/* $NetBSD: npf_build.c,v 1.24 2013/05/19 20:45:34 rmind Exp $ */ /*- * Copyright (c) 2011-2013 The NetBSD Foundation, Inc. * All rights reserved. * * This material is based upon work partially supported by The * NetBSD Foundation under a contract with Mindaugas Rasiukevicius. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * npfctl(8) building of the configuration. */ #include __RCSID("$NetBSD: npf_build.c,v 1.24 2013/05/19 20:45:34 rmind Exp $"); #include #include #include #include #include #include #include #include "npfctl.h" #define MAX_RULE_NESTING 16 static nl_config_t * npf_conf = NULL; static bool npf_debug = false; static nl_rule_t * the_rule = NULL; static nl_rule_t * current_group[MAX_RULE_NESTING]; static unsigned rule_nesting_level = 0; static nl_rule_t * defgroup = NULL; void npfctl_config_init(bool debug) { npf_conf = npf_config_create(); if (npf_conf == NULL) { errx(EXIT_FAILURE, "npf_config_create failed"); } npf_debug = debug; memset(current_group, 0, sizeof(current_group)); } int npfctl_config_send(int fd, const char *out) { int error; if (out) { _npf_config_setsubmit(npf_conf, out); printf("\nSaving to %s\n", out); } if (!defgroup) { errx(EXIT_FAILURE, "default group was not defined"); } npf_rule_insert(npf_conf, NULL, defgroup); error = npf_config_submit(npf_conf, fd); if (error) { nl_error_t ne; _npf_config_error(npf_conf, &ne); npfctl_print_error(&ne); } npf_config_destroy(npf_conf); return error; } nl_config_t * npfctl_config_ref(void) { return npf_conf; } nl_rule_t * npfctl_rule_ref(void) { return the_rule; } unsigned long npfctl_debug_addif(const char *ifname) { char tname[] = "npftest"; const size_t tnamelen = sizeof(tname) - 1; if (!npf_debug || strncmp(ifname, tname, tnamelen) != 0) { return 0; } struct ifaddrs ifa = { .ifa_name = __UNCONST(ifname), .ifa_flags = 0 }; unsigned long if_idx = atol(ifname + tnamelen) + 1; _npf_debug_addif(npf_conf, &ifa, if_idx); return if_idx; } bool npfctl_table_exists_p(const char *id) { return npf_table_exists_p(npf_conf, atoi(id)); } static in_port_t npfctl_get_singleport(const npfvar_t *vp) { port_range_t *pr; in_port_t *port; if (npfvar_get_count(vp) > 1) { yyerror("multiple ports are not valid"); } pr = npfvar_get_data(vp, NPFVAR_PORT_RANGE, 0); if (pr->pr_start != pr->pr_end) { yyerror("port range is not valid"); } port = &pr->pr_start; return *port; } static fam_addr_mask_t * npfctl_get_singlefam(const npfvar_t *vp) { if (npfvar_get_count(vp) > 1) { yyerror("multiple addresses are not valid"); } return npfvar_get_data(vp, NPFVAR_FAM, 0); } static bool npfctl_build_fam(nc_ctx_t *nc, sa_family_t family, fam_addr_mask_t *fam, int opts) { /* * If family is specified, address does not match it and the * address is extracted from the interface, then simply ignore. * Otherwise, address of invalid family was passed manually. */ if (family != AF_UNSPEC && family != fam->fam_family) { if (!fam->fam_ifindex) { yyerror("specified address is not of the required " "family %d", family); } return false; } /* * Optimise 0.0.0.0/0 case to be NOP. Otherwise, address with * zero mask would never match and therefore is not valid. */ if (fam->fam_mask == 0) { npf_addr_t zero; memset(&zero, 0, sizeof(npf_addr_t)); if (memcmp(&fam->fam_addr, &zero, sizeof(npf_addr_t))) { yyerror("filter criterion would never match"); } return false; } switch (fam->fam_family) { case AF_INET: npfctl_gennc_v4cidr(nc, opts, &fam->fam_addr, fam->fam_mask); break; case AF_INET6: npfctl_gennc_v6cidr(nc, opts, &fam->fam_addr, fam->fam_mask); break; default: yyerror("family %d is not supported", fam->fam_family); } return true; } static void npfctl_build_vars(nc_ctx_t *nc, sa_family_t family, npfvar_t *vars, int opts) { const int type = npfvar_get_type(vars, 0); size_t i; npfctl_ncgen_group(nc); for (i = 0; i < npfvar_get_count(vars); i++) { void *data = npfvar_get_data(vars, type, i); assert(data != NULL); switch (type) { case NPFVAR_FAM: { fam_addr_mask_t *fam = data; npfctl_build_fam(nc, family, fam, opts); break; } case NPFVAR_PORT_RANGE: { port_range_t *pr = data; if (opts & NC_MATCH_TCP) { npfctl_gennc_ports(nc, opts & ~NC_MATCH_UDP, pr->pr_start, pr->pr_end); } if (opts & NC_MATCH_UDP) { npfctl_gennc_ports(nc, opts & ~NC_MATCH_TCP, pr->pr_start, pr->pr_end); } break; } case NPFVAR_TABLE: { u_int tid = atoi(data); npfctl_gennc_tbl(nc, opts, tid); break; } default: assert(false); } } npfctl_ncgen_endgroup(nc); } static int npfctl_build_proto(nc_ctx_t *nc, sa_family_t family, const opt_proto_t *op, bool noaddrs, bool noports) { const npfvar_t *popts = op->op_opts; const int proto = op->op_proto; int pflag = 0; switch (proto) { case IPPROTO_TCP: pflag = NC_MATCH_TCP; if (!popts) { break; } assert(npfvar_get_count(popts) == 2); /* Build TCP flags block (optional). */ uint8_t *tf, *tf_mask; tf = npfvar_get_data(popts, NPFVAR_TCPFLAG, 0); tf_mask = npfvar_get_data(popts, NPFVAR_TCPFLAG, 1); npfctl_gennc_tcpfl(nc, *tf, *tf_mask); noports = false; break; case IPPROTO_UDP: pflag = NC_MATCH_UDP; break; case IPPROTO_ICMP: /* * Build ICMP block. */ if (!noports) { goto invop; } assert(npfvar_get_count(popts) == 2); int *icmp_type, *icmp_code; icmp_type = npfvar_get_data(popts, NPFVAR_ICMP, 0); icmp_code = npfvar_get_data(popts, NPFVAR_ICMP, 1); npfctl_gennc_icmp(nc, *icmp_type, *icmp_code); noports = false; break; case IPPROTO_ICMPV6: /* * Build ICMP block. */ if (!noports) { goto invop; } assert(npfvar_get_count(popts) == 2); int *icmp6_type, *icmp6_code; icmp6_type = npfvar_get_data(popts, NPFVAR_ICMP6, 0); icmp6_code = npfvar_get_data(popts, NPFVAR_ICMP6, 1); npfctl_gennc_icmp6(nc, *icmp6_type, *icmp6_code); noports = false; break; case -1: pflag = NC_MATCH_TCP | NC_MATCH_UDP; noports = false; break; default: /* * No filter options are supported for other protocols, * only the IP addresses are allowed. */ if (noports) { break; } invop: yyerror("invalid filter options for protocol %d", proto); } /* * Build the protocol block, unless other blocks will implicitly * perform the family/protocol checks for us. */ if ((family != AF_UNSPEC && noaddrs) || (proto != -1 && noports)) { uint8_t addrlen; switch (family) { case AF_INET: addrlen = sizeof(struct in_addr); break; case AF_INET6: addrlen = sizeof(struct in6_addr); break; default: addrlen = 0; } npfctl_gennc_proto(nc, noaddrs ? addrlen : 0, noports ? proto : 0xff); } return pflag; } static bool npfctl_build_ncode(nl_rule_t *rl, sa_family_t family, const opt_proto_t *op, const filt_opts_t *fopts, bool invert) { const addr_port_t *apfrom = &fopts->fo_from; const addr_port_t *apto = &fopts->fo_to; const int proto = op->op_proto; bool noaddrs, noports; nc_ctx_t *nc; void *code; size_t len; /* * If none specified, no n-code. */ noaddrs = !apfrom->ap_netaddr && !apto->ap_netaddr; noports = !apfrom->ap_portrange && !apto->ap_portrange; if (family == AF_UNSPEC && proto == -1 && !op->op_opts && noaddrs && noports) return false; int srcflag = NC_MATCH_SRC; int dstflag = NC_MATCH_DST; if (invert) { srcflag = NC_MATCH_DST; dstflag = NC_MATCH_SRC; } nc = npfctl_ncgen_create(); /* Build layer 4 protocol blocks. */ int pflag = npfctl_build_proto(nc, family, op, noaddrs, noports); /* Build IP address blocks. */ npfctl_build_vars(nc, family, apfrom->ap_netaddr, srcflag); npfctl_build_vars(nc, family, apto->ap_netaddr, dstflag); /* Build port-range blocks. */ npfctl_build_vars(nc, family, apfrom->ap_portrange, srcflag | pflag); npfctl_build_vars(nc, family, apto->ap_portrange, dstflag | pflag); /* * Complete n-code (destroys the context) and pass to the rule. */ code = npfctl_ncgen_complete(nc, &len); if (npf_debug) { extern char *yytext; extern int yylineno; printf("RULE AT LINE %d\n", yylineno - (int)(*yytext == '\n')); npfctl_ncgen_print(code, len); } assert(code && len > 0); if (npf_rule_setcode(rl, NPF_CODE_NC, code, len) == -1) { errx(EXIT_FAILURE, "npf_rule_setcode failed"); } free(code); return true; } static void npfctl_build_rpcall(nl_rproc_t *rp, const char *name, npfvar_t *args) { npf_extmod_t *extmod; nl_ext_t *extcall; int error; extmod = npf_extmod_get(name, &extcall); if (extmod == NULL) { yyerror("unknown rule procedure '%s'", name); } for (size_t i = 0; i < npfvar_get_count(args); i++) { const char *param, *value; proc_param_t *p; p = npfvar_get_data(args, NPFVAR_PROC_PARAM, i); param = p->pp_param; value = p->pp_value; error = npf_extmod_param(extmod, extcall, param, value); switch (error) { case EINVAL: yyerror("invalid parameter '%s'", param); default: break; } } error = npf_rproc_extcall(rp, extcall); if (error) { yyerror(error == EEXIST ? "duplicate procedure call" : "unexpected error"); } } /* * npfctl_build_rproc: create and insert a rule procedure. */ void npfctl_build_rproc(const char *name, npfvar_t *procs) { nl_rproc_t *rp; size_t i; rp = npf_rproc_create(name); if (rp == NULL) { errx(EXIT_FAILURE, "%s failed", __func__); } npf_rproc_insert(npf_conf, rp); for (i = 0; i < npfvar_get_count(procs); i++) { proc_call_t *pc = npfvar_get_data(procs, NPFVAR_PROC, i); npfctl_build_rpcall(rp, pc->pc_name, pc->pc_opts); } } void npfctl_build_maprset(const char *name, int attr, u_int if_idx) { const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT); nl_rule_t *rl; /* If no direction is not specified, then both. */ if ((attr & attr_di) == 0) { attr |= attr_di; } /* Allow only "in/out" attributes. */ attr = NPF_RULE_GROUP | NPF_RULE_GROUP | (attr & attr_di); rl = npf_rule_create(name, attr, if_idx); npf_nat_insert(npf_conf, rl, NPF_PRI_LAST); } /* * npfctl_build_group: create a group, insert into the global ruleset, * update the current group pointer and increase the nesting level. */ void npfctl_build_group(const char *name, int attr, u_int if_idx, bool def) { const int attr_di = (NPF_RULE_IN | NPF_RULE_OUT); nl_rule_t *rl; if (def || (attr & attr_di) == 0) { attr |= attr_di; } rl = npf_rule_create(name, attr | NPF_RULE_GROUP, if_idx); npf_rule_setprio(rl, NPF_PRI_LAST); if (def) { if (defgroup) { yyerror("multiple default groups are not valid"); } if (rule_nesting_level) { yyerror("default group can only be at the top level"); } defgroup = rl; } else { nl_rule_t *cg = current_group[rule_nesting_level]; npf_rule_insert(npf_conf, cg, rl); } /* Set the current group and increase the nesting level. */ if (rule_nesting_level >= MAX_RULE_NESTING) { yyerror("rule nesting limit reached"); } current_group[++rule_nesting_level] = rl; } void npfctl_build_group_end(void) { assert(rule_nesting_level > 0); current_group[rule_nesting_level--] = NULL; } /* * npfctl_build_rule: create a rule, build n-code from filter options, * if any, and insert into the ruleset of current group, or set the rule. */ void npfctl_build_rule(uint32_t attr, u_int if_idx, sa_family_t family, const opt_proto_t *op, const filt_opts_t *fopts, const char *rproc) { nl_rule_t *rl; attr |= (npf_conf ? 0 : NPF_RULE_DYNAMIC); rl = npf_rule_create(NULL, attr, if_idx); npfctl_build_ncode(rl, family, op, fopts, false); if (rproc) { npf_rule_setproc(rl, rproc); } if (npf_conf) { nl_rule_t *cg = current_group[rule_nesting_level]; if (rproc && !npf_rproc_exists_p(npf_conf, rproc)) { yyerror("rule procedure '%s' is not defined", rproc); } assert(cg != NULL); npf_rule_setprio(rl, NPF_PRI_LAST); npf_rule_insert(npf_conf, cg, rl); } else { /* We have parsed a single rule - set it. */ the_rule = rl; } } /* * npfctl_build_nat: create a single NAT policy of a specified * type with a given filter options. */ static void npfctl_build_nat(int type, u_int if_idx, sa_family_t family, const addr_port_t *ap, const filt_opts_t *fopts, bool binat) { const opt_proto_t op = { .op_proto = -1, .op_opts = NULL }; fam_addr_mask_t *am; in_port_t port; nl_nat_t *nat; if (!ap->ap_netaddr) { yyerror("%s network segment is not specified", type == NPF_NATIN ? "inbound" : "outbound"); } am = npfctl_get_singlefam(ap->ap_netaddr); if (am->fam_family != family) { yyerror("IPv6 NAT is not supported"); } switch (type) { case NPF_NATOUT: /* * Outbound NAT (or source NAT) policy, usually used for the * traditional NAPT. If it is a half for bi-directional NAT, * then no port translation with mapping. */ nat = npf_nat_create(NPF_NATOUT, !binat ? (NPF_NAT_PORTS | NPF_NAT_PORTMAP) : 0, if_idx, &am->fam_addr, am->fam_family, 0); break; case NPF_NATIN: /* * Inbound NAT (or destination NAT). Unless bi-NAT, a port * must be specified, since it has to be redirection. */ port = 0; if (!binat) { if (!ap->ap_portrange) { yyerror("inbound port is not specified"); } port = npfctl_get_singleport(ap->ap_portrange); } nat = npf_nat_create(NPF_NATIN, !binat ? NPF_NAT_PORTS : 0, if_idx, &am->fam_addr, am->fam_family, port); break; default: assert(false); } npfctl_build_ncode(nat, family, &op, fopts, false); npf_nat_insert(npf_conf, nat, NPF_PRI_LAST); } /* * npfctl_build_natseg: validate and create NAT policies. */ void npfctl_build_natseg(int sd, int type, u_int if_idx, const addr_port_t *ap1, const addr_port_t *ap2, const filt_opts_t *fopts) { sa_family_t af = AF_INET; filt_opts_t imfopts; bool binat; if (sd == NPFCTL_NAT_STATIC) { yyerror("static NAT is not yet supported"); } assert(sd == NPFCTL_NAT_DYNAMIC); assert(if_idx != 0); /* * Bi-directional NAT is a combination of inbound NAT and outbound * NAT policies. Note that the translation address is local IP and * the filter criteria is inverted accordingly. */ binat = (NPF_NATIN | NPF_NATOUT) == type; /* * If the filter criteria is not specified explicitly, apply implicit * filtering according to the given network segments. * * Note: filled below, depending on the type. */ if (__predict_true(!fopts)) { fopts = &imfopts; } if (type & NPF_NATIN) { memset(&imfopts, 0, sizeof(filt_opts_t)); memcpy(&imfopts.fo_to, ap2, sizeof(addr_port_t)); npfctl_build_nat(NPF_NATIN, if_idx, af, ap1, fopts, binat); } if (type & NPF_NATOUT) { memset(&imfopts, 0, sizeof(filt_opts_t)); memcpy(&imfopts.fo_from, ap1, sizeof(addr_port_t)); npfctl_build_nat(NPF_NATOUT, if_idx, af, ap2, fopts, binat); } } /* * npfctl_fill_table: fill NPF table with entries from a specified file. */ static void npfctl_fill_table(nl_table_t *tl, u_int type, const char *fname) { char *buf = NULL; int l = 0; FILE *fp; size_t n; fp = fopen(fname, "r"); if (fp == NULL) { err(EXIT_FAILURE, "open '%s'", fname); } while (l++, getline(&buf, &n, fp) != -1) { fam_addr_mask_t fam; int alen; if (*buf == '\n' || *buf == '#') { continue; } if (!npfctl_parse_cidr(buf, &fam, &alen)) { errx(EXIT_FAILURE, "%s:%d: invalid table entry", fname, l); } if (type == NPF_TABLE_HASH && fam.fam_mask != NPF_NO_NETMASK) { errx(EXIT_FAILURE, "%s:%d: mask used with the hash table", fname, l); } /* Create and add a table entry. */ npf_table_add_entry(tl, fam.fam_family, &fam.fam_addr, fam.fam_mask); } if (buf != NULL) { free(buf); } } /* * npfctl_build_table: create an NPF table, add to the configuration and, * if required, fill with contents from a file. */ void npfctl_build_table(const char *tid, u_int type, const char *fname) { nl_table_t *tl; u_int id; id = atoi(tid); tl = npf_table_create(id, type); assert(tl != NULL); if (npf_table_insert(npf_conf, tl)) { errx(EXIT_FAILURE, "table '%d' is already defined\n", id); } if (fname) { npfctl_fill_table(tl, type, fname); } } /* * npfctl_build_alg: create an NPF application level gatewayl and add it * to the configuration. */ void npfctl_build_alg(const char *al_name) { if (_npf_alg_load(npf_conf, al_name) != 0) { errx(EXIT_FAILURE, "ALG '%s' already loaded", al_name); } }