert(npf_conf, tl)) {
errx(EXIT_FAILURE, "table '%d' is already defined\n", id);
}
if (fname) {
npfctl_fill_table(tl, type, fname);
}
}
/*
* npfctl_build_alg: create an NPF application level gatewayl and add it
* to the configuration.
*/
void
npfctl_build_alg(const char *al_name)
{
if (_npf_alg_load(npf_conf, al_name) != 0) {
errx(EXIT_FAILURE, "ALG '%s' already loaded", al_name);
}
}