1f459d82b5
for future device_t/softc spilt.
2434 lines
60 KiB
C
2434 lines
60 KiB
C
/* $NetBSD: mly.c,v 1.39 2008/06/08 12:43:52 tsutsui Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2001 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*-
|
|
* Copyright (c) 2000, 2001 Michael Smith
|
|
* Copyright (c) 2000 BSDi
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp
|
|
*/
|
|
|
|
/*
|
|
* Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware.
|
|
*
|
|
* TODO:
|
|
*
|
|
* o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ.
|
|
* o Handle FC and multiple LUNs.
|
|
* o Fix mmbox usage.
|
|
* o Fix transfer speed fudge.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: mly.c,v 1.39 2008/06/08 12:43:52 tsutsui Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/device.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/endian.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/scsiio.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/kauth.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#include <sys/bus.h>
|
|
|
|
#include <dev/scsipi/scsi_all.h>
|
|
#include <dev/scsipi/scsipi_all.h>
|
|
#include <dev/scsipi/scsiconf.h>
|
|
|
|
#include <dev/pci/pcireg.h>
|
|
#include <dev/pci/pcivar.h>
|
|
#include <dev/pci/pcidevs.h>
|
|
|
|
#include <dev/pci/mlyreg.h>
|
|
#include <dev/pci/mlyio.h>
|
|
#include <dev/pci/mlyvar.h>
|
|
#include <dev/pci/mly_tables.h>
|
|
|
|
static void mly_attach(struct device *, struct device *, void *);
|
|
static int mly_match(struct device *, struct cfdata *, void *);
|
|
static const struct mly_ident *mly_find_ident(struct pci_attach_args *);
|
|
static int mly_fwhandshake(struct mly_softc *);
|
|
static int mly_flush(struct mly_softc *);
|
|
static int mly_intr(void *);
|
|
static void mly_shutdown(void *);
|
|
|
|
static int mly_alloc_ccbs(struct mly_softc *);
|
|
static void mly_check_event(struct mly_softc *);
|
|
static void mly_complete_event(struct mly_softc *, struct mly_ccb *);
|
|
static void mly_complete_rescan(struct mly_softc *, struct mly_ccb *);
|
|
static int mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *,
|
|
void **, bus_addr_t *, bus_dma_segment_t *);
|
|
static void mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t,
|
|
void *, bus_dma_segment_t *);
|
|
static int mly_enable_mmbox(struct mly_softc *);
|
|
static void mly_fetch_event(struct mly_softc *);
|
|
static int mly_get_controllerinfo(struct mly_softc *);
|
|
static int mly_get_eventstatus(struct mly_softc *);
|
|
static int mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *,
|
|
void **, size_t, void *, size_t *);
|
|
static void mly_padstr(char *, const char *, int);
|
|
static void mly_process_event(struct mly_softc *, struct mly_event *);
|
|
static void mly_release_ccbs(struct mly_softc *);
|
|
static int mly_scan_btl(struct mly_softc *, int, int);
|
|
static void mly_scan_channel(struct mly_softc *, int);
|
|
static void mly_thread(void *);
|
|
|
|
static int mly_ccb_alloc(struct mly_softc *, struct mly_ccb **);
|
|
static void mly_ccb_complete(struct mly_softc *, struct mly_ccb *);
|
|
static void mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *);
|
|
static void mly_ccb_free(struct mly_softc *, struct mly_ccb *);
|
|
static int mly_ccb_map(struct mly_softc *, struct mly_ccb *);
|
|
static int mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int);
|
|
static int mly_ccb_submit(struct mly_softc *, struct mly_ccb *);
|
|
static void mly_ccb_unmap(struct mly_softc *, struct mly_ccb *);
|
|
static int mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int);
|
|
|
|
static void mly_get_xfer_mode(struct mly_softc *, int,
|
|
struct scsipi_xfer_mode *);
|
|
static void mly_scsipi_complete(struct mly_softc *, struct mly_ccb *);
|
|
static int mly_scsipi_ioctl(struct scsipi_channel *, u_long, void *,
|
|
int, struct proc *);
|
|
static void mly_scsipi_minphys(struct buf *);
|
|
static void mly_scsipi_request(struct scsipi_channel *,
|
|
scsipi_adapter_req_t, void *);
|
|
|
|
static int mly_user_command(struct mly_softc *, struct mly_user_command *);
|
|
static int mly_user_health(struct mly_softc *, struct mly_user_health *);
|
|
|
|
extern struct cfdriver mly_cd;
|
|
|
|
CFATTACH_DECL(mly, sizeof(struct mly_softc),
|
|
mly_match, mly_attach, NULL, NULL);
|
|
|
|
dev_type_open(mlyopen);
|
|
dev_type_close(mlyclose);
|
|
dev_type_ioctl(mlyioctl);
|
|
|
|
const struct cdevsw mly_cdevsw = {
|
|
mlyopen, mlyclose, noread, nowrite, mlyioctl,
|
|
nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
|
|
};
|
|
|
|
static struct mly_ident {
|
|
u_short vendor;
|
|
u_short product;
|
|
u_short subvendor;
|
|
u_short subproduct;
|
|
int hwif;
|
|
const char *desc;
|
|
} const mly_ident[] = {
|
|
{
|
|
PCI_VENDOR_MYLEX,
|
|
PCI_PRODUCT_MYLEX_EXTREMERAID,
|
|
PCI_VENDOR_MYLEX,
|
|
0x0040,
|
|
MLY_HWIF_STRONGARM,
|
|
"eXtremeRAID 2000"
|
|
},
|
|
{
|
|
PCI_VENDOR_MYLEX,
|
|
PCI_PRODUCT_MYLEX_EXTREMERAID,
|
|
PCI_VENDOR_MYLEX,
|
|
0x0030,
|
|
MLY_HWIF_STRONGARM,
|
|
"eXtremeRAID 3000"
|
|
},
|
|
{
|
|
PCI_VENDOR_MYLEX,
|
|
PCI_PRODUCT_MYLEX_ACCELERAID,
|
|
PCI_VENDOR_MYLEX,
|
|
0x0050,
|
|
MLY_HWIF_I960RX,
|
|
"AcceleRAID 352"
|
|
},
|
|
{
|
|
PCI_VENDOR_MYLEX,
|
|
PCI_PRODUCT_MYLEX_ACCELERAID,
|
|
PCI_VENDOR_MYLEX,
|
|
0x0052,
|
|
MLY_HWIF_I960RX,
|
|
"AcceleRAID 170"
|
|
},
|
|
{
|
|
PCI_VENDOR_MYLEX,
|
|
PCI_PRODUCT_MYLEX_ACCELERAID,
|
|
PCI_VENDOR_MYLEX,
|
|
0x0054,
|
|
MLY_HWIF_I960RX,
|
|
"AcceleRAID 160"
|
|
},
|
|
};
|
|
|
|
static void *mly_sdh;
|
|
|
|
/*
|
|
* Try to find a `mly_ident' entry corresponding to this board.
|
|
*/
|
|
static const struct mly_ident *
|
|
mly_find_ident(struct pci_attach_args *pa)
|
|
{
|
|
const struct mly_ident *mpi, *maxmpi;
|
|
pcireg_t reg;
|
|
|
|
mpi = mly_ident;
|
|
maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]);
|
|
|
|
if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O)
|
|
return (NULL);
|
|
|
|
for (; mpi < maxmpi; mpi++) {
|
|
if (PCI_VENDOR(pa->pa_id) != mpi->vendor ||
|
|
PCI_PRODUCT(pa->pa_id) != mpi->product)
|
|
continue;
|
|
|
|
if (mpi->subvendor == 0x0000)
|
|
return (mpi);
|
|
|
|
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
|
|
|
|
if (PCI_VENDOR(reg) == mpi->subvendor &&
|
|
PCI_PRODUCT(reg) == mpi->subproduct)
|
|
return (mpi);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Match a supported board.
|
|
*/
|
|
static int
|
|
mly_match(struct device *parent, struct cfdata *cfdata,
|
|
void *aux)
|
|
{
|
|
|
|
return (mly_find_ident(aux) != NULL);
|
|
}
|
|
|
|
/*
|
|
* Attach a supported board.
|
|
*/
|
|
static void
|
|
mly_attach(struct device *parent, struct device *self, void *aux)
|
|
{
|
|
struct pci_attach_args *pa;
|
|
struct mly_softc *mly;
|
|
struct mly_ioctl_getcontrollerinfo *mi;
|
|
const struct mly_ident *ident;
|
|
pci_chipset_tag_t pc;
|
|
pci_intr_handle_t ih;
|
|
bus_space_handle_t memh, ioh;
|
|
bus_space_tag_t memt, iot;
|
|
pcireg_t reg;
|
|
const char *intrstr;
|
|
int ior, memr, i, rv, state;
|
|
struct scsipi_adapter *adapt;
|
|
struct scsipi_channel *chan;
|
|
|
|
mly = (struct mly_softc *)self;
|
|
pa = aux;
|
|
pc = pa->pa_pc;
|
|
ident = mly_find_ident(pa);
|
|
state = 0;
|
|
|
|
mly->mly_dmat = pa->pa_dmat;
|
|
mly->mly_hwif = ident->hwif;
|
|
|
|
printf(": Mylex %s\n", ident->desc);
|
|
|
|
/*
|
|
* Map the PCI register window.
|
|
*/
|
|
memr = -1;
|
|
ior = -1;
|
|
|
|
for (i = 0x10; i <= 0x14; i += 4) {
|
|
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i);
|
|
|
|
if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) {
|
|
if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0)
|
|
ior = i;
|
|
} else {
|
|
if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0)
|
|
memr = i;
|
|
}
|
|
}
|
|
|
|
if (memr != -1)
|
|
if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0,
|
|
&memt, &memh, NULL, NULL))
|
|
memr = -1;
|
|
if (ior != -1)
|
|
if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0,
|
|
&iot, &ioh, NULL, NULL))
|
|
ior = -1;
|
|
|
|
if (memr != -1) {
|
|
mly->mly_iot = memt;
|
|
mly->mly_ioh = memh;
|
|
} else if (ior != -1) {
|
|
mly->mly_iot = iot;
|
|
mly->mly_ioh = ioh;
|
|
} else {
|
|
aprint_error_dev(self, "can't map i/o or memory space\n");
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Enable the device.
|
|
*/
|
|
reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
|
|
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
|
|
reg | PCI_COMMAND_MASTER_ENABLE);
|
|
|
|
/*
|
|
* Map and establish the interrupt.
|
|
*/
|
|
if (pci_intr_map(pa, &ih)) {
|
|
aprint_error_dev(self, "can't map interrupt\n");
|
|
return;
|
|
}
|
|
intrstr = pci_intr_string(pc, ih);
|
|
mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly);
|
|
if (mly->mly_ih == NULL) {
|
|
aprint_error_dev(self, "can't establish interrupt");
|
|
if (intrstr != NULL)
|
|
printf(" at %s", intrstr);
|
|
printf("\n");
|
|
return;
|
|
}
|
|
|
|
if (intrstr != NULL)
|
|
printf("%s: interrupting at %s\n", device_xname(&mly->mly_dv),
|
|
intrstr);
|
|
|
|
/*
|
|
* Take care of interface-specific tasks.
|
|
*/
|
|
switch (mly->mly_hwif) {
|
|
case MLY_HWIF_I960RX:
|
|
mly->mly_doorbell_true = 0x00;
|
|
mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX;
|
|
mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX;
|
|
mly->mly_idbr = MLY_I960RX_IDBR;
|
|
mly->mly_odbr = MLY_I960RX_ODBR;
|
|
mly->mly_error_status = MLY_I960RX_ERROR_STATUS;
|
|
mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS;
|
|
mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK;
|
|
break;
|
|
|
|
case MLY_HWIF_STRONGARM:
|
|
mly->mly_doorbell_true = 0xff;
|
|
mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX;
|
|
mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX;
|
|
mly->mly_idbr = MLY_STRONGARM_IDBR;
|
|
mly->mly_odbr = MLY_STRONGARM_ODBR;
|
|
mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS;
|
|
mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS;
|
|
mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Allocate and map the scatter/gather lists.
|
|
*/
|
|
rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
|
|
&mly->mly_sg_dmamap, (void **)&mly->mly_sg,
|
|
&mly->mly_sg_busaddr, &mly->mly_sg_seg);
|
|
if (rv) {
|
|
printf("%s: unable to allocate S/G maps\n",
|
|
device_xname(&mly->mly_dv));
|
|
goto bad;
|
|
}
|
|
state++;
|
|
|
|
/*
|
|
* Allocate and map the memory mailbox.
|
|
*/
|
|
rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox),
|
|
&mly->mly_mmbox_dmamap, (void **)&mly->mly_mmbox,
|
|
&mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg);
|
|
if (rv) {
|
|
aprint_error_dev(&mly->mly_dv, "unable to allocate mailboxes\n");
|
|
goto bad;
|
|
}
|
|
state++;
|
|
|
|
/*
|
|
* Initialise per-controller queues.
|
|
*/
|
|
SLIST_INIT(&mly->mly_ccb_free);
|
|
SIMPLEQ_INIT(&mly->mly_ccb_queue);
|
|
|
|
/*
|
|
* Disable interrupts before we start talking to the controller.
|
|
*/
|
|
mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE);
|
|
|
|
/*
|
|
* Wait for the controller to come ready, handshaking with the
|
|
* firmware if required. This is typically only necessary on
|
|
* platforms where the controller BIOS does not run.
|
|
*/
|
|
if (mly_fwhandshake(mly)) {
|
|
aprint_error_dev(&mly->mly_dv, "unable to bring controller online\n");
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Allocate initial command buffers, obtain controller feature
|
|
* information, and then reallocate command buffers, since we'll
|
|
* know how many we want.
|
|
*/
|
|
if (mly_alloc_ccbs(mly)) {
|
|
aprint_error_dev(&mly->mly_dv, "unable to allocate CCBs\n");
|
|
goto bad;
|
|
}
|
|
state++;
|
|
if (mly_get_controllerinfo(mly)) {
|
|
aprint_error_dev(&mly->mly_dv, "unable to retrieve controller info\n");
|
|
goto bad;
|
|
}
|
|
mly_release_ccbs(mly);
|
|
if (mly_alloc_ccbs(mly)) {
|
|
aprint_error_dev(&mly->mly_dv, "unable to allocate CCBs\n");
|
|
state--;
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Get the current event counter for health purposes, populate the
|
|
* initial health status buffer.
|
|
*/
|
|
if (mly_get_eventstatus(mly)) {
|
|
aprint_error_dev(&mly->mly_dv, "unable to retrieve event status\n");
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Enable memory-mailbox mode.
|
|
*/
|
|
if (mly_enable_mmbox(mly)) {
|
|
aprint_error_dev(&mly->mly_dv, "unable to enable memory mailbox\n");
|
|
goto bad;
|
|
}
|
|
|
|
/*
|
|
* Print a little information about the controller.
|
|
*/
|
|
mi = mly->mly_controllerinfo;
|
|
|
|
printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d "
|
|
"(%02d%02d%02d%02d), %dMB RAM\n", device_xname(&mly->mly_dv),
|
|
mi->physical_channels_present,
|
|
(mi->physical_channels_present) > 1 ? "s" : "",
|
|
mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build,
|
|
mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day,
|
|
le16toh(mi->memory_size));
|
|
|
|
/*
|
|
* Register our `shutdownhook'.
|
|
*/
|
|
if (mly_sdh == NULL)
|
|
shutdownhook_establish(mly_shutdown, NULL);
|
|
|
|
/*
|
|
* Clear any previous BTL information. For each bus that scsipi
|
|
* wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve
|
|
* all BTL info at that point.
|
|
*/
|
|
memset(&mly->mly_btl, 0, sizeof(mly->mly_btl));
|
|
|
|
mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present +
|
|
mly->mly_controllerinfo->virtual_channels_present;
|
|
|
|
/*
|
|
* Attach to scsipi.
|
|
*/
|
|
adapt = &mly->mly_adapt;
|
|
memset(adapt, 0, sizeof(*adapt));
|
|
adapt->adapt_dev = &mly->mly_dv;
|
|
adapt->adapt_nchannels = mly->mly_nchans;
|
|
adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV;
|
|
adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV;
|
|
adapt->adapt_request = mly_scsipi_request;
|
|
adapt->adapt_minphys = mly_scsipi_minphys;
|
|
adapt->adapt_ioctl = mly_scsipi_ioctl;
|
|
|
|
for (i = 0; i < mly->mly_nchans; i++) {
|
|
chan = &mly->mly_chans[i];
|
|
memset(chan, 0, sizeof(*chan));
|
|
chan->chan_adapter = adapt;
|
|
chan->chan_bustype = &scsi_bustype;
|
|
chan->chan_channel = i;
|
|
chan->chan_ntargets = MLY_MAX_TARGETS;
|
|
chan->chan_nluns = MLY_MAX_LUNS;
|
|
chan->chan_id = mly->mly_controllerparam->initiator_id;
|
|
chan->chan_flags = SCSIPI_CHAN_NOSETTLE;
|
|
config_found(&mly->mly_dv, chan, scsiprint);
|
|
}
|
|
|
|
/*
|
|
* Now enable interrupts...
|
|
*/
|
|
mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE);
|
|
|
|
/*
|
|
* Finally, create our monitoring thread.
|
|
*/
|
|
mly->mly_state |= MLY_STATE_INITOK;
|
|
rv = kthread_create(PRI_NONE, 0, NULL, mly_thread, mly,
|
|
&mly->mly_thread, "%s", device_xname(&mly->mly_dv));
|
|
if (rv != 0)
|
|
aprint_error_dev(&mly->mly_dv, "unable to create thread (%d)\n",
|
|
rv);
|
|
return;
|
|
|
|
bad:
|
|
if (state > 2)
|
|
mly_release_ccbs(mly);
|
|
if (state > 1)
|
|
mly_dmamem_free(mly, sizeof(struct mly_mmbox),
|
|
mly->mly_mmbox_dmamap, (void *)mly->mly_mmbox,
|
|
&mly->mly_mmbox_seg);
|
|
if (state > 0)
|
|
mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS,
|
|
mly->mly_sg_dmamap, (void *)mly->mly_sg,
|
|
&mly->mly_sg_seg);
|
|
}
|
|
|
|
/*
|
|
* Scan all possible devices on the specified channel.
|
|
*/
|
|
static void
|
|
mly_scan_channel(struct mly_softc *mly, int bus)
|
|
{
|
|
int s, target;
|
|
|
|
for (target = 0; target < MLY_MAX_TARGETS; target++) {
|
|
s = splbio();
|
|
if (!mly_scan_btl(mly, bus, target)) {
|
|
tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan",
|
|
0);
|
|
}
|
|
splx(s);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Shut down all configured `mly' devices.
|
|
*/
|
|
static void
|
|
mly_shutdown(void *cookie)
|
|
{
|
|
struct mly_softc *mly;
|
|
int i;
|
|
|
|
for (i = 0; i < mly_cd.cd_ndevs; i++) {
|
|
if ((mly = device_lookup_private(&mly_cd, i)) == NULL)
|
|
continue;
|
|
|
|
if (mly_flush(mly))
|
|
aprint_error_dev(&mly->mly_dv, "unable to flush cache\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill in the mly_controllerinfo and mly_controllerparam fields in the
|
|
* softc.
|
|
*/
|
|
static int
|
|
mly_get_controllerinfo(struct mly_softc *mly)
|
|
{
|
|
struct mly_cmd_ioctl mci;
|
|
int rv;
|
|
|
|
/*
|
|
* Build the getcontrollerinfo ioctl and send it.
|
|
*/
|
|
memset(&mci, 0, sizeof(mci));
|
|
mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO;
|
|
rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo,
|
|
sizeof(*mly->mly_controllerinfo), NULL, NULL);
|
|
if (rv != 0)
|
|
return (rv);
|
|
|
|
/*
|
|
* Build the getcontrollerparameter ioctl and send it.
|
|
*/
|
|
memset(&mci, 0, sizeof(mci));
|
|
mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER;
|
|
rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam,
|
|
sizeof(*mly->mly_controllerparam), NULL, NULL);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Rescan a device, possibly as a consequence of getting an event which
|
|
* suggests that it may have changed. Must be called with interrupts
|
|
* blocked.
|
|
*/
|
|
static int
|
|
mly_scan_btl(struct mly_softc *mly, int bus, int target)
|
|
{
|
|
struct mly_ccb *mc;
|
|
struct mly_cmd_ioctl *mci;
|
|
int rv;
|
|
|
|
if (target == mly->mly_controllerparam->initiator_id) {
|
|
mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED;
|
|
return (EIO);
|
|
}
|
|
|
|
/* Don't re-scan if a scan is already in progress. */
|
|
if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0)
|
|
return (EBUSY);
|
|
|
|
/* Get a command. */
|
|
if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
|
|
return (rv);
|
|
|
|
/* Set up the data buffer. */
|
|
mc->mc_data = malloc(sizeof(union mly_devinfo),
|
|
M_DEVBUF, M_NOWAIT|M_ZERO);
|
|
|
|
mc->mc_flags |= MLY_CCB_DATAIN;
|
|
mc->mc_complete = mly_complete_rescan;
|
|
|
|
/*
|
|
* Build the ioctl.
|
|
*/
|
|
mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
|
|
mci->opcode = MDACMD_IOCTL;
|
|
mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
|
|
memset(&mci->param, 0, sizeof(mci->param));
|
|
|
|
if (MLY_BUS_IS_VIRTUAL(mly, bus)) {
|
|
mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid);
|
|
mci->data_size = htole32(mc->mc_length);
|
|
mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID;
|
|
_lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)),
|
|
mci->addr);
|
|
} else {
|
|
mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid);
|
|
mci->data_size = htole32(mc->mc_length);
|
|
mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID;
|
|
_lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr);
|
|
}
|
|
|
|
/*
|
|
* Dispatch the command.
|
|
*/
|
|
if ((rv = mly_ccb_map(mly, mc)) != 0) {
|
|
free(mc->mc_data, M_DEVBUF);
|
|
mly_ccb_free(mly, mc);
|
|
return(rv);
|
|
}
|
|
|
|
mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING;
|
|
mly_ccb_enqueue(mly, mc);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle the completion of a rescan operation.
|
|
*/
|
|
static void
|
|
mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc)
|
|
{
|
|
struct mly_ioctl_getlogdevinfovalid *ldi;
|
|
struct mly_ioctl_getphysdevinfovalid *pdi;
|
|
struct mly_cmd_ioctl *mci;
|
|
struct mly_btl btl, *btlp;
|
|
struct scsipi_xfer_mode xm;
|
|
int bus, target, rescan;
|
|
u_int tmp;
|
|
|
|
mly_ccb_unmap(mly, mc);
|
|
|
|
/*
|
|
* Recover the bus and target from the command. We need these even
|
|
* in the case where we don't have a useful response.
|
|
*/
|
|
mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
|
|
tmp = _3ltol(mci->addr);
|
|
rescan = 0;
|
|
|
|
if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) {
|
|
bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp));
|
|
target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp));
|
|
} else {
|
|
bus = MLY_PHYADDR_CHANNEL(tmp);
|
|
target = MLY_PHYADDR_TARGET(tmp);
|
|
}
|
|
|
|
btlp = &mly->mly_btl[bus][target];
|
|
|
|
/* The default result is 'no device'. */
|
|
memset(&btl, 0, sizeof(btl));
|
|
btl.mb_flags = MLY_BTL_PROTECTED;
|
|
|
|
/* If the rescan completed OK, we have possibly-new BTL data. */
|
|
if (mc->mc_status != 0)
|
|
goto out;
|
|
|
|
if (mc->mc_length == sizeof(*ldi)) {
|
|
ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data;
|
|
tmp = le32toh(ldi->logical_device_number);
|
|
|
|
if (MLY_LOGDEV_BUS(mly, tmp) != bus ||
|
|
MLY_LOGDEV_TARGET(mly, tmp) != target) {
|
|
#ifdef MLYDEBUG
|
|
printf("%s: WARNING: BTL rescan (logical) for %d:%d "
|
|
"returned data for %d:%d instead\n",
|
|
device_xname(&mly->mly_dv), bus, target,
|
|
MLY_LOGDEV_BUS(mly, tmp),
|
|
MLY_LOGDEV_TARGET(mly, tmp));
|
|
#endif
|
|
goto out;
|
|
}
|
|
|
|
btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING;
|
|
btl.mb_type = ldi->raid_level;
|
|
btl.mb_state = ldi->state;
|
|
} else if (mc->mc_length == sizeof(*pdi)) {
|
|
pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data;
|
|
|
|
if (pdi->channel != bus || pdi->target != target) {
|
|
#ifdef MLYDEBUG
|
|
printf("%s: WARNING: BTL rescan (physical) for %d:%d "
|
|
" returned data for %d:%d instead\n",
|
|
device_xname(&mly->mly_dv),
|
|
bus, target, pdi->channel, pdi->target);
|
|
#endif
|
|
goto out;
|
|
}
|
|
|
|
btl.mb_flags = MLY_BTL_PHYSICAL;
|
|
btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL;
|
|
btl.mb_state = pdi->state;
|
|
btl.mb_speed = pdi->speed;
|
|
btl.mb_width = pdi->width;
|
|
|
|
if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED)
|
|
btl.mb_flags |= MLY_BTL_PROTECTED;
|
|
if (pdi->command_tags != 0)
|
|
btl.mb_flags |= MLY_BTL_TQING;
|
|
} else {
|
|
printf("%s: BTL rescan result invalid\n", device_xname(&mly->mly_dv));
|
|
goto out;
|
|
}
|
|
|
|
/* Decide whether we need to rescan the device. */
|
|
if (btl.mb_flags != btlp->mb_flags ||
|
|
btl.mb_speed != btlp->mb_speed ||
|
|
btl.mb_width != btlp->mb_width)
|
|
rescan = 1;
|
|
|
|
out:
|
|
*btlp = btl;
|
|
|
|
if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) {
|
|
xm.xm_target = target;
|
|
mly_get_xfer_mode(mly, bus, &xm);
|
|
/* XXX SCSI mid-layer rescan goes here. */
|
|
}
|
|
|
|
/* Wake anybody waiting on the device to be rescanned. */
|
|
wakeup(btlp);
|
|
|
|
free(mc->mc_data, M_DEVBUF);
|
|
mly_ccb_free(mly, mc);
|
|
}
|
|
|
|
/*
|
|
* Get the current health status and set the 'next event' counter to suit.
|
|
*/
|
|
static int
|
|
mly_get_eventstatus(struct mly_softc *mly)
|
|
{
|
|
struct mly_cmd_ioctl mci;
|
|
struct mly_health_status *mh;
|
|
int rv;
|
|
|
|
/* Build the gethealthstatus ioctl and send it. */
|
|
memset(&mci, 0, sizeof(mci));
|
|
mh = NULL;
|
|
mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS;
|
|
|
|
rv = mly_ioctl(mly, &mci, (void *)&mh, sizeof(*mh), NULL, NULL);
|
|
if (rv)
|
|
return (rv);
|
|
|
|
/* Get the event counter. */
|
|
mly->mly_event_change = le32toh(mh->change_counter);
|
|
mly->mly_event_waiting = le32toh(mh->next_event);
|
|
mly->mly_event_counter = le32toh(mh->next_event);
|
|
|
|
/* Save the health status into the memory mailbox */
|
|
memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh));
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
|
|
offsetof(struct mly_mmbox, mmm_health),
|
|
sizeof(mly->mly_mmbox->mmm_health),
|
|
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
|
|
|
|
free(mh, M_DEVBUF);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Enable memory mailbox mode.
|
|
*/
|
|
static int
|
|
mly_enable_mmbox(struct mly_softc *mly)
|
|
{
|
|
struct mly_cmd_ioctl mci;
|
|
u_int8_t *sp;
|
|
u_int64_t tmp;
|
|
int rv;
|
|
|
|
/* Build the ioctl and send it. */
|
|
memset(&mci, 0, sizeof(mci));
|
|
mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX;
|
|
|
|
/* Set buffer addresses. */
|
|
tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command);
|
|
mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp);
|
|
|
|
tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status);
|
|
mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp);
|
|
|
|
tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health);
|
|
mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp);
|
|
|
|
/* Set buffer sizes - abuse of data_size field is revolting. */
|
|
sp = (u_int8_t *)&mci.data_size;
|
|
sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10;
|
|
sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10;
|
|
mci.param.setmemorymailbox.health_buffer_size =
|
|
sizeof(union mly_health_region) >> 10;
|
|
|
|
rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL);
|
|
if (rv)
|
|
return (rv);
|
|
|
|
mly->mly_state |= MLY_STATE_MMBOX_ACTIVE;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Flush all pending I/O from the controller.
|
|
*/
|
|
static int
|
|
mly_flush(struct mly_softc *mly)
|
|
{
|
|
struct mly_cmd_ioctl mci;
|
|
|
|
/* Build the ioctl */
|
|
memset(&mci, 0, sizeof(mci));
|
|
mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA;
|
|
mci.param.deviceoperation.operation_device =
|
|
MLY_OPDEVICE_PHYSICAL_CONTROLLER;
|
|
|
|
/* Pass it off to the controller */
|
|
return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL));
|
|
}
|
|
|
|
/*
|
|
* Perform an ioctl command.
|
|
*
|
|
* If (data) is not NULL, the command requires data transfer to the
|
|
* controller. If (*data) is NULL the command requires data transfer from
|
|
* the controller, and we will allocate a buffer for it.
|
|
*/
|
|
static int
|
|
mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data,
|
|
size_t datasize, void *sense_buffer,
|
|
size_t *sense_length)
|
|
{
|
|
struct mly_ccb *mc;
|
|
struct mly_cmd_ioctl *mci;
|
|
u_int8_t status;
|
|
int rv;
|
|
|
|
mc = NULL;
|
|
if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
|
|
goto bad;
|
|
|
|
/*
|
|
* Copy the ioctl structure, but save some important fields and then
|
|
* fixup.
|
|
*/
|
|
mci = &mc->mc_packet->ioctl;
|
|
ioctl->sense_buffer_address = htole64(mci->sense_buffer_address);
|
|
ioctl->maximum_sense_size = mci->maximum_sense_size;
|
|
*mci = *ioctl;
|
|
mci->opcode = MDACMD_IOCTL;
|
|
mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
|
|
|
|
/* Handle the data buffer. */
|
|
if (data != NULL) {
|
|
if (*data == NULL) {
|
|
/* Allocate data buffer */
|
|
mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT);
|
|
mc->mc_flags |= MLY_CCB_DATAIN;
|
|
} else {
|
|
mc->mc_data = *data;
|
|
mc->mc_flags |= MLY_CCB_DATAOUT;
|
|
}
|
|
mc->mc_length = datasize;
|
|
mc->mc_packet->generic.data_size = htole32(datasize);
|
|
}
|
|
|
|
/* Run the command. */
|
|
if (datasize > 0)
|
|
if ((rv = mly_ccb_map(mly, mc)) != 0)
|
|
goto bad;
|
|
rv = mly_ccb_poll(mly, mc, 30000);
|
|
if (datasize > 0)
|
|
mly_ccb_unmap(mly, mc);
|
|
if (rv != 0)
|
|
goto bad;
|
|
|
|
/* Clean up and return any data. */
|
|
status = mc->mc_status;
|
|
|
|
if (status != 0)
|
|
printf("mly_ioctl: command status %d\n", status);
|
|
|
|
if (mc->mc_sense > 0 && sense_buffer != NULL) {
|
|
memcpy(sense_buffer, mc->mc_packet, mc->mc_sense);
|
|
*sense_length = mc->mc_sense;
|
|
goto bad;
|
|
}
|
|
|
|
/* Should we return a data pointer? */
|
|
if (data != NULL && *data == NULL)
|
|
*data = mc->mc_data;
|
|
|
|
/* Command completed OK. */
|
|
rv = (status != 0 ? EIO : 0);
|
|
|
|
bad:
|
|
if (mc != NULL) {
|
|
/* Do we need to free a data buffer we allocated? */
|
|
if (rv != 0 && mc->mc_data != NULL &&
|
|
(data == NULL || *data == NULL))
|
|
free(mc->mc_data, M_DEVBUF);
|
|
mly_ccb_free(mly, mc);
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Check for event(s) outstanding in the controller.
|
|
*/
|
|
static void
|
|
mly_check_event(struct mly_softc *mly)
|
|
{
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
|
|
offsetof(struct mly_mmbox, mmm_health),
|
|
sizeof(mly->mly_mmbox->mmm_health),
|
|
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
|
|
|
|
/*
|
|
* The controller may have updated the health status information, so
|
|
* check for it here. Note that the counters are all in host
|
|
* memory, so this check is very cheap. Also note that we depend on
|
|
* checking on completion
|
|
*/
|
|
if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) !=
|
|
mly->mly_event_change) {
|
|
mly->mly_event_change =
|
|
le32toh(mly->mly_mmbox->mmm_health.status.change_counter);
|
|
mly->mly_event_waiting =
|
|
le32toh(mly->mly_mmbox->mmm_health.status.next_event);
|
|
|
|
/* Wake up anyone that might be interested in this. */
|
|
wakeup(&mly->mly_event_change);
|
|
}
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
|
|
offsetof(struct mly_mmbox, mmm_health),
|
|
sizeof(mly->mly_mmbox->mmm_health),
|
|
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
|
|
|
|
if (mly->mly_event_counter != mly->mly_event_waiting)
|
|
mly_fetch_event(mly);
|
|
}
|
|
|
|
/*
|
|
* Fetch one event from the controller. If we fail due to resource
|
|
* starvation, we'll be retried the next time a command completes.
|
|
*/
|
|
static void
|
|
mly_fetch_event(struct mly_softc *mly)
|
|
{
|
|
struct mly_ccb *mc;
|
|
struct mly_cmd_ioctl *mci;
|
|
int s;
|
|
u_int32_t event;
|
|
|
|
/* Get a command. */
|
|
if (mly_ccb_alloc(mly, &mc))
|
|
return;
|
|
|
|
/* Set up the data buffer. */
|
|
mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF,
|
|
M_NOWAIT|M_ZERO);
|
|
|
|
mc->mc_length = sizeof(struct mly_event);
|
|
mc->mc_flags |= MLY_CCB_DATAIN;
|
|
mc->mc_complete = mly_complete_event;
|
|
|
|
/*
|
|
* Get an event number to fetch. It's possible that we've raced
|
|
* with another context for the last event, in which case there will
|
|
* be no more events.
|
|
*/
|
|
s = splbio();
|
|
if (mly->mly_event_counter == mly->mly_event_waiting) {
|
|
splx(s);
|
|
free(mc->mc_data, M_DEVBUF);
|
|
mly_ccb_free(mly, mc);
|
|
return;
|
|
}
|
|
event = mly->mly_event_counter++;
|
|
splx(s);
|
|
|
|
/*
|
|
* Build the ioctl.
|
|
*
|
|
* At this point we are committed to sending this request, as it
|
|
* will be the only one constructed for this particular event
|
|
* number.
|
|
*/
|
|
mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl;
|
|
mci->opcode = MDACMD_IOCTL;
|
|
mci->data_size = htole32(sizeof(struct mly_event));
|
|
_lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff),
|
|
mci->addr);
|
|
mci->timeout = 30 | MLY_TIMEOUT_SECONDS;
|
|
mci->sub_ioctl = MDACIOCTL_GETEVENT;
|
|
mci->param.getevent.sequence_number_low = htole16(event & 0xffff);
|
|
|
|
/*
|
|
* Submit the command.
|
|
*/
|
|
if (mly_ccb_map(mly, mc) != 0)
|
|
goto bad;
|
|
mly_ccb_enqueue(mly, mc);
|
|
return;
|
|
|
|
bad:
|
|
printf("%s: couldn't fetch event %u\n", device_xname(&mly->mly_dv), event);
|
|
free(mc->mc_data, M_DEVBUF);
|
|
mly_ccb_free(mly, mc);
|
|
}
|
|
|
|
/*
|
|
* Handle the completion of an event poll.
|
|
*/
|
|
static void
|
|
mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc)
|
|
{
|
|
struct mly_event *me;
|
|
|
|
me = (struct mly_event *)mc->mc_data;
|
|
mly_ccb_unmap(mly, mc);
|
|
mly_ccb_free(mly, mc);
|
|
|
|
/* If the event was successfully fetched, process it. */
|
|
if (mc->mc_status == SCSI_OK)
|
|
mly_process_event(mly, me);
|
|
else
|
|
aprint_error_dev(&mly->mly_dv, "unable to fetch event; status = 0x%x\n",
|
|
mc->mc_status);
|
|
|
|
free(me, M_DEVBUF);
|
|
|
|
/* Check for another event. */
|
|
mly_check_event(mly);
|
|
}
|
|
|
|
/*
|
|
* Process a controller event. Called with interrupts blocked (i.e., at
|
|
* interrupt time).
|
|
*/
|
|
static void
|
|
mly_process_event(struct mly_softc *mly, struct mly_event *me)
|
|
{
|
|
struct scsi_sense_data *ssd;
|
|
int bus, target, event, class, action;
|
|
const char *fp, *tp;
|
|
|
|
ssd = (struct scsi_sense_data *)&me->sense[0];
|
|
|
|
/*
|
|
* Errors can be reported using vendor-unique sense data. In this
|
|
* case, the event code will be 0x1c (Request sense data present),
|
|
* the sense key will be 0x09 (vendor specific), the MSB of the ASC
|
|
* will be set, and the actual event code will be a 16-bit value
|
|
* comprised of the ASCQ (low byte) and low seven bits of the ASC
|
|
* (low seven bits of the high byte).
|
|
*/
|
|
if (le32toh(me->code) == 0x1c &&
|
|
SSD_SENSE_KEY(ssd->flags) == SKEY_VENDOR_SPECIFIC &&
|
|
(ssd->asc & 0x80) != 0) {
|
|
event = ((int)(ssd->asc & ~0x80) << 8) +
|
|
ssd->ascq;
|
|
} else
|
|
event = le32toh(me->code);
|
|
|
|
/* Look up event, get codes. */
|
|
fp = mly_describe_code(mly_table_event, event);
|
|
|
|
/* Quiet event? */
|
|
class = fp[0];
|
|
#ifdef notyet
|
|
if (isupper(class) && bootverbose)
|
|
class = tolower(class);
|
|
#endif
|
|
|
|
/* Get action code, text string. */
|
|
action = fp[1];
|
|
tp = fp + 3;
|
|
|
|
/*
|
|
* Print some information about the event.
|
|
*
|
|
* This code uses a table derived from the corresponding portion of
|
|
* the Linux driver, and thus the parser is very similar.
|
|
*/
|
|
switch (class) {
|
|
case 'p':
|
|
/*
|
|
* Error on physical drive.
|
|
*/
|
|
printf("%s: physical device %d:%d %s\n", device_xname(&mly->mly_dv),
|
|
me->channel, me->target, tp);
|
|
if (action == 'r')
|
|
mly->mly_btl[me->channel][me->target].mb_flags |=
|
|
MLY_BTL_RESCAN;
|
|
break;
|
|
|
|
case 'l':
|
|
case 'm':
|
|
/*
|
|
* Error on logical unit, or message about logical unit.
|
|
*/
|
|
bus = MLY_LOGDEV_BUS(mly, me->lun);
|
|
target = MLY_LOGDEV_TARGET(mly, me->lun);
|
|
printf("%s: logical device %d:%d %s\n", device_xname(&mly->mly_dv),
|
|
bus, target, tp);
|
|
if (action == 'r')
|
|
mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN;
|
|
break;
|
|
|
|
case 's':
|
|
/*
|
|
* Report of sense data.
|
|
*/
|
|
if ((SSD_SENSE_KEY(ssd->flags) == SKEY_NO_SENSE ||
|
|
SSD_SENSE_KEY(ssd->flags) == SKEY_NOT_READY) &&
|
|
ssd->asc == 0x04 &&
|
|
(ssd->ascq == 0x01 ||
|
|
ssd->ascq == 0x02)) {
|
|
/* Ignore NO_SENSE or NOT_READY in one case */
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* XXX Should translate this if SCSIVERBOSE.
|
|
*/
|
|
printf("%s: physical device %d:%d %s\n", device_xname(&mly->mly_dv),
|
|
me->channel, me->target, tp);
|
|
printf("%s: sense key %d asc %02x ascq %02x\n",
|
|
device_xname(&mly->mly_dv), SSD_SENSE_KEY(ssd->flags),
|
|
ssd->asc, ssd->ascq);
|
|
printf("%s: info %x%x%x%x csi %x%x%x%x\n",
|
|
device_xname(&mly->mly_dv), ssd->info[0], ssd->info[1],
|
|
ssd->info[2], ssd->info[3], ssd->csi[0],
|
|
ssd->csi[1], ssd->csi[2],
|
|
ssd->csi[3]);
|
|
if (action == 'r')
|
|
mly->mly_btl[me->channel][me->target].mb_flags |=
|
|
MLY_BTL_RESCAN;
|
|
break;
|
|
|
|
case 'e':
|
|
printf("%s: ", device_xname(&mly->mly_dv));
|
|
printf(tp, me->target, me->lun);
|
|
break;
|
|
|
|
case 'c':
|
|
printf("%s: controller %s\n", device_xname(&mly->mly_dv), tp);
|
|
break;
|
|
|
|
case '?':
|
|
printf("%s: %s - %d\n", device_xname(&mly->mly_dv), tp, event);
|
|
break;
|
|
|
|
default:
|
|
/* Probably a 'noisy' event being ignored. */
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Perform periodic activities.
|
|
*/
|
|
static void
|
|
mly_thread(void *cookie)
|
|
{
|
|
struct mly_softc *mly;
|
|
struct mly_btl *btl;
|
|
int s, bus, target, done;
|
|
|
|
mly = (struct mly_softc *)cookie;
|
|
|
|
for (;;) {
|
|
/* Check for new events. */
|
|
mly_check_event(mly);
|
|
|
|
/* Re-scan up to 1 device. */
|
|
s = splbio();
|
|
done = 0;
|
|
for (bus = 0; bus < mly->mly_nchans && !done; bus++) {
|
|
for (target = 0; target < MLY_MAX_TARGETS; target++) {
|
|
/* Perform device rescan? */
|
|
btl = &mly->mly_btl[bus][target];
|
|
if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) {
|
|
btl->mb_flags ^= MLY_BTL_RESCAN;
|
|
mly_scan_btl(mly, bus, target);
|
|
done = 1;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
splx(s);
|
|
|
|
/* Sleep for N seconds. */
|
|
tsleep(mly_thread, PWAIT, "mlyzzz",
|
|
hz * MLY_PERIODIC_INTERVAL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Submit a command to the controller and poll on completion. Return
|
|
* non-zero on timeout.
|
|
*/
|
|
static int
|
|
mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo)
|
|
{
|
|
int rv;
|
|
|
|
if ((rv = mly_ccb_submit(mly, mc)) != 0)
|
|
return (rv);
|
|
|
|
for (timo *= 10; timo != 0; timo--) {
|
|
if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0)
|
|
break;
|
|
mly_intr(mly);
|
|
DELAY(100);
|
|
}
|
|
|
|
return (timo == 0);
|
|
}
|
|
|
|
/*
|
|
* Submit a command to the controller and sleep on completion. Return
|
|
* non-zero on timeout.
|
|
*/
|
|
static int
|
|
mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo)
|
|
{
|
|
int rv, s;
|
|
|
|
mly_ccb_enqueue(mly, mc);
|
|
|
|
s = splbio();
|
|
if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) {
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000);
|
|
splx(s);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* If a CCB is specified, enqueue it. Pull CCBs off the software queue in
|
|
* the order that they were enqueued and try to submit their command blocks
|
|
* to the controller for execution.
|
|
*/
|
|
void
|
|
mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc)
|
|
{
|
|
int s;
|
|
|
|
s = splbio();
|
|
|
|
if (mc != NULL)
|
|
SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq);
|
|
|
|
while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) {
|
|
if (mly_ccb_submit(mly, mc))
|
|
break;
|
|
SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc_link.simpleq);
|
|
}
|
|
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Deliver a command to the controller.
|
|
*/
|
|
static int
|
|
mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc)
|
|
{
|
|
union mly_cmd_packet *pkt;
|
|
int s, off;
|
|
|
|
mc->mc_packet->generic.command_id = htole16(mc->mc_slot);
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
|
|
mc->mc_packetphys - mly->mly_pkt_busaddr,
|
|
sizeof(union mly_cmd_packet),
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
|
|
s = splbio();
|
|
|
|
/*
|
|
* Do we have to use the hardware mailbox?
|
|
*/
|
|
if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) {
|
|
/*
|
|
* Check to see if the controller is ready for us.
|
|
*/
|
|
if (mly_idbr_true(mly, MLY_HM_CMDSENT)) {
|
|
splx(s);
|
|
return (EBUSY);
|
|
}
|
|
|
|
/*
|
|
* It's ready, send the command.
|
|
*/
|
|
mly_outl(mly, mly->mly_cmd_mailbox,
|
|
(u_int64_t)mc->mc_packetphys & 0xffffffff);
|
|
mly_outl(mly, mly->mly_cmd_mailbox + 4,
|
|
(u_int64_t)mc->mc_packetphys >> 32);
|
|
mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT);
|
|
} else {
|
|
pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx];
|
|
off = (char *)pkt - (char *)mly->mly_mmbox;
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
|
|
off, sizeof(mly->mly_mmbox->mmm_command[0]),
|
|
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
|
|
|
|
/* Check to see if the next index is free yet. */
|
|
if (pkt->mmbox.flag != 0) {
|
|
splx(s);
|
|
return (EBUSY);
|
|
}
|
|
|
|
/* Copy in new command */
|
|
memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data,
|
|
sizeof(pkt->mmbox.data));
|
|
|
|
/* Copy flag last. */
|
|
pkt->mmbox.flag = mc->mc_packet->mmbox.flag;
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
|
|
off, sizeof(mly->mly_mmbox->mmm_command[0]),
|
|
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
|
|
|
|
/* Signal controller and update index. */
|
|
mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT);
|
|
mly->mly_mmbox_cmd_idx =
|
|
(mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS;
|
|
}
|
|
|
|
splx(s);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Pick up completed commands from the controller and handle accordingly.
|
|
*/
|
|
int
|
|
mly_intr(void *cookie)
|
|
{
|
|
struct mly_ccb *mc;
|
|
union mly_status_packet *sp;
|
|
u_int16_t slot;
|
|
int forus, off;
|
|
struct mly_softc *mly;
|
|
|
|
mly = cookie;
|
|
forus = 0;
|
|
|
|
/*
|
|
* Pick up hardware-mailbox commands.
|
|
*/
|
|
if (mly_odbr_true(mly, MLY_HM_STSREADY)) {
|
|
slot = mly_inw(mly, mly->mly_status_mailbox);
|
|
|
|
if (slot < MLY_SLOT_MAX) {
|
|
mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
|
|
mc->mc_status =
|
|
mly_inb(mly, mly->mly_status_mailbox + 2);
|
|
mc->mc_sense =
|
|
mly_inb(mly, mly->mly_status_mailbox + 3);
|
|
mc->mc_resid =
|
|
mly_inl(mly, mly->mly_status_mailbox + 4);
|
|
|
|
mly_ccb_complete(mly, mc);
|
|
} else {
|
|
/* Slot 0xffff may mean "extremely bogus command". */
|
|
printf("%s: got HM completion for illegal slot %u\n",
|
|
device_xname(&mly->mly_dv), slot);
|
|
}
|
|
|
|
/* Unconditionally acknowledge status. */
|
|
mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY);
|
|
mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
|
|
forus = 1;
|
|
}
|
|
|
|
/*
|
|
* Pick up memory-mailbox commands.
|
|
*/
|
|
if (mly_odbr_true(mly, MLY_AM_STSREADY)) {
|
|
for (;;) {
|
|
sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx];
|
|
off = (char *)sp - (char *)mly->mly_mmbox;
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap,
|
|
off, sizeof(mly->mly_mmbox->mmm_command[0]),
|
|
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
|
|
|
|
/* Check for more status. */
|
|
if (sp->mmbox.flag == 0)
|
|
break;
|
|
|
|
/* Get slot number. */
|
|
slot = le16toh(sp->status.command_id);
|
|
if (slot < MLY_SLOT_MAX) {
|
|
mc = mly->mly_ccbs + (slot - MLY_SLOT_START);
|
|
mc->mc_status = sp->status.status;
|
|
mc->mc_sense = sp->status.sense_length;
|
|
mc->mc_resid = le32toh(sp->status.residue);
|
|
mly_ccb_complete(mly, mc);
|
|
} else {
|
|
/*
|
|
* Slot 0xffff may mean "extremely bogus
|
|
* command".
|
|
*/
|
|
printf("%s: got AM completion for illegal "
|
|
"slot %u at %d\n", device_xname(&mly->mly_dv),
|
|
slot, mly->mly_mmbox_sts_idx);
|
|
}
|
|
|
|
/* Clear and move to next index. */
|
|
sp->mmbox.flag = 0;
|
|
mly->mly_mmbox_sts_idx =
|
|
(mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS;
|
|
}
|
|
|
|
/* Acknowledge that we have collected status value(s). */
|
|
mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY);
|
|
forus = 1;
|
|
}
|
|
|
|
/*
|
|
* Run the queue.
|
|
*/
|
|
if (forus && ! SIMPLEQ_EMPTY(&mly->mly_ccb_queue))
|
|
mly_ccb_enqueue(mly, NULL);
|
|
|
|
return (forus);
|
|
}
|
|
|
|
/*
|
|
* Process completed commands
|
|
*/
|
|
static void
|
|
mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc)
|
|
{
|
|
void (*complete)(struct mly_softc *, struct mly_ccb *);
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap,
|
|
mc->mc_packetphys - mly->mly_pkt_busaddr,
|
|
sizeof(union mly_cmd_packet),
|
|
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
|
|
|
|
complete = mc->mc_complete;
|
|
mc->mc_flags |= MLY_CCB_COMPLETE;
|
|
|
|
/*
|
|
* Call completion handler or wake up sleeping consumer.
|
|
*/
|
|
if (complete != NULL)
|
|
(*complete)(mly, mc);
|
|
else
|
|
wakeup(mc);
|
|
}
|
|
|
|
/*
|
|
* Allocate a command.
|
|
*/
|
|
int
|
|
mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp)
|
|
{
|
|
struct mly_ccb *mc;
|
|
int s;
|
|
|
|
s = splbio();
|
|
mc = SLIST_FIRST(&mly->mly_ccb_free);
|
|
if (mc != NULL)
|
|
SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist);
|
|
splx(s);
|
|
|
|
*mcp = mc;
|
|
return (mc == NULL ? EAGAIN : 0);
|
|
}
|
|
|
|
/*
|
|
* Release a command back to the freelist.
|
|
*/
|
|
void
|
|
mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc)
|
|
{
|
|
int s;
|
|
|
|
/*
|
|
* Fill in parts of the command that may cause confusion if a
|
|
* consumer doesn't when we are later allocated.
|
|
*/
|
|
mc->mc_data = NULL;
|
|
mc->mc_flags = 0;
|
|
mc->mc_complete = NULL;
|
|
mc->mc_private = NULL;
|
|
mc->mc_packet->generic.command_control = 0;
|
|
|
|
/*
|
|
* By default, we set up to overwrite the command packet with sense
|
|
* information.
|
|
*/
|
|
mc->mc_packet->generic.sense_buffer_address =
|
|
htole64(mc->mc_packetphys);
|
|
mc->mc_packet->generic.maximum_sense_size =
|
|
sizeof(union mly_cmd_packet);
|
|
|
|
s = splbio();
|
|
SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist);
|
|
splx(s);
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize command and packet structures.
|
|
*
|
|
* If the controller supports fewer than MLY_MAX_CCBS commands, limit our
|
|
* allocation to that number. If we don't yet know how many commands the
|
|
* controller supports, allocate a very small set (suitable for initialization
|
|
* purposes only).
|
|
*/
|
|
static int
|
|
mly_alloc_ccbs(struct mly_softc *mly)
|
|
{
|
|
struct mly_ccb *mc;
|
|
int i, rv;
|
|
|
|
if (mly->mly_controllerinfo == NULL)
|
|
mly->mly_ncmds = MLY_CCBS_RESV;
|
|
else {
|
|
i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands);
|
|
mly->mly_ncmds = min(MLY_MAX_CCBS, i);
|
|
}
|
|
|
|
/*
|
|
* Allocate enough space for all the command packets in one chunk
|
|
* and map them permanently into controller-visible space.
|
|
*/
|
|
rv = mly_dmamem_alloc(mly,
|
|
mly->mly_ncmds * sizeof(union mly_cmd_packet),
|
|
&mly->mly_pkt_dmamap, (void **)&mly->mly_pkt,
|
|
&mly->mly_pkt_busaddr, &mly->mly_pkt_seg);
|
|
if (rv)
|
|
return (rv);
|
|
|
|
mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds,
|
|
M_DEVBUF, M_NOWAIT|M_ZERO);
|
|
|
|
for (i = 0; i < mly->mly_ncmds; i++) {
|
|
mc = mly->mly_ccbs + i;
|
|
mc->mc_slot = MLY_SLOT_START + i;
|
|
mc->mc_packet = mly->mly_pkt + i;
|
|
mc->mc_packetphys = mly->mly_pkt_busaddr +
|
|
(i * sizeof(union mly_cmd_packet));
|
|
|
|
rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER,
|
|
MLY_MAX_SEGS, MLY_MAX_XFER, 0,
|
|
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
|
|
&mc->mc_datamap);
|
|
if (rv) {
|
|
mly_release_ccbs(mly);
|
|
return (rv);
|
|
}
|
|
|
|
mly_ccb_free(mly, mc);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Free all the storage held by commands.
|
|
*
|
|
* Must be called with all commands on the free list.
|
|
*/
|
|
static void
|
|
mly_release_ccbs(struct mly_softc *mly)
|
|
{
|
|
struct mly_ccb *mc;
|
|
|
|
/* Throw away command buffer DMA maps. */
|
|
while (mly_ccb_alloc(mly, &mc) == 0)
|
|
bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap);
|
|
|
|
/* Release CCB storage. */
|
|
free(mly->mly_ccbs, M_DEVBUF);
|
|
|
|
/* Release the packet storage. */
|
|
mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet),
|
|
mly->mly_pkt_dmamap, (void *)mly->mly_pkt, &mly->mly_pkt_seg);
|
|
}
|
|
|
|
/*
|
|
* Map a command into controller-visible space.
|
|
*/
|
|
static int
|
|
mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc)
|
|
{
|
|
struct mly_cmd_generic *gen;
|
|
struct mly_sg_entry *sg;
|
|
bus_dma_segment_t *ds;
|
|
int flg, nseg, rv;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* Don't map more than once. */
|
|
if ((mc->mc_flags & MLY_CCB_MAPPED) != 0)
|
|
panic("mly_ccb_map: already mapped");
|
|
mc->mc_flags |= MLY_CCB_MAPPED;
|
|
|
|
/* Does the command have a data buffer? */
|
|
if (mc->mc_data == NULL)
|
|
panic("mly_ccb_map: no data buffer");
|
|
#endif
|
|
|
|
rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data,
|
|
mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
|
|
((mc->mc_flags & MLY_CCB_DATAIN) != 0 ?
|
|
BUS_DMA_READ : BUS_DMA_WRITE));
|
|
if (rv != 0)
|
|
return (rv);
|
|
|
|
gen = &mc->mc_packet->generic;
|
|
|
|
/*
|
|
* Can we use the transfer structure directly?
|
|
*/
|
|
if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) {
|
|
mc->mc_sgoff = -1;
|
|
sg = &gen->transfer.direct.sg[0];
|
|
} else {
|
|
mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) *
|
|
MLY_MAX_SEGS;
|
|
sg = mly->mly_sg + mc->mc_sgoff;
|
|
gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE;
|
|
gen->transfer.indirect.entries[0] = htole16(nseg);
|
|
gen->transfer.indirect.table_physaddr[0] =
|
|
htole64(mly->mly_sg_busaddr +
|
|
(mc->mc_sgoff * sizeof(struct mly_sg_entry)));
|
|
}
|
|
|
|
/*
|
|
* Fill the S/G table.
|
|
*/
|
|
for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) {
|
|
sg->physaddr = htole64(ds->ds_addr);
|
|
sg->length = htole64(ds->ds_len);
|
|
}
|
|
|
|
/*
|
|
* Sync up the data map.
|
|
*/
|
|
if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
|
|
flg = BUS_DMASYNC_PREREAD;
|
|
else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ {
|
|
gen->command_control |= MLY_CMDCTL_DATA_DIRECTION;
|
|
flg = BUS_DMASYNC_PREWRITE;
|
|
}
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
|
|
|
|
/*
|
|
* Sync up the chained S/G table, if we're using one.
|
|
*/
|
|
if (mc->mc_sgoff == -1)
|
|
return (0);
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
|
|
MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Unmap a command from controller-visible space.
|
|
*/
|
|
static void
|
|
mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc)
|
|
{
|
|
int flg;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if ((mc->mc_flags & MLY_CCB_MAPPED) == 0)
|
|
panic("mly_ccb_unmap: not mapped");
|
|
mc->mc_flags &= ~MLY_CCB_MAPPED;
|
|
#endif
|
|
|
|
if ((mc->mc_flags & MLY_CCB_DATAIN) != 0)
|
|
flg = BUS_DMASYNC_POSTREAD;
|
|
else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */
|
|
flg = BUS_DMASYNC_POSTWRITE;
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg);
|
|
bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap);
|
|
|
|
if (mc->mc_sgoff == -1)
|
|
return;
|
|
|
|
bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff,
|
|
MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE);
|
|
}
|
|
|
|
/*
|
|
* Adjust the size of each I/O before it passes to the SCSI layer.
|
|
*/
|
|
static void
|
|
mly_scsipi_minphys(struct buf *bp)
|
|
{
|
|
|
|
if (bp->b_bcount > MLY_MAX_XFER)
|
|
bp->b_bcount = MLY_MAX_XFER;
|
|
minphys(bp);
|
|
}
|
|
|
|
/*
|
|
* Start a SCSI command.
|
|
*/
|
|
static void
|
|
mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req,
|
|
void *arg)
|
|
{
|
|
struct mly_ccb *mc;
|
|
struct mly_cmd_scsi_small *ss;
|
|
struct scsipi_xfer *xs;
|
|
struct scsipi_periph *periph;
|
|
struct mly_softc *mly;
|
|
struct mly_btl *btl;
|
|
int s, tmp;
|
|
|
|
mly = (void *)chan->chan_adapter->adapt_dev;
|
|
|
|
switch (req) {
|
|
case ADAPTER_REQ_RUN_XFER:
|
|
xs = arg;
|
|
periph = xs->xs_periph;
|
|
btl = &mly->mly_btl[chan->chan_channel][periph->periph_target];
|
|
s = splbio();
|
|
tmp = btl->mb_flags;
|
|
splx(s);
|
|
|
|
/*
|
|
* Check for I/O attempt to a protected or non-existant
|
|
* device.
|
|
*/
|
|
if ((tmp & MLY_BTL_PROTECTED) != 0) {
|
|
xs->error = XS_SELTIMEOUT;
|
|
scsipi_done(xs);
|
|
break;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/* XXX Increase if/when we support large SCSI commands. */
|
|
if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) {
|
|
printf("%s: cmd too large\n", device_xname(&mly->mly_dv));
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
scsipi_done(xs);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
if (mly_ccb_alloc(mly, &mc)) {
|
|
xs->error = XS_RESOURCE_SHORTAGE;
|
|
scsipi_done(xs);
|
|
break;
|
|
}
|
|
|
|
/* Build the command. */
|
|
mc->mc_data = xs->data;
|
|
mc->mc_length = xs->datalen;
|
|
mc->mc_complete = mly_scsipi_complete;
|
|
mc->mc_private = xs;
|
|
|
|
/* Build the packet for the controller. */
|
|
ss = &mc->mc_packet->scsi_small;
|
|
ss->opcode = MDACMD_SCSI;
|
|
#ifdef notdef
|
|
/*
|
|
* XXX FreeBSD does this, but it doesn't fix anything,
|
|
* XXX and appears potentially harmful.
|
|
*/
|
|
ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT;
|
|
#endif
|
|
|
|
ss->data_size = htole32(xs->datalen);
|
|
_lto3l(MLY_PHYADDR(0, chan->chan_channel,
|
|
periph->periph_target, periph->periph_lun), ss->addr);
|
|
|
|
if (xs->timeout < 60 * 1000)
|
|
ss->timeout = xs->timeout / 1000 |
|
|
MLY_TIMEOUT_SECONDS;
|
|
else if (xs->timeout < 60 * 60 * 1000)
|
|
ss->timeout = xs->timeout / (60 * 1000) |
|
|
MLY_TIMEOUT_MINUTES;
|
|
else
|
|
ss->timeout = xs->timeout / (60 * 60 * 1000) |
|
|
MLY_TIMEOUT_HOURS;
|
|
|
|
ss->maximum_sense_size = sizeof(xs->sense);
|
|
ss->cdb_length = xs->cmdlen;
|
|
memcpy(ss->cdb, xs->cmd, xs->cmdlen);
|
|
|
|
if (mc->mc_length != 0) {
|
|
if ((xs->xs_control & XS_CTL_DATA_OUT) != 0)
|
|
mc->mc_flags |= MLY_CCB_DATAOUT;
|
|
else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */
|
|
mc->mc_flags |= MLY_CCB_DATAIN;
|
|
|
|
if (mly_ccb_map(mly, mc) != 0) {
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
mly_ccb_free(mly, mc);
|
|
scsipi_done(xs);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Give the command to the controller.
|
|
*/
|
|
if ((xs->xs_control & XS_CTL_POLL) != 0) {
|
|
if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) {
|
|
xs->error = XS_REQUEUE;
|
|
if (mc->mc_length != 0)
|
|
mly_ccb_unmap(mly, mc);
|
|
mly_ccb_free(mly, mc);
|
|
scsipi_done(xs);
|
|
}
|
|
} else
|
|
mly_ccb_enqueue(mly, mc);
|
|
|
|
break;
|
|
|
|
case ADAPTER_REQ_GROW_RESOURCES:
|
|
/*
|
|
* Not supported.
|
|
*/
|
|
break;
|
|
|
|
case ADAPTER_REQ_SET_XFER_MODE:
|
|
/*
|
|
* We can't change the transfer mode, but at least let
|
|
* scsipi know what the adapter has negotiated.
|
|
*/
|
|
mly_get_xfer_mode(mly, chan->chan_channel, arg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Handle completion of a SCSI command.
|
|
*/
|
|
static void
|
|
mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc)
|
|
{
|
|
struct scsipi_xfer *xs;
|
|
struct scsipi_channel *chan;
|
|
struct scsipi_inquiry_data *inq;
|
|
struct mly_btl *btl;
|
|
int target, sl, s;
|
|
const char *p;
|
|
|
|
xs = mc->mc_private;
|
|
xs->status = mc->mc_status;
|
|
|
|
/*
|
|
* XXX The `resid' value as returned by the controller appears to be
|
|
* bogus, so we always set it to zero. Is it perhaps the transfer
|
|
* count?
|
|
*/
|
|
xs->resid = 0; /* mc->mc_resid; */
|
|
|
|
if (mc->mc_length != 0)
|
|
mly_ccb_unmap(mly, mc);
|
|
|
|
switch (mc->mc_status) {
|
|
case SCSI_OK:
|
|
/*
|
|
* In order to report logical device type and status, we
|
|
* overwrite the result of the INQUIRY command to logical
|
|
* devices.
|
|
*/
|
|
if (xs->cmd->opcode == INQUIRY) {
|
|
chan = xs->xs_periph->periph_channel;
|
|
target = xs->xs_periph->periph_target;
|
|
btl = &mly->mly_btl[chan->chan_channel][target];
|
|
|
|
s = splbio();
|
|
if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) {
|
|
inq = (struct scsipi_inquiry_data *)xs->data;
|
|
mly_padstr(inq->vendor, "MYLEX", 8);
|
|
p = mly_describe_code(mly_table_device_type,
|
|
btl->mb_type);
|
|
mly_padstr(inq->product, p, 16);
|
|
p = mly_describe_code(mly_table_device_state,
|
|
btl->mb_state);
|
|
mly_padstr(inq->revision, p, 4);
|
|
}
|
|
splx(s);
|
|
}
|
|
|
|
xs->error = XS_NOERROR;
|
|
break;
|
|
|
|
case SCSI_CHECK:
|
|
sl = mc->mc_sense;
|
|
if (sl > sizeof(xs->sense.scsi_sense))
|
|
sl = sizeof(xs->sense.scsi_sense);
|
|
memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl);
|
|
xs->error = XS_SENSE;
|
|
break;
|
|
|
|
case SCSI_BUSY:
|
|
case SCSI_QUEUE_FULL:
|
|
xs->error = XS_BUSY;
|
|
break;
|
|
|
|
default:
|
|
printf("%s: unknown SCSI status 0x%x\n",
|
|
device_xname(&mly->mly_dv), xs->status);
|
|
xs->error = XS_DRIVER_STUFFUP;
|
|
break;
|
|
}
|
|
|
|
mly_ccb_free(mly, mc);
|
|
scsipi_done(xs);
|
|
}
|
|
|
|
/*
|
|
* Notify scsipi about a target's transfer mode.
|
|
*/
|
|
static void
|
|
mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm)
|
|
{
|
|
struct mly_btl *btl;
|
|
int s;
|
|
|
|
btl = &mly->mly_btl[bus][xm->xm_target];
|
|
xm->xm_mode = 0;
|
|
|
|
s = splbio();
|
|
|
|
if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) {
|
|
if (btl->mb_speed == 0) {
|
|
xm->xm_period = 0;
|
|
xm->xm_offset = 0;
|
|
} else {
|
|
xm->xm_period = 12; /* XXX */
|
|
xm->xm_offset = 8; /* XXX */
|
|
xm->xm_mode |= PERIPH_CAP_SYNC; /* XXX */
|
|
}
|
|
|
|
switch (btl->mb_width) {
|
|
case 32:
|
|
xm->xm_mode = PERIPH_CAP_WIDE32;
|
|
break;
|
|
case 16:
|
|
xm->xm_mode = PERIPH_CAP_WIDE16;
|
|
break;
|
|
default:
|
|
xm->xm_mode = 0;
|
|
break;
|
|
}
|
|
} else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ {
|
|
xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC;
|
|
xm->xm_period = 12;
|
|
xm->xm_offset = 8;
|
|
}
|
|
|
|
if ((btl->mb_flags & MLY_BTL_TQING) != 0)
|
|
xm->xm_mode |= PERIPH_CAP_TQING;
|
|
|
|
splx(s);
|
|
|
|
scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm);
|
|
}
|
|
|
|
/*
|
|
* ioctl hook; used here only to initiate low-level rescans.
|
|
*/
|
|
static int
|
|
mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, void *data,
|
|
int flag, struct proc *p)
|
|
{
|
|
struct mly_softc *mly;
|
|
int rv;
|
|
|
|
mly = (struct mly_softc *)chan->chan_adapter->adapt_dev;
|
|
|
|
switch (cmd) {
|
|
case SCBUSIOLLSCAN:
|
|
mly_scan_channel(mly, chan->chan_channel);
|
|
rv = 0;
|
|
break;
|
|
default:
|
|
rv = ENOTTY;
|
|
break;
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Handshake with the firmware while the card is being initialized.
|
|
*/
|
|
static int
|
|
mly_fwhandshake(struct mly_softc *mly)
|
|
{
|
|
u_int8_t error, param0, param1;
|
|
int spinup;
|
|
|
|
spinup = 0;
|
|
|
|
/* Set HM_STSACK and let the firmware initialize. */
|
|
mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK);
|
|
DELAY(1000); /* too short? */
|
|
|
|
/* If HM_STSACK is still true, the controller is initializing. */
|
|
if (!mly_idbr_true(mly, MLY_HM_STSACK))
|
|
return (0);
|
|
|
|
printf("%s: controller initialization started\n",
|
|
device_xname(&mly->mly_dv));
|
|
|
|
/*
|
|
* Spin waiting for initialization to finish, or for a message to be
|
|
* delivered.
|
|
*/
|
|
while (mly_idbr_true(mly, MLY_HM_STSACK)) {
|
|
/* Check for a message */
|
|
if (!mly_error_valid(mly))
|
|
continue;
|
|
|
|
error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY;
|
|
param0 = mly_inb(mly, mly->mly_cmd_mailbox);
|
|
param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1);
|
|
|
|
switch (error) {
|
|
case MLY_MSG_SPINUP:
|
|
if (!spinup) {
|
|
printf("%s: drive spinup in progress\n",
|
|
device_xname(&mly->mly_dv));
|
|
spinup = 1;
|
|
}
|
|
break;
|
|
|
|
case MLY_MSG_RACE_RECOVERY_FAIL:
|
|
printf("%s: mirror race recovery failed - \n",
|
|
device_xname(&mly->mly_dv));
|
|
printf("%s: one or more drives offline\n",
|
|
device_xname(&mly->mly_dv));
|
|
break;
|
|
|
|
case MLY_MSG_RACE_IN_PROGRESS:
|
|
printf("%s: mirror race recovery in progress\n",
|
|
device_xname(&mly->mly_dv));
|
|
break;
|
|
|
|
case MLY_MSG_RACE_ON_CRITICAL:
|
|
printf("%s: mirror race recovery on critical drive\n",
|
|
device_xname(&mly->mly_dv));
|
|
break;
|
|
|
|
case MLY_MSG_PARITY_ERROR:
|
|
printf("%s: FATAL MEMORY PARITY ERROR\n",
|
|
device_xname(&mly->mly_dv));
|
|
return (ENXIO);
|
|
|
|
default:
|
|
printf("%s: unknown initialization code 0x%x\n",
|
|
device_xname(&mly->mly_dv), error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Space-fill a character string
|
|
*/
|
|
static void
|
|
mly_padstr(char *dst, const char *src, int len)
|
|
{
|
|
|
|
while (len-- > 0) {
|
|
if (*src != '\0')
|
|
*dst++ = *src++;
|
|
else
|
|
*dst++ = ' ';
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate DMA safe memory.
|
|
*/
|
|
static int
|
|
mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap,
|
|
void **kva, bus_addr_t *paddr, bus_dma_segment_t *seg)
|
|
{
|
|
int rseg, rv, state;
|
|
|
|
state = 0;
|
|
|
|
if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, PAGE_SIZE, 0,
|
|
seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
|
|
aprint_error_dev(&mly->mly_dv, "dmamem_alloc = %d\n", rv);
|
|
goto bad;
|
|
}
|
|
|
|
state++;
|
|
|
|
if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva,
|
|
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(&mly->mly_dv, "dmamem_map = %d\n", rv);
|
|
goto bad;
|
|
}
|
|
|
|
state++;
|
|
|
|
if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0,
|
|
BUS_DMA_NOWAIT, dmamap)) != 0) {
|
|
aprint_error_dev(&mly->mly_dv, "dmamap_create = %d\n", rv);
|
|
goto bad;
|
|
}
|
|
|
|
state++;
|
|
|
|
if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size,
|
|
NULL, BUS_DMA_NOWAIT)) != 0) {
|
|
aprint_error_dev(&mly->mly_dv, "dmamap_load = %d\n", rv);
|
|
goto bad;
|
|
}
|
|
|
|
*paddr = (*dmamap)->dm_segs[0].ds_addr;
|
|
memset(*kva, 0, size);
|
|
return (0);
|
|
|
|
bad:
|
|
if (state > 2)
|
|
bus_dmamap_destroy(mly->mly_dmat, *dmamap);
|
|
if (state > 1)
|
|
bus_dmamem_unmap(mly->mly_dmat, *kva, size);
|
|
if (state > 0)
|
|
bus_dmamem_free(mly->mly_dmat, seg, 1);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Free DMA safe memory.
|
|
*/
|
|
static void
|
|
mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap,
|
|
void *kva, bus_dma_segment_t *seg)
|
|
{
|
|
|
|
bus_dmamap_unload(mly->mly_dmat, dmamap);
|
|
bus_dmamap_destroy(mly->mly_dmat, dmamap);
|
|
bus_dmamem_unmap(mly->mly_dmat, kva, size);
|
|
bus_dmamem_free(mly->mly_dmat, seg, 1);
|
|
}
|
|
|
|
|
|
/*
|
|
* Accept an open operation on the control device.
|
|
*/
|
|
int
|
|
mlyopen(dev_t dev, int flag, int mode, struct lwp *l)
|
|
{
|
|
struct mly_softc *mly;
|
|
|
|
if ((mly = device_lookup_private(&mly_cd, minor(dev))) == NULL)
|
|
return (ENXIO);
|
|
if ((mly->mly_state & MLY_STATE_INITOK) == 0)
|
|
return (ENXIO);
|
|
if ((mly->mly_state & MLY_STATE_OPEN) != 0)
|
|
return (EBUSY);
|
|
|
|
mly->mly_state |= MLY_STATE_OPEN;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Accept the last close on the control device.
|
|
*/
|
|
int
|
|
mlyclose(dev_t dev, int flag, int mode,
|
|
struct lwp *l)
|
|
{
|
|
struct mly_softc *mly;
|
|
|
|
mly = device_lookup_private(&mly_cd, minor(dev));
|
|
mly->mly_state &= ~MLY_STATE_OPEN;
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Handle control operations.
|
|
*/
|
|
int
|
|
mlyioctl(dev_t dev, u_long cmd, void *data, int flag,
|
|
struct lwp *l)
|
|
{
|
|
struct mly_softc *mly;
|
|
int rv;
|
|
|
|
mly = device_lookup_private(&mly_cd, minor(dev));
|
|
|
|
switch (cmd) {
|
|
case MLYIO_COMMAND:
|
|
rv = kauth_authorize_device_passthru(l->l_cred, dev,
|
|
KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data);
|
|
if (rv)
|
|
break;
|
|
|
|
rv = mly_user_command(mly, (void *)data);
|
|
break;
|
|
case MLYIO_HEALTH:
|
|
rv = mly_user_health(mly, (void *)data);
|
|
break;
|
|
default:
|
|
rv = ENOTTY;
|
|
break;
|
|
}
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Execute a command passed in from userspace.
|
|
*
|
|
* The control structure contains the actual command for the controller, as
|
|
* well as the user-space data pointer and data size, and an optional sense
|
|
* buffer size/pointer. On completion, the data size is adjusted to the
|
|
* command residual, and the sense buffer size to the size of the returned
|
|
* sense data.
|
|
*/
|
|
static int
|
|
mly_user_command(struct mly_softc *mly, struct mly_user_command *uc)
|
|
{
|
|
struct mly_ccb *mc;
|
|
int rv, mapped;
|
|
|
|
if ((rv = mly_ccb_alloc(mly, &mc)) != 0)
|
|
return (rv);
|
|
|
|
mapped = 0;
|
|
mc->mc_data = NULL;
|
|
|
|
/*
|
|
* Handle data size/direction.
|
|
*/
|
|
if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) {
|
|
if (mc->mc_length > MAXPHYS) {
|
|
rv = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK);
|
|
if (mc->mc_data == NULL) {
|
|
rv = ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
if (uc->DataTransferLength > 0) {
|
|
mc->mc_flags |= MLY_CCB_DATAIN;
|
|
memset(mc->mc_data, 0, mc->mc_length);
|
|
}
|
|
|
|
if (uc->DataTransferLength < 0) {
|
|
mc->mc_flags |= MLY_CCB_DATAOUT;
|
|
rv = copyin(uc->DataTransferBuffer, mc->mc_data,
|
|
mc->mc_length);
|
|
if (rv != 0)
|
|
goto out;
|
|
}
|
|
|
|
if ((rv = mly_ccb_map(mly, mc)) != 0)
|
|
goto out;
|
|
mapped = 1;
|
|
}
|
|
|
|
/* Copy in the command and execute it. */
|
|
memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox));
|
|
|
|
if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0)
|
|
goto out;
|
|
|
|
/* Return the data to userspace. */
|
|
if (uc->DataTransferLength > 0) {
|
|
rv = copyout(mc->mc_data, uc->DataTransferBuffer,
|
|
mc->mc_length);
|
|
if (rv != 0)
|
|
goto out;
|
|
}
|
|
|
|
/* Return the sense buffer to userspace. */
|
|
if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) {
|
|
rv = copyout(mc->mc_packet, uc->RequestSenseBuffer,
|
|
min(uc->RequestSenseLength, mc->mc_sense));
|
|
if (rv != 0)
|
|
goto out;
|
|
}
|
|
|
|
/* Return command results to userspace (caller will copy out). */
|
|
uc->DataTransferLength = mc->mc_resid;
|
|
uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense);
|
|
uc->CommandStatus = mc->mc_status;
|
|
rv = 0;
|
|
|
|
out:
|
|
if (mapped)
|
|
mly_ccb_unmap(mly, mc);
|
|
if (mc->mc_data != NULL)
|
|
free(mc->mc_data, M_DEVBUF);
|
|
mly_ccb_free(mly, mc);
|
|
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Return health status to userspace. If the health change index in the
|
|
* user structure does not match that currently exported by the controller,
|
|
* we return the current status immediately. Otherwise, we block until
|
|
* either interrupted or new status is delivered.
|
|
*/
|
|
static int
|
|
mly_user_health(struct mly_softc *mly, struct mly_user_health *uh)
|
|
{
|
|
struct mly_health_status mh;
|
|
int rv, s;
|
|
|
|
/* Fetch the current health status from userspace. */
|
|
rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh));
|
|
if (rv != 0)
|
|
return (rv);
|
|
|
|
/* spin waiting for a status update */
|
|
s = splbio();
|
|
if (mly->mly_event_change == mh.change_counter)
|
|
rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH,
|
|
"mlyhealth", 0);
|
|
splx(s);
|
|
|
|
if (rv == 0) {
|
|
/*
|
|
* Copy the controller's health status buffer out (there is
|
|
* a race here if it changes again).
|
|
*/
|
|
rv = copyout(&mly->mly_mmbox->mmm_health.status,
|
|
uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer));
|
|
}
|
|
|
|
return (rv);
|
|
}
|