/* $NetBSD: mly.c,v 1.39 2008/06/08 12:43:52 tsutsui Exp $ */ /*- * Copyright (c) 2001 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Andrew Doran, Thor Lancelot Simon, and Eric Haszlakiewicz. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*- * Copyright (c) 2000, 2001 Michael Smith * Copyright (c) 2000 BSDi * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * from FreeBSD: mly.c,v 1.8 2001/07/14 00:12:22 msmith Exp */ /* * Driver for the Mylex AcceleRAID and eXtremeRAID family with v6 firmware. * * TODO: * * o Make mly->mly_btl a hash, then MLY_BTL_RESCAN becomes a SIMPLEQ. * o Handle FC and multiple LUNs. * o Fix mmbox usage. * o Fix transfer speed fudge. */ #include __KERNEL_RCSID(0, "$NetBSD: mly.c,v 1.39 2008/06/08 12:43:52 tsutsui Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include static void mly_attach(struct device *, struct device *, void *); static int mly_match(struct device *, struct cfdata *, void *); static const struct mly_ident *mly_find_ident(struct pci_attach_args *); static int mly_fwhandshake(struct mly_softc *); static int mly_flush(struct mly_softc *); static int mly_intr(void *); static void mly_shutdown(void *); static int mly_alloc_ccbs(struct mly_softc *); static void mly_check_event(struct mly_softc *); static void mly_complete_event(struct mly_softc *, struct mly_ccb *); static void mly_complete_rescan(struct mly_softc *, struct mly_ccb *); static int mly_dmamem_alloc(struct mly_softc *, int, bus_dmamap_t *, void **, bus_addr_t *, bus_dma_segment_t *); static void mly_dmamem_free(struct mly_softc *, int, bus_dmamap_t, void *, bus_dma_segment_t *); static int mly_enable_mmbox(struct mly_softc *); static void mly_fetch_event(struct mly_softc *); static int mly_get_controllerinfo(struct mly_softc *); static int mly_get_eventstatus(struct mly_softc *); static int mly_ioctl(struct mly_softc *, struct mly_cmd_ioctl *, void **, size_t, void *, size_t *); static void mly_padstr(char *, const char *, int); static void mly_process_event(struct mly_softc *, struct mly_event *); static void mly_release_ccbs(struct mly_softc *); static int mly_scan_btl(struct mly_softc *, int, int); static void mly_scan_channel(struct mly_softc *, int); static void mly_thread(void *); static int mly_ccb_alloc(struct mly_softc *, struct mly_ccb **); static void mly_ccb_complete(struct mly_softc *, struct mly_ccb *); static void mly_ccb_enqueue(struct mly_softc *, struct mly_ccb *); static void mly_ccb_free(struct mly_softc *, struct mly_ccb *); static int mly_ccb_map(struct mly_softc *, struct mly_ccb *); static int mly_ccb_poll(struct mly_softc *, struct mly_ccb *, int); static int mly_ccb_submit(struct mly_softc *, struct mly_ccb *); static void mly_ccb_unmap(struct mly_softc *, struct mly_ccb *); static int mly_ccb_wait(struct mly_softc *, struct mly_ccb *, int); static void mly_get_xfer_mode(struct mly_softc *, int, struct scsipi_xfer_mode *); static void mly_scsipi_complete(struct mly_softc *, struct mly_ccb *); static int mly_scsipi_ioctl(struct scsipi_channel *, u_long, void *, int, struct proc *); static void mly_scsipi_minphys(struct buf *); static void mly_scsipi_request(struct scsipi_channel *, scsipi_adapter_req_t, void *); static int mly_user_command(struct mly_softc *, struct mly_user_command *); static int mly_user_health(struct mly_softc *, struct mly_user_health *); extern struct cfdriver mly_cd; CFATTACH_DECL(mly, sizeof(struct mly_softc), mly_match, mly_attach, NULL, NULL); dev_type_open(mlyopen); dev_type_close(mlyclose); dev_type_ioctl(mlyioctl); const struct cdevsw mly_cdevsw = { mlyopen, mlyclose, noread, nowrite, mlyioctl, nostop, notty, nopoll, nommap, nokqfilter, D_OTHER, }; static struct mly_ident { u_short vendor; u_short product; u_short subvendor; u_short subproduct; int hwif; const char *desc; } const mly_ident[] = { { PCI_VENDOR_MYLEX, PCI_PRODUCT_MYLEX_EXTREMERAID, PCI_VENDOR_MYLEX, 0x0040, MLY_HWIF_STRONGARM, "eXtremeRAID 2000" }, { PCI_VENDOR_MYLEX, PCI_PRODUCT_MYLEX_EXTREMERAID, PCI_VENDOR_MYLEX, 0x0030, MLY_HWIF_STRONGARM, "eXtremeRAID 3000" }, { PCI_VENDOR_MYLEX, PCI_PRODUCT_MYLEX_ACCELERAID, PCI_VENDOR_MYLEX, 0x0050, MLY_HWIF_I960RX, "AcceleRAID 352" }, { PCI_VENDOR_MYLEX, PCI_PRODUCT_MYLEX_ACCELERAID, PCI_VENDOR_MYLEX, 0x0052, MLY_HWIF_I960RX, "AcceleRAID 170" }, { PCI_VENDOR_MYLEX, PCI_PRODUCT_MYLEX_ACCELERAID, PCI_VENDOR_MYLEX, 0x0054, MLY_HWIF_I960RX, "AcceleRAID 160" }, }; static void *mly_sdh; /* * Try to find a `mly_ident' entry corresponding to this board. */ static const struct mly_ident * mly_find_ident(struct pci_attach_args *pa) { const struct mly_ident *mpi, *maxmpi; pcireg_t reg; mpi = mly_ident; maxmpi = mpi + sizeof(mly_ident) / sizeof(mly_ident[0]); if (PCI_CLASS(pa->pa_class) == PCI_CLASS_I2O) return (NULL); for (; mpi < maxmpi; mpi++) { if (PCI_VENDOR(pa->pa_id) != mpi->vendor || PCI_PRODUCT(pa->pa_id) != mpi->product) continue; if (mpi->subvendor == 0x0000) return (mpi); reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG); if (PCI_VENDOR(reg) == mpi->subvendor && PCI_PRODUCT(reg) == mpi->subproduct) return (mpi); } return (NULL); } /* * Match a supported board. */ static int mly_match(struct device *parent, struct cfdata *cfdata, void *aux) { return (mly_find_ident(aux) != NULL); } /* * Attach a supported board. */ static void mly_attach(struct device *parent, struct device *self, void *aux) { struct pci_attach_args *pa; struct mly_softc *mly; struct mly_ioctl_getcontrollerinfo *mi; const struct mly_ident *ident; pci_chipset_tag_t pc; pci_intr_handle_t ih; bus_space_handle_t memh, ioh; bus_space_tag_t memt, iot; pcireg_t reg; const char *intrstr; int ior, memr, i, rv, state; struct scsipi_adapter *adapt; struct scsipi_channel *chan; mly = (struct mly_softc *)self; pa = aux; pc = pa->pa_pc; ident = mly_find_ident(pa); state = 0; mly->mly_dmat = pa->pa_dmat; mly->mly_hwif = ident->hwif; printf(": Mylex %s\n", ident->desc); /* * Map the PCI register window. */ memr = -1; ior = -1; for (i = 0x10; i <= 0x14; i += 4) { reg = pci_conf_read(pa->pa_pc, pa->pa_tag, i); if (PCI_MAPREG_TYPE(reg) == PCI_MAPREG_TYPE_IO) { if (ior == -1 && PCI_MAPREG_IO_SIZE(reg) != 0) ior = i; } else { if (memr == -1 && PCI_MAPREG_MEM_SIZE(reg) != 0) memr = i; } } if (memr != -1) if (pci_mapreg_map(pa, memr, PCI_MAPREG_TYPE_MEM, 0, &memt, &memh, NULL, NULL)) memr = -1; if (ior != -1) if (pci_mapreg_map(pa, ior, PCI_MAPREG_TYPE_IO, 0, &iot, &ioh, NULL, NULL)) ior = -1; if (memr != -1) { mly->mly_iot = memt; mly->mly_ioh = memh; } else if (ior != -1) { mly->mly_iot = iot; mly->mly_ioh = ioh; } else { aprint_error_dev(self, "can't map i/o or memory space\n"); return; } /* * Enable the device. */ reg = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG); pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, reg | PCI_COMMAND_MASTER_ENABLE); /* * Map and establish the interrupt. */ if (pci_intr_map(pa, &ih)) { aprint_error_dev(self, "can't map interrupt\n"); return; } intrstr = pci_intr_string(pc, ih); mly->mly_ih = pci_intr_establish(pc, ih, IPL_BIO, mly_intr, mly); if (mly->mly_ih == NULL) { aprint_error_dev(self, "can't establish interrupt"); if (intrstr != NULL) printf(" at %s", intrstr); printf("\n"); return; } if (intrstr != NULL) printf("%s: interrupting at %s\n", device_xname(&mly->mly_dv), intrstr); /* * Take care of interface-specific tasks. */ switch (mly->mly_hwif) { case MLY_HWIF_I960RX: mly->mly_doorbell_true = 0x00; mly->mly_cmd_mailbox = MLY_I960RX_COMMAND_MAILBOX; mly->mly_status_mailbox = MLY_I960RX_STATUS_MAILBOX; mly->mly_idbr = MLY_I960RX_IDBR; mly->mly_odbr = MLY_I960RX_ODBR; mly->mly_error_status = MLY_I960RX_ERROR_STATUS; mly->mly_interrupt_status = MLY_I960RX_INTERRUPT_STATUS; mly->mly_interrupt_mask = MLY_I960RX_INTERRUPT_MASK; break; case MLY_HWIF_STRONGARM: mly->mly_doorbell_true = 0xff; mly->mly_cmd_mailbox = MLY_STRONGARM_COMMAND_MAILBOX; mly->mly_status_mailbox = MLY_STRONGARM_STATUS_MAILBOX; mly->mly_idbr = MLY_STRONGARM_IDBR; mly->mly_odbr = MLY_STRONGARM_ODBR; mly->mly_error_status = MLY_STRONGARM_ERROR_STATUS; mly->mly_interrupt_status = MLY_STRONGARM_INTERRUPT_STATUS; mly->mly_interrupt_mask = MLY_STRONGARM_INTERRUPT_MASK; break; } /* * Allocate and map the scatter/gather lists. */ rv = mly_dmamem_alloc(mly, MLY_SGL_SIZE * MLY_MAX_CCBS, &mly->mly_sg_dmamap, (void **)&mly->mly_sg, &mly->mly_sg_busaddr, &mly->mly_sg_seg); if (rv) { printf("%s: unable to allocate S/G maps\n", device_xname(&mly->mly_dv)); goto bad; } state++; /* * Allocate and map the memory mailbox. */ rv = mly_dmamem_alloc(mly, sizeof(struct mly_mmbox), &mly->mly_mmbox_dmamap, (void **)&mly->mly_mmbox, &mly->mly_mmbox_busaddr, &mly->mly_mmbox_seg); if (rv) { aprint_error_dev(&mly->mly_dv, "unable to allocate mailboxes\n"); goto bad; } state++; /* * Initialise per-controller queues. */ SLIST_INIT(&mly->mly_ccb_free); SIMPLEQ_INIT(&mly->mly_ccb_queue); /* * Disable interrupts before we start talking to the controller. */ mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_DISABLE); /* * Wait for the controller to come ready, handshaking with the * firmware if required. This is typically only necessary on * platforms where the controller BIOS does not run. */ if (mly_fwhandshake(mly)) { aprint_error_dev(&mly->mly_dv, "unable to bring controller online\n"); goto bad; } /* * Allocate initial command buffers, obtain controller feature * information, and then reallocate command buffers, since we'll * know how many we want. */ if (mly_alloc_ccbs(mly)) { aprint_error_dev(&mly->mly_dv, "unable to allocate CCBs\n"); goto bad; } state++; if (mly_get_controllerinfo(mly)) { aprint_error_dev(&mly->mly_dv, "unable to retrieve controller info\n"); goto bad; } mly_release_ccbs(mly); if (mly_alloc_ccbs(mly)) { aprint_error_dev(&mly->mly_dv, "unable to allocate CCBs\n"); state--; goto bad; } /* * Get the current event counter for health purposes, populate the * initial health status buffer. */ if (mly_get_eventstatus(mly)) { aprint_error_dev(&mly->mly_dv, "unable to retrieve event status\n"); goto bad; } /* * Enable memory-mailbox mode. */ if (mly_enable_mmbox(mly)) { aprint_error_dev(&mly->mly_dv, "unable to enable memory mailbox\n"); goto bad; } /* * Print a little information about the controller. */ mi = mly->mly_controllerinfo; printf("%s: %d physical channel%s, firmware %d.%02d-%d-%02d " "(%02d%02d%02d%02d), %dMB RAM\n", device_xname(&mly->mly_dv), mi->physical_channels_present, (mi->physical_channels_present) > 1 ? "s" : "", mi->fw_major, mi->fw_minor, mi->fw_turn, mi->fw_build, mi->fw_century, mi->fw_year, mi->fw_month, mi->fw_day, le16toh(mi->memory_size)); /* * Register our `shutdownhook'. */ if (mly_sdh == NULL) shutdownhook_establish(mly_shutdown, NULL); /* * Clear any previous BTL information. For each bus that scsipi * wants to scan, we'll receive the SCBUSIOLLSCAN ioctl and retrieve * all BTL info at that point. */ memset(&mly->mly_btl, 0, sizeof(mly->mly_btl)); mly->mly_nchans = mly->mly_controllerinfo->physical_channels_present + mly->mly_controllerinfo->virtual_channels_present; /* * Attach to scsipi. */ adapt = &mly->mly_adapt; memset(adapt, 0, sizeof(*adapt)); adapt->adapt_dev = &mly->mly_dv; adapt->adapt_nchannels = mly->mly_nchans; adapt->adapt_openings = mly->mly_ncmds - MLY_CCBS_RESV; adapt->adapt_max_periph = mly->mly_ncmds - MLY_CCBS_RESV; adapt->adapt_request = mly_scsipi_request; adapt->adapt_minphys = mly_scsipi_minphys; adapt->adapt_ioctl = mly_scsipi_ioctl; for (i = 0; i < mly->mly_nchans; i++) { chan = &mly->mly_chans[i]; memset(chan, 0, sizeof(*chan)); chan->chan_adapter = adapt; chan->chan_bustype = &scsi_bustype; chan->chan_channel = i; chan->chan_ntargets = MLY_MAX_TARGETS; chan->chan_nluns = MLY_MAX_LUNS; chan->chan_id = mly->mly_controllerparam->initiator_id; chan->chan_flags = SCSIPI_CHAN_NOSETTLE; config_found(&mly->mly_dv, chan, scsiprint); } /* * Now enable interrupts... */ mly_outb(mly, mly->mly_interrupt_mask, MLY_INTERRUPT_MASK_ENABLE); /* * Finally, create our monitoring thread. */ mly->mly_state |= MLY_STATE_INITOK; rv = kthread_create(PRI_NONE, 0, NULL, mly_thread, mly, &mly->mly_thread, "%s", device_xname(&mly->mly_dv)); if (rv != 0) aprint_error_dev(&mly->mly_dv, "unable to create thread (%d)\n", rv); return; bad: if (state > 2) mly_release_ccbs(mly); if (state > 1) mly_dmamem_free(mly, sizeof(struct mly_mmbox), mly->mly_mmbox_dmamap, (void *)mly->mly_mmbox, &mly->mly_mmbox_seg); if (state > 0) mly_dmamem_free(mly, MLY_SGL_SIZE * MLY_MAX_CCBS, mly->mly_sg_dmamap, (void *)mly->mly_sg, &mly->mly_sg_seg); } /* * Scan all possible devices on the specified channel. */ static void mly_scan_channel(struct mly_softc *mly, int bus) { int s, target; for (target = 0; target < MLY_MAX_TARGETS; target++) { s = splbio(); if (!mly_scan_btl(mly, bus, target)) { tsleep(&mly->mly_btl[bus][target], PRIBIO, "mlyscan", 0); } splx(s); } } /* * Shut down all configured `mly' devices. */ static void mly_shutdown(void *cookie) { struct mly_softc *mly; int i; for (i = 0; i < mly_cd.cd_ndevs; i++) { if ((mly = device_lookup_private(&mly_cd, i)) == NULL) continue; if (mly_flush(mly)) aprint_error_dev(&mly->mly_dv, "unable to flush cache\n"); } } /* * Fill in the mly_controllerinfo and mly_controllerparam fields in the * softc. */ static int mly_get_controllerinfo(struct mly_softc *mly) { struct mly_cmd_ioctl mci; int rv; /* * Build the getcontrollerinfo ioctl and send it. */ memset(&mci, 0, sizeof(mci)); mci.sub_ioctl = MDACIOCTL_GETCONTROLLERINFO; rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerinfo, sizeof(*mly->mly_controllerinfo), NULL, NULL); if (rv != 0) return (rv); /* * Build the getcontrollerparameter ioctl and send it. */ memset(&mci, 0, sizeof(mci)); mci.sub_ioctl = MDACIOCTL_GETCONTROLLERPARAMETER; rv = mly_ioctl(mly, &mci, (void **)&mly->mly_controllerparam, sizeof(*mly->mly_controllerparam), NULL, NULL); return (rv); } /* * Rescan a device, possibly as a consequence of getting an event which * suggests that it may have changed. Must be called with interrupts * blocked. */ static int mly_scan_btl(struct mly_softc *mly, int bus, int target) { struct mly_ccb *mc; struct mly_cmd_ioctl *mci; int rv; if (target == mly->mly_controllerparam->initiator_id) { mly->mly_btl[bus][target].mb_flags = MLY_BTL_PROTECTED; return (EIO); } /* Don't re-scan if a scan is already in progress. */ if ((mly->mly_btl[bus][target].mb_flags & MLY_BTL_SCANNING) != 0) return (EBUSY); /* Get a command. */ if ((rv = mly_ccb_alloc(mly, &mc)) != 0) return (rv); /* Set up the data buffer. */ mc->mc_data = malloc(sizeof(union mly_devinfo), M_DEVBUF, M_NOWAIT|M_ZERO); mc->mc_flags |= MLY_CCB_DATAIN; mc->mc_complete = mly_complete_rescan; /* * Build the ioctl. */ mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl; mci->opcode = MDACMD_IOCTL; mci->timeout = 30 | MLY_TIMEOUT_SECONDS; memset(&mci->param, 0, sizeof(mci->param)); if (MLY_BUS_IS_VIRTUAL(mly, bus)) { mc->mc_length = sizeof(struct mly_ioctl_getlogdevinfovalid); mci->data_size = htole32(mc->mc_length); mci->sub_ioctl = MDACIOCTL_GETLOGDEVINFOVALID; _lto3l(MLY_LOGADDR(0, MLY_LOGDEV_ID(mly, bus, target)), mci->addr); } else { mc->mc_length = sizeof(struct mly_ioctl_getphysdevinfovalid); mci->data_size = htole32(mc->mc_length); mci->sub_ioctl = MDACIOCTL_GETPHYSDEVINFOVALID; _lto3l(MLY_PHYADDR(0, bus, target, 0), mci->addr); } /* * Dispatch the command. */ if ((rv = mly_ccb_map(mly, mc)) != 0) { free(mc->mc_data, M_DEVBUF); mly_ccb_free(mly, mc); return(rv); } mly->mly_btl[bus][target].mb_flags |= MLY_BTL_SCANNING; mly_ccb_enqueue(mly, mc); return (0); } /* * Handle the completion of a rescan operation. */ static void mly_complete_rescan(struct mly_softc *mly, struct mly_ccb *mc) { struct mly_ioctl_getlogdevinfovalid *ldi; struct mly_ioctl_getphysdevinfovalid *pdi; struct mly_cmd_ioctl *mci; struct mly_btl btl, *btlp; struct scsipi_xfer_mode xm; int bus, target, rescan; u_int tmp; mly_ccb_unmap(mly, mc); /* * Recover the bus and target from the command. We need these even * in the case where we don't have a useful response. */ mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl; tmp = _3ltol(mci->addr); rescan = 0; if (mci->sub_ioctl == MDACIOCTL_GETLOGDEVINFOVALID) { bus = MLY_LOGDEV_BUS(mly, MLY_LOGADDR_DEV(tmp)); target = MLY_LOGDEV_TARGET(mly, MLY_LOGADDR_DEV(tmp)); } else { bus = MLY_PHYADDR_CHANNEL(tmp); target = MLY_PHYADDR_TARGET(tmp); } btlp = &mly->mly_btl[bus][target]; /* The default result is 'no device'. */ memset(&btl, 0, sizeof(btl)); btl.mb_flags = MLY_BTL_PROTECTED; /* If the rescan completed OK, we have possibly-new BTL data. */ if (mc->mc_status != 0) goto out; if (mc->mc_length == sizeof(*ldi)) { ldi = (struct mly_ioctl_getlogdevinfovalid *)mc->mc_data; tmp = le32toh(ldi->logical_device_number); if (MLY_LOGDEV_BUS(mly, tmp) != bus || MLY_LOGDEV_TARGET(mly, tmp) != target) { #ifdef MLYDEBUG printf("%s: WARNING: BTL rescan (logical) for %d:%d " "returned data for %d:%d instead\n", device_xname(&mly->mly_dv), bus, target, MLY_LOGDEV_BUS(mly, tmp), MLY_LOGDEV_TARGET(mly, tmp)); #endif goto out; } btl.mb_flags = MLY_BTL_LOGICAL | MLY_BTL_TQING; btl.mb_type = ldi->raid_level; btl.mb_state = ldi->state; } else if (mc->mc_length == sizeof(*pdi)) { pdi = (struct mly_ioctl_getphysdevinfovalid *)mc->mc_data; if (pdi->channel != bus || pdi->target != target) { #ifdef MLYDEBUG printf("%s: WARNING: BTL rescan (physical) for %d:%d " " returned data for %d:%d instead\n", device_xname(&mly->mly_dv), bus, target, pdi->channel, pdi->target); #endif goto out; } btl.mb_flags = MLY_BTL_PHYSICAL; btl.mb_type = MLY_DEVICE_TYPE_PHYSICAL; btl.mb_state = pdi->state; btl.mb_speed = pdi->speed; btl.mb_width = pdi->width; if (pdi->state != MLY_DEVICE_STATE_UNCONFIGURED) btl.mb_flags |= MLY_BTL_PROTECTED; if (pdi->command_tags != 0) btl.mb_flags |= MLY_BTL_TQING; } else { printf("%s: BTL rescan result invalid\n", device_xname(&mly->mly_dv)); goto out; } /* Decide whether we need to rescan the device. */ if (btl.mb_flags != btlp->mb_flags || btl.mb_speed != btlp->mb_speed || btl.mb_width != btlp->mb_width) rescan = 1; out: *btlp = btl; if (rescan && (btl.mb_flags & MLY_BTL_PROTECTED) == 0) { xm.xm_target = target; mly_get_xfer_mode(mly, bus, &xm); /* XXX SCSI mid-layer rescan goes here. */ } /* Wake anybody waiting on the device to be rescanned. */ wakeup(btlp); free(mc->mc_data, M_DEVBUF); mly_ccb_free(mly, mc); } /* * Get the current health status and set the 'next event' counter to suit. */ static int mly_get_eventstatus(struct mly_softc *mly) { struct mly_cmd_ioctl mci; struct mly_health_status *mh; int rv; /* Build the gethealthstatus ioctl and send it. */ memset(&mci, 0, sizeof(mci)); mh = NULL; mci.sub_ioctl = MDACIOCTL_GETHEALTHSTATUS; rv = mly_ioctl(mly, &mci, (void *)&mh, sizeof(*mh), NULL, NULL); if (rv) return (rv); /* Get the event counter. */ mly->mly_event_change = le32toh(mh->change_counter); mly->mly_event_waiting = le32toh(mh->next_event); mly->mly_event_counter = le32toh(mh->next_event); /* Save the health status into the memory mailbox */ memcpy(&mly->mly_mmbox->mmm_health.status, mh, sizeof(*mh)); bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap, offsetof(struct mly_mmbox, mmm_health), sizeof(mly->mly_mmbox->mmm_health), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); free(mh, M_DEVBUF); return (0); } /* * Enable memory mailbox mode. */ static int mly_enable_mmbox(struct mly_softc *mly) { struct mly_cmd_ioctl mci; u_int8_t *sp; u_int64_t tmp; int rv; /* Build the ioctl and send it. */ memset(&mci, 0, sizeof(mci)); mci.sub_ioctl = MDACIOCTL_SETMEMORYMAILBOX; /* Set buffer addresses. */ tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_command); mci.param.setmemorymailbox.command_mailbox_physaddr = htole64(tmp); tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_status); mci.param.setmemorymailbox.status_mailbox_physaddr = htole64(tmp); tmp = mly->mly_mmbox_busaddr + offsetof(struct mly_mmbox, mmm_health); mci.param.setmemorymailbox.health_buffer_physaddr = htole64(tmp); /* Set buffer sizes - abuse of data_size field is revolting. */ sp = (u_int8_t *)&mci.data_size; sp[0] = (sizeof(union mly_cmd_packet) * MLY_MMBOX_COMMANDS) >> 10; sp[1] = (sizeof(union mly_status_packet) * MLY_MMBOX_STATUS) >> 10; mci.param.setmemorymailbox.health_buffer_size = sizeof(union mly_health_region) >> 10; rv = mly_ioctl(mly, &mci, NULL, 0, NULL, NULL); if (rv) return (rv); mly->mly_state |= MLY_STATE_MMBOX_ACTIVE; return (0); } /* * Flush all pending I/O from the controller. */ static int mly_flush(struct mly_softc *mly) { struct mly_cmd_ioctl mci; /* Build the ioctl */ memset(&mci, 0, sizeof(mci)); mci.sub_ioctl = MDACIOCTL_FLUSHDEVICEDATA; mci.param.deviceoperation.operation_device = MLY_OPDEVICE_PHYSICAL_CONTROLLER; /* Pass it off to the controller */ return (mly_ioctl(mly, &mci, NULL, 0, NULL, NULL)); } /* * Perform an ioctl command. * * If (data) is not NULL, the command requires data transfer to the * controller. If (*data) is NULL the command requires data transfer from * the controller, and we will allocate a buffer for it. */ static int mly_ioctl(struct mly_softc *mly, struct mly_cmd_ioctl *ioctl, void **data, size_t datasize, void *sense_buffer, size_t *sense_length) { struct mly_ccb *mc; struct mly_cmd_ioctl *mci; u_int8_t status; int rv; mc = NULL; if ((rv = mly_ccb_alloc(mly, &mc)) != 0) goto bad; /* * Copy the ioctl structure, but save some important fields and then * fixup. */ mci = &mc->mc_packet->ioctl; ioctl->sense_buffer_address = htole64(mci->sense_buffer_address); ioctl->maximum_sense_size = mci->maximum_sense_size; *mci = *ioctl; mci->opcode = MDACMD_IOCTL; mci->timeout = 30 | MLY_TIMEOUT_SECONDS; /* Handle the data buffer. */ if (data != NULL) { if (*data == NULL) { /* Allocate data buffer */ mc->mc_data = malloc(datasize, M_DEVBUF, M_NOWAIT); mc->mc_flags |= MLY_CCB_DATAIN; } else { mc->mc_data = *data; mc->mc_flags |= MLY_CCB_DATAOUT; } mc->mc_length = datasize; mc->mc_packet->generic.data_size = htole32(datasize); } /* Run the command. */ if (datasize > 0) if ((rv = mly_ccb_map(mly, mc)) != 0) goto bad; rv = mly_ccb_poll(mly, mc, 30000); if (datasize > 0) mly_ccb_unmap(mly, mc); if (rv != 0) goto bad; /* Clean up and return any data. */ status = mc->mc_status; if (status != 0) printf("mly_ioctl: command status %d\n", status); if (mc->mc_sense > 0 && sense_buffer != NULL) { memcpy(sense_buffer, mc->mc_packet, mc->mc_sense); *sense_length = mc->mc_sense; goto bad; } /* Should we return a data pointer? */ if (data != NULL && *data == NULL) *data = mc->mc_data; /* Command completed OK. */ rv = (status != 0 ? EIO : 0); bad: if (mc != NULL) { /* Do we need to free a data buffer we allocated? */ if (rv != 0 && mc->mc_data != NULL && (data == NULL || *data == NULL)) free(mc->mc_data, M_DEVBUF); mly_ccb_free(mly, mc); } return (rv); } /* * Check for event(s) outstanding in the controller. */ static void mly_check_event(struct mly_softc *mly) { bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap, offsetof(struct mly_mmbox, mmm_health), sizeof(mly->mly_mmbox->mmm_health), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); /* * The controller may have updated the health status information, so * check for it here. Note that the counters are all in host * memory, so this check is very cheap. Also note that we depend on * checking on completion */ if (le32toh(mly->mly_mmbox->mmm_health.status.change_counter) != mly->mly_event_change) { mly->mly_event_change = le32toh(mly->mly_mmbox->mmm_health.status.change_counter); mly->mly_event_waiting = le32toh(mly->mly_mmbox->mmm_health.status.next_event); /* Wake up anyone that might be interested in this. */ wakeup(&mly->mly_event_change); } bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap, offsetof(struct mly_mmbox, mmm_health), sizeof(mly->mly_mmbox->mmm_health), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); if (mly->mly_event_counter != mly->mly_event_waiting) mly_fetch_event(mly); } /* * Fetch one event from the controller. If we fail due to resource * starvation, we'll be retried the next time a command completes. */ static void mly_fetch_event(struct mly_softc *mly) { struct mly_ccb *mc; struct mly_cmd_ioctl *mci; int s; u_int32_t event; /* Get a command. */ if (mly_ccb_alloc(mly, &mc)) return; /* Set up the data buffer. */ mc->mc_data = malloc(sizeof(struct mly_event), M_DEVBUF, M_NOWAIT|M_ZERO); mc->mc_length = sizeof(struct mly_event); mc->mc_flags |= MLY_CCB_DATAIN; mc->mc_complete = mly_complete_event; /* * Get an event number to fetch. It's possible that we've raced * with another context for the last event, in which case there will * be no more events. */ s = splbio(); if (mly->mly_event_counter == mly->mly_event_waiting) { splx(s); free(mc->mc_data, M_DEVBUF); mly_ccb_free(mly, mc); return; } event = mly->mly_event_counter++; splx(s); /* * Build the ioctl. * * At this point we are committed to sending this request, as it * will be the only one constructed for this particular event * number. */ mci = (struct mly_cmd_ioctl *)&mc->mc_packet->ioctl; mci->opcode = MDACMD_IOCTL; mci->data_size = htole32(sizeof(struct mly_event)); _lto3l(MLY_PHYADDR(0, 0, (event >> 16) & 0xff, (event >> 24) & 0xff), mci->addr); mci->timeout = 30 | MLY_TIMEOUT_SECONDS; mci->sub_ioctl = MDACIOCTL_GETEVENT; mci->param.getevent.sequence_number_low = htole16(event & 0xffff); /* * Submit the command. */ if (mly_ccb_map(mly, mc) != 0) goto bad; mly_ccb_enqueue(mly, mc); return; bad: printf("%s: couldn't fetch event %u\n", device_xname(&mly->mly_dv), event); free(mc->mc_data, M_DEVBUF); mly_ccb_free(mly, mc); } /* * Handle the completion of an event poll. */ static void mly_complete_event(struct mly_softc *mly, struct mly_ccb *mc) { struct mly_event *me; me = (struct mly_event *)mc->mc_data; mly_ccb_unmap(mly, mc); mly_ccb_free(mly, mc); /* If the event was successfully fetched, process it. */ if (mc->mc_status == SCSI_OK) mly_process_event(mly, me); else aprint_error_dev(&mly->mly_dv, "unable to fetch event; status = 0x%x\n", mc->mc_status); free(me, M_DEVBUF); /* Check for another event. */ mly_check_event(mly); } /* * Process a controller event. Called with interrupts blocked (i.e., at * interrupt time). */ static void mly_process_event(struct mly_softc *mly, struct mly_event *me) { struct scsi_sense_data *ssd; int bus, target, event, class, action; const char *fp, *tp; ssd = (struct scsi_sense_data *)&me->sense[0]; /* * Errors can be reported using vendor-unique sense data. In this * case, the event code will be 0x1c (Request sense data present), * the sense key will be 0x09 (vendor specific), the MSB of the ASC * will be set, and the actual event code will be a 16-bit value * comprised of the ASCQ (low byte) and low seven bits of the ASC * (low seven bits of the high byte). */ if (le32toh(me->code) == 0x1c && SSD_SENSE_KEY(ssd->flags) == SKEY_VENDOR_SPECIFIC && (ssd->asc & 0x80) != 0) { event = ((int)(ssd->asc & ~0x80) << 8) + ssd->ascq; } else event = le32toh(me->code); /* Look up event, get codes. */ fp = mly_describe_code(mly_table_event, event); /* Quiet event? */ class = fp[0]; #ifdef notyet if (isupper(class) && bootverbose) class = tolower(class); #endif /* Get action code, text string. */ action = fp[1]; tp = fp + 3; /* * Print some information about the event. * * This code uses a table derived from the corresponding portion of * the Linux driver, and thus the parser is very similar. */ switch (class) { case 'p': /* * Error on physical drive. */ printf("%s: physical device %d:%d %s\n", device_xname(&mly->mly_dv), me->channel, me->target, tp); if (action == 'r') mly->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN; break; case 'l': case 'm': /* * Error on logical unit, or message about logical unit. */ bus = MLY_LOGDEV_BUS(mly, me->lun); target = MLY_LOGDEV_TARGET(mly, me->lun); printf("%s: logical device %d:%d %s\n", device_xname(&mly->mly_dv), bus, target, tp); if (action == 'r') mly->mly_btl[bus][target].mb_flags |= MLY_BTL_RESCAN; break; case 's': /* * Report of sense data. */ if ((SSD_SENSE_KEY(ssd->flags) == SKEY_NO_SENSE || SSD_SENSE_KEY(ssd->flags) == SKEY_NOT_READY) && ssd->asc == 0x04 && (ssd->ascq == 0x01 || ssd->ascq == 0x02)) { /* Ignore NO_SENSE or NOT_READY in one case */ break; } /* * XXX Should translate this if SCSIVERBOSE. */ printf("%s: physical device %d:%d %s\n", device_xname(&mly->mly_dv), me->channel, me->target, tp); printf("%s: sense key %d asc %02x ascq %02x\n", device_xname(&mly->mly_dv), SSD_SENSE_KEY(ssd->flags), ssd->asc, ssd->ascq); printf("%s: info %x%x%x%x csi %x%x%x%x\n", device_xname(&mly->mly_dv), ssd->info[0], ssd->info[1], ssd->info[2], ssd->info[3], ssd->csi[0], ssd->csi[1], ssd->csi[2], ssd->csi[3]); if (action == 'r') mly->mly_btl[me->channel][me->target].mb_flags |= MLY_BTL_RESCAN; break; case 'e': printf("%s: ", device_xname(&mly->mly_dv)); printf(tp, me->target, me->lun); break; case 'c': printf("%s: controller %s\n", device_xname(&mly->mly_dv), tp); break; case '?': printf("%s: %s - %d\n", device_xname(&mly->mly_dv), tp, event); break; default: /* Probably a 'noisy' event being ignored. */ break; } } /* * Perform periodic activities. */ static void mly_thread(void *cookie) { struct mly_softc *mly; struct mly_btl *btl; int s, bus, target, done; mly = (struct mly_softc *)cookie; for (;;) { /* Check for new events. */ mly_check_event(mly); /* Re-scan up to 1 device. */ s = splbio(); done = 0; for (bus = 0; bus < mly->mly_nchans && !done; bus++) { for (target = 0; target < MLY_MAX_TARGETS; target++) { /* Perform device rescan? */ btl = &mly->mly_btl[bus][target]; if ((btl->mb_flags & MLY_BTL_RESCAN) != 0) { btl->mb_flags ^= MLY_BTL_RESCAN; mly_scan_btl(mly, bus, target); done = 1; break; } } } splx(s); /* Sleep for N seconds. */ tsleep(mly_thread, PWAIT, "mlyzzz", hz * MLY_PERIODIC_INTERVAL); } } /* * Submit a command to the controller and poll on completion. Return * non-zero on timeout. */ static int mly_ccb_poll(struct mly_softc *mly, struct mly_ccb *mc, int timo) { int rv; if ((rv = mly_ccb_submit(mly, mc)) != 0) return (rv); for (timo *= 10; timo != 0; timo--) { if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) break; mly_intr(mly); DELAY(100); } return (timo == 0); } /* * Submit a command to the controller and sleep on completion. Return * non-zero on timeout. */ static int mly_ccb_wait(struct mly_softc *mly, struct mly_ccb *mc, int timo) { int rv, s; mly_ccb_enqueue(mly, mc); s = splbio(); if ((mc->mc_flags & MLY_CCB_COMPLETE) != 0) { splx(s); return (0); } rv = tsleep(mc, PRIBIO, "mlywccb", timo * hz / 1000); splx(s); return (rv); } /* * If a CCB is specified, enqueue it. Pull CCBs off the software queue in * the order that they were enqueued and try to submit their command blocks * to the controller for execution. */ void mly_ccb_enqueue(struct mly_softc *mly, struct mly_ccb *mc) { int s; s = splbio(); if (mc != NULL) SIMPLEQ_INSERT_TAIL(&mly->mly_ccb_queue, mc, mc_link.simpleq); while ((mc = SIMPLEQ_FIRST(&mly->mly_ccb_queue)) != NULL) { if (mly_ccb_submit(mly, mc)) break; SIMPLEQ_REMOVE_HEAD(&mly->mly_ccb_queue, mc_link.simpleq); } splx(s); } /* * Deliver a command to the controller. */ static int mly_ccb_submit(struct mly_softc *mly, struct mly_ccb *mc) { union mly_cmd_packet *pkt; int s, off; mc->mc_packet->generic.command_id = htole16(mc->mc_slot); bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap, mc->mc_packetphys - mly->mly_pkt_busaddr, sizeof(union mly_cmd_packet), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); s = splbio(); /* * Do we have to use the hardware mailbox? */ if ((mly->mly_state & MLY_STATE_MMBOX_ACTIVE) == 0) { /* * Check to see if the controller is ready for us. */ if (mly_idbr_true(mly, MLY_HM_CMDSENT)) { splx(s); return (EBUSY); } /* * It's ready, send the command. */ mly_outl(mly, mly->mly_cmd_mailbox, (u_int64_t)mc->mc_packetphys & 0xffffffff); mly_outl(mly, mly->mly_cmd_mailbox + 4, (u_int64_t)mc->mc_packetphys >> 32); mly_outb(mly, mly->mly_idbr, MLY_HM_CMDSENT); } else { pkt = &mly->mly_mmbox->mmm_command[mly->mly_mmbox_cmd_idx]; off = (char *)pkt - (char *)mly->mly_mmbox; bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap, off, sizeof(mly->mly_mmbox->mmm_command[0]), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); /* Check to see if the next index is free yet. */ if (pkt->mmbox.flag != 0) { splx(s); return (EBUSY); } /* Copy in new command */ memcpy(pkt->mmbox.data, mc->mc_packet->mmbox.data, sizeof(pkt->mmbox.data)); /* Copy flag last. */ pkt->mmbox.flag = mc->mc_packet->mmbox.flag; bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap, off, sizeof(mly->mly_mmbox->mmm_command[0]), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD); /* Signal controller and update index. */ mly_outb(mly, mly->mly_idbr, MLY_AM_CMDSENT); mly->mly_mmbox_cmd_idx = (mly->mly_mmbox_cmd_idx + 1) % MLY_MMBOX_COMMANDS; } splx(s); return (0); } /* * Pick up completed commands from the controller and handle accordingly. */ int mly_intr(void *cookie) { struct mly_ccb *mc; union mly_status_packet *sp; u_int16_t slot; int forus, off; struct mly_softc *mly; mly = cookie; forus = 0; /* * Pick up hardware-mailbox commands. */ if (mly_odbr_true(mly, MLY_HM_STSREADY)) { slot = mly_inw(mly, mly->mly_status_mailbox); if (slot < MLY_SLOT_MAX) { mc = mly->mly_ccbs + (slot - MLY_SLOT_START); mc->mc_status = mly_inb(mly, mly->mly_status_mailbox + 2); mc->mc_sense = mly_inb(mly, mly->mly_status_mailbox + 3); mc->mc_resid = mly_inl(mly, mly->mly_status_mailbox + 4); mly_ccb_complete(mly, mc); } else { /* Slot 0xffff may mean "extremely bogus command". */ printf("%s: got HM completion for illegal slot %u\n", device_xname(&mly->mly_dv), slot); } /* Unconditionally acknowledge status. */ mly_outb(mly, mly->mly_odbr, MLY_HM_STSREADY); mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK); forus = 1; } /* * Pick up memory-mailbox commands. */ if (mly_odbr_true(mly, MLY_AM_STSREADY)) { for (;;) { sp = &mly->mly_mmbox->mmm_status[mly->mly_mmbox_sts_idx]; off = (char *)sp - (char *)mly->mly_mmbox; bus_dmamap_sync(mly->mly_dmat, mly->mly_mmbox_dmamap, off, sizeof(mly->mly_mmbox->mmm_command[0]), BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD); /* Check for more status. */ if (sp->mmbox.flag == 0) break; /* Get slot number. */ slot = le16toh(sp->status.command_id); if (slot < MLY_SLOT_MAX) { mc = mly->mly_ccbs + (slot - MLY_SLOT_START); mc->mc_status = sp->status.status; mc->mc_sense = sp->status.sense_length; mc->mc_resid = le32toh(sp->status.residue); mly_ccb_complete(mly, mc); } else { /* * Slot 0xffff may mean "extremely bogus * command". */ printf("%s: got AM completion for illegal " "slot %u at %d\n", device_xname(&mly->mly_dv), slot, mly->mly_mmbox_sts_idx); } /* Clear and move to next index. */ sp->mmbox.flag = 0; mly->mly_mmbox_sts_idx = (mly->mly_mmbox_sts_idx + 1) % MLY_MMBOX_STATUS; } /* Acknowledge that we have collected status value(s). */ mly_outb(mly, mly->mly_odbr, MLY_AM_STSREADY); forus = 1; } /* * Run the queue. */ if (forus && ! SIMPLEQ_EMPTY(&mly->mly_ccb_queue)) mly_ccb_enqueue(mly, NULL); return (forus); } /* * Process completed commands */ static void mly_ccb_complete(struct mly_softc *mly, struct mly_ccb *mc) { void (*complete)(struct mly_softc *, struct mly_ccb *); bus_dmamap_sync(mly->mly_dmat, mly->mly_pkt_dmamap, mc->mc_packetphys - mly->mly_pkt_busaddr, sizeof(union mly_cmd_packet), BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); complete = mc->mc_complete; mc->mc_flags |= MLY_CCB_COMPLETE; /* * Call completion handler or wake up sleeping consumer. */ if (complete != NULL) (*complete)(mly, mc); else wakeup(mc); } /* * Allocate a command. */ int mly_ccb_alloc(struct mly_softc *mly, struct mly_ccb **mcp) { struct mly_ccb *mc; int s; s = splbio(); mc = SLIST_FIRST(&mly->mly_ccb_free); if (mc != NULL) SLIST_REMOVE_HEAD(&mly->mly_ccb_free, mc_link.slist); splx(s); *mcp = mc; return (mc == NULL ? EAGAIN : 0); } /* * Release a command back to the freelist. */ void mly_ccb_free(struct mly_softc *mly, struct mly_ccb *mc) { int s; /* * Fill in parts of the command that may cause confusion if a * consumer doesn't when we are later allocated. */ mc->mc_data = NULL; mc->mc_flags = 0; mc->mc_complete = NULL; mc->mc_private = NULL; mc->mc_packet->generic.command_control = 0; /* * By default, we set up to overwrite the command packet with sense * information. */ mc->mc_packet->generic.sense_buffer_address = htole64(mc->mc_packetphys); mc->mc_packet->generic.maximum_sense_size = sizeof(union mly_cmd_packet); s = splbio(); SLIST_INSERT_HEAD(&mly->mly_ccb_free, mc, mc_link.slist); splx(s); } /* * Allocate and initialize command and packet structures. * * If the controller supports fewer than MLY_MAX_CCBS commands, limit our * allocation to that number. If we don't yet know how many commands the * controller supports, allocate a very small set (suitable for initialization * purposes only). */ static int mly_alloc_ccbs(struct mly_softc *mly) { struct mly_ccb *mc; int i, rv; if (mly->mly_controllerinfo == NULL) mly->mly_ncmds = MLY_CCBS_RESV; else { i = le16toh(mly->mly_controllerinfo->maximum_parallel_commands); mly->mly_ncmds = min(MLY_MAX_CCBS, i); } /* * Allocate enough space for all the command packets in one chunk * and map them permanently into controller-visible space. */ rv = mly_dmamem_alloc(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet), &mly->mly_pkt_dmamap, (void **)&mly->mly_pkt, &mly->mly_pkt_busaddr, &mly->mly_pkt_seg); if (rv) return (rv); mly->mly_ccbs = malloc(sizeof(struct mly_ccb) * mly->mly_ncmds, M_DEVBUF, M_NOWAIT|M_ZERO); for (i = 0; i < mly->mly_ncmds; i++) { mc = mly->mly_ccbs + i; mc->mc_slot = MLY_SLOT_START + i; mc->mc_packet = mly->mly_pkt + i; mc->mc_packetphys = mly->mly_pkt_busaddr + (i * sizeof(union mly_cmd_packet)); rv = bus_dmamap_create(mly->mly_dmat, MLY_MAX_XFER, MLY_MAX_SEGS, MLY_MAX_XFER, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW, &mc->mc_datamap); if (rv) { mly_release_ccbs(mly); return (rv); } mly_ccb_free(mly, mc); } return (0); } /* * Free all the storage held by commands. * * Must be called with all commands on the free list. */ static void mly_release_ccbs(struct mly_softc *mly) { struct mly_ccb *mc; /* Throw away command buffer DMA maps. */ while (mly_ccb_alloc(mly, &mc) == 0) bus_dmamap_destroy(mly->mly_dmat, mc->mc_datamap); /* Release CCB storage. */ free(mly->mly_ccbs, M_DEVBUF); /* Release the packet storage. */ mly_dmamem_free(mly, mly->mly_ncmds * sizeof(union mly_cmd_packet), mly->mly_pkt_dmamap, (void *)mly->mly_pkt, &mly->mly_pkt_seg); } /* * Map a command into controller-visible space. */ static int mly_ccb_map(struct mly_softc *mly, struct mly_ccb *mc) { struct mly_cmd_generic *gen; struct mly_sg_entry *sg; bus_dma_segment_t *ds; int flg, nseg, rv; #ifdef DIAGNOSTIC /* Don't map more than once. */ if ((mc->mc_flags & MLY_CCB_MAPPED) != 0) panic("mly_ccb_map: already mapped"); mc->mc_flags |= MLY_CCB_MAPPED; /* Does the command have a data buffer? */ if (mc->mc_data == NULL) panic("mly_ccb_map: no data buffer"); #endif rv = bus_dmamap_load(mly->mly_dmat, mc->mc_datamap, mc->mc_data, mc->mc_length, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING | ((mc->mc_flags & MLY_CCB_DATAIN) != 0 ? BUS_DMA_READ : BUS_DMA_WRITE)); if (rv != 0) return (rv); gen = &mc->mc_packet->generic; /* * Can we use the transfer structure directly? */ if ((nseg = mc->mc_datamap->dm_nsegs) <= 2) { mc->mc_sgoff = -1; sg = &gen->transfer.direct.sg[0]; } else { mc->mc_sgoff = (mc->mc_slot - MLY_SLOT_START) * MLY_MAX_SEGS; sg = mly->mly_sg + mc->mc_sgoff; gen->command_control |= MLY_CMDCTL_EXTENDED_SG_TABLE; gen->transfer.indirect.entries[0] = htole16(nseg); gen->transfer.indirect.table_physaddr[0] = htole64(mly->mly_sg_busaddr + (mc->mc_sgoff * sizeof(struct mly_sg_entry))); } /* * Fill the S/G table. */ for (ds = mc->mc_datamap->dm_segs; nseg != 0; nseg--, sg++, ds++) { sg->physaddr = htole64(ds->ds_addr); sg->length = htole64(ds->ds_len); } /* * Sync up the data map. */ if ((mc->mc_flags & MLY_CCB_DATAIN) != 0) flg = BUS_DMASYNC_PREREAD; else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ { gen->command_control |= MLY_CMDCTL_DATA_DIRECTION; flg = BUS_DMASYNC_PREWRITE; } bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg); /* * Sync up the chained S/G table, if we're using one. */ if (mc->mc_sgoff == -1) return (0); bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff, MLY_SGL_SIZE, BUS_DMASYNC_PREWRITE); return (0); } /* * Unmap a command from controller-visible space. */ static void mly_ccb_unmap(struct mly_softc *mly, struct mly_ccb *mc) { int flg; #ifdef DIAGNOSTIC if ((mc->mc_flags & MLY_CCB_MAPPED) == 0) panic("mly_ccb_unmap: not mapped"); mc->mc_flags &= ~MLY_CCB_MAPPED; #endif if ((mc->mc_flags & MLY_CCB_DATAIN) != 0) flg = BUS_DMASYNC_POSTREAD; else /* if ((mc->mc_flags & MLY_CCB_DATAOUT) != 0) */ flg = BUS_DMASYNC_POSTWRITE; bus_dmamap_sync(mly->mly_dmat, mc->mc_datamap, 0, mc->mc_length, flg); bus_dmamap_unload(mly->mly_dmat, mc->mc_datamap); if (mc->mc_sgoff == -1) return; bus_dmamap_sync(mly->mly_dmat, mly->mly_sg_dmamap, mc->mc_sgoff, MLY_SGL_SIZE, BUS_DMASYNC_POSTWRITE); } /* * Adjust the size of each I/O before it passes to the SCSI layer. */ static void mly_scsipi_minphys(struct buf *bp) { if (bp->b_bcount > MLY_MAX_XFER) bp->b_bcount = MLY_MAX_XFER; minphys(bp); } /* * Start a SCSI command. */ static void mly_scsipi_request(struct scsipi_channel *chan, scsipi_adapter_req_t req, void *arg) { struct mly_ccb *mc; struct mly_cmd_scsi_small *ss; struct scsipi_xfer *xs; struct scsipi_periph *periph; struct mly_softc *mly; struct mly_btl *btl; int s, tmp; mly = (void *)chan->chan_adapter->adapt_dev; switch (req) { case ADAPTER_REQ_RUN_XFER: xs = arg; periph = xs->xs_periph; btl = &mly->mly_btl[chan->chan_channel][periph->periph_target]; s = splbio(); tmp = btl->mb_flags; splx(s); /* * Check for I/O attempt to a protected or non-existant * device. */ if ((tmp & MLY_BTL_PROTECTED) != 0) { xs->error = XS_SELTIMEOUT; scsipi_done(xs); break; } #ifdef DIAGNOSTIC /* XXX Increase if/when we support large SCSI commands. */ if (xs->cmdlen > MLY_CMD_SCSI_SMALL_CDB) { printf("%s: cmd too large\n", device_xname(&mly->mly_dv)); xs->error = XS_DRIVER_STUFFUP; scsipi_done(xs); break; } #endif if (mly_ccb_alloc(mly, &mc)) { xs->error = XS_RESOURCE_SHORTAGE; scsipi_done(xs); break; } /* Build the command. */ mc->mc_data = xs->data; mc->mc_length = xs->datalen; mc->mc_complete = mly_scsipi_complete; mc->mc_private = xs; /* Build the packet for the controller. */ ss = &mc->mc_packet->scsi_small; ss->opcode = MDACMD_SCSI; #ifdef notdef /* * XXX FreeBSD does this, but it doesn't fix anything, * XXX and appears potentially harmful. */ ss->command_control |= MLY_CMDCTL_DISABLE_DISCONNECT; #endif ss->data_size = htole32(xs->datalen); _lto3l(MLY_PHYADDR(0, chan->chan_channel, periph->periph_target, periph->periph_lun), ss->addr); if (xs->timeout < 60 * 1000) ss->timeout = xs->timeout / 1000 | MLY_TIMEOUT_SECONDS; else if (xs->timeout < 60 * 60 * 1000) ss->timeout = xs->timeout / (60 * 1000) | MLY_TIMEOUT_MINUTES; else ss->timeout = xs->timeout / (60 * 60 * 1000) | MLY_TIMEOUT_HOURS; ss->maximum_sense_size = sizeof(xs->sense); ss->cdb_length = xs->cmdlen; memcpy(ss->cdb, xs->cmd, xs->cmdlen); if (mc->mc_length != 0) { if ((xs->xs_control & XS_CTL_DATA_OUT) != 0) mc->mc_flags |= MLY_CCB_DATAOUT; else /* if ((xs->xs_control & XS_CTL_DATA_IN) != 0) */ mc->mc_flags |= MLY_CCB_DATAIN; if (mly_ccb_map(mly, mc) != 0) { xs->error = XS_DRIVER_STUFFUP; mly_ccb_free(mly, mc); scsipi_done(xs); break; } } /* * Give the command to the controller. */ if ((xs->xs_control & XS_CTL_POLL) != 0) { if (mly_ccb_poll(mly, mc, xs->timeout + 5000)) { xs->error = XS_REQUEUE; if (mc->mc_length != 0) mly_ccb_unmap(mly, mc); mly_ccb_free(mly, mc); scsipi_done(xs); } } else mly_ccb_enqueue(mly, mc); break; case ADAPTER_REQ_GROW_RESOURCES: /* * Not supported. */ break; case ADAPTER_REQ_SET_XFER_MODE: /* * We can't change the transfer mode, but at least let * scsipi know what the adapter has negotiated. */ mly_get_xfer_mode(mly, chan->chan_channel, arg); break; } } /* * Handle completion of a SCSI command. */ static void mly_scsipi_complete(struct mly_softc *mly, struct mly_ccb *mc) { struct scsipi_xfer *xs; struct scsipi_channel *chan; struct scsipi_inquiry_data *inq; struct mly_btl *btl; int target, sl, s; const char *p; xs = mc->mc_private; xs->status = mc->mc_status; /* * XXX The `resid' value as returned by the controller appears to be * bogus, so we always set it to zero. Is it perhaps the transfer * count? */ xs->resid = 0; /* mc->mc_resid; */ if (mc->mc_length != 0) mly_ccb_unmap(mly, mc); switch (mc->mc_status) { case SCSI_OK: /* * In order to report logical device type and status, we * overwrite the result of the INQUIRY command to logical * devices. */ if (xs->cmd->opcode == INQUIRY) { chan = xs->xs_periph->periph_channel; target = xs->xs_periph->periph_target; btl = &mly->mly_btl[chan->chan_channel][target]; s = splbio(); if ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) { inq = (struct scsipi_inquiry_data *)xs->data; mly_padstr(inq->vendor, "MYLEX", 8); p = mly_describe_code(mly_table_device_type, btl->mb_type); mly_padstr(inq->product, p, 16); p = mly_describe_code(mly_table_device_state, btl->mb_state); mly_padstr(inq->revision, p, 4); } splx(s); } xs->error = XS_NOERROR; break; case SCSI_CHECK: sl = mc->mc_sense; if (sl > sizeof(xs->sense.scsi_sense)) sl = sizeof(xs->sense.scsi_sense); memcpy(&xs->sense.scsi_sense, mc->mc_packet, sl); xs->error = XS_SENSE; break; case SCSI_BUSY: case SCSI_QUEUE_FULL: xs->error = XS_BUSY; break; default: printf("%s: unknown SCSI status 0x%x\n", device_xname(&mly->mly_dv), xs->status); xs->error = XS_DRIVER_STUFFUP; break; } mly_ccb_free(mly, mc); scsipi_done(xs); } /* * Notify scsipi about a target's transfer mode. */ static void mly_get_xfer_mode(struct mly_softc *mly, int bus, struct scsipi_xfer_mode *xm) { struct mly_btl *btl; int s; btl = &mly->mly_btl[bus][xm->xm_target]; xm->xm_mode = 0; s = splbio(); if ((btl->mb_flags & MLY_BTL_PHYSICAL) != 0) { if (btl->mb_speed == 0) { xm->xm_period = 0; xm->xm_offset = 0; } else { xm->xm_period = 12; /* XXX */ xm->xm_offset = 8; /* XXX */ xm->xm_mode |= PERIPH_CAP_SYNC; /* XXX */ } switch (btl->mb_width) { case 32: xm->xm_mode = PERIPH_CAP_WIDE32; break; case 16: xm->xm_mode = PERIPH_CAP_WIDE16; break; default: xm->xm_mode = 0; break; } } else /* ((btl->mb_flags & MLY_BTL_LOGICAL) != 0) */ { xm->xm_mode = PERIPH_CAP_WIDE16 | PERIPH_CAP_SYNC; xm->xm_period = 12; xm->xm_offset = 8; } if ((btl->mb_flags & MLY_BTL_TQING) != 0) xm->xm_mode |= PERIPH_CAP_TQING; splx(s); scsipi_async_event(&mly->mly_chans[bus], ASYNC_EVENT_XFER_MODE, xm); } /* * ioctl hook; used here only to initiate low-level rescans. */ static int mly_scsipi_ioctl(struct scsipi_channel *chan, u_long cmd, void *data, int flag, struct proc *p) { struct mly_softc *mly; int rv; mly = (struct mly_softc *)chan->chan_adapter->adapt_dev; switch (cmd) { case SCBUSIOLLSCAN: mly_scan_channel(mly, chan->chan_channel); rv = 0; break; default: rv = ENOTTY; break; } return (rv); } /* * Handshake with the firmware while the card is being initialized. */ static int mly_fwhandshake(struct mly_softc *mly) { u_int8_t error, param0, param1; int spinup; spinup = 0; /* Set HM_STSACK and let the firmware initialize. */ mly_outb(mly, mly->mly_idbr, MLY_HM_STSACK); DELAY(1000); /* too short? */ /* If HM_STSACK is still true, the controller is initializing. */ if (!mly_idbr_true(mly, MLY_HM_STSACK)) return (0); printf("%s: controller initialization started\n", device_xname(&mly->mly_dv)); /* * Spin waiting for initialization to finish, or for a message to be * delivered. */ while (mly_idbr_true(mly, MLY_HM_STSACK)) { /* Check for a message */ if (!mly_error_valid(mly)) continue; error = mly_inb(mly, mly->mly_error_status) & ~MLY_MSG_EMPTY; param0 = mly_inb(mly, mly->mly_cmd_mailbox); param1 = mly_inb(mly, mly->mly_cmd_mailbox + 1); switch (error) { case MLY_MSG_SPINUP: if (!spinup) { printf("%s: drive spinup in progress\n", device_xname(&mly->mly_dv)); spinup = 1; } break; case MLY_MSG_RACE_RECOVERY_FAIL: printf("%s: mirror race recovery failed - \n", device_xname(&mly->mly_dv)); printf("%s: one or more drives offline\n", device_xname(&mly->mly_dv)); break; case MLY_MSG_RACE_IN_PROGRESS: printf("%s: mirror race recovery in progress\n", device_xname(&mly->mly_dv)); break; case MLY_MSG_RACE_ON_CRITICAL: printf("%s: mirror race recovery on critical drive\n", device_xname(&mly->mly_dv)); break; case MLY_MSG_PARITY_ERROR: printf("%s: FATAL MEMORY PARITY ERROR\n", device_xname(&mly->mly_dv)); return (ENXIO); default: printf("%s: unknown initialization code 0x%x\n", device_xname(&mly->mly_dv), error); break; } } return (0); } /* * Space-fill a character string */ static void mly_padstr(char *dst, const char *src, int len) { while (len-- > 0) { if (*src != '\0') *dst++ = *src++; else *dst++ = ' '; } } /* * Allocate DMA safe memory. */ static int mly_dmamem_alloc(struct mly_softc *mly, int size, bus_dmamap_t *dmamap, void **kva, bus_addr_t *paddr, bus_dma_segment_t *seg) { int rseg, rv, state; state = 0; if ((rv = bus_dmamem_alloc(mly->mly_dmat, size, PAGE_SIZE, 0, seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(&mly->mly_dv, "dmamem_alloc = %d\n", rv); goto bad; } state++; if ((rv = bus_dmamem_map(mly->mly_dmat, seg, 1, size, kva, BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) { aprint_error_dev(&mly->mly_dv, "dmamem_map = %d\n", rv); goto bad; } state++; if ((rv = bus_dmamap_create(mly->mly_dmat, size, size, 1, 0, BUS_DMA_NOWAIT, dmamap)) != 0) { aprint_error_dev(&mly->mly_dv, "dmamap_create = %d\n", rv); goto bad; } state++; if ((rv = bus_dmamap_load(mly->mly_dmat, *dmamap, *kva, size, NULL, BUS_DMA_NOWAIT)) != 0) { aprint_error_dev(&mly->mly_dv, "dmamap_load = %d\n", rv); goto bad; } *paddr = (*dmamap)->dm_segs[0].ds_addr; memset(*kva, 0, size); return (0); bad: if (state > 2) bus_dmamap_destroy(mly->mly_dmat, *dmamap); if (state > 1) bus_dmamem_unmap(mly->mly_dmat, *kva, size); if (state > 0) bus_dmamem_free(mly->mly_dmat, seg, 1); return (rv); } /* * Free DMA safe memory. */ static void mly_dmamem_free(struct mly_softc *mly, int size, bus_dmamap_t dmamap, void *kva, bus_dma_segment_t *seg) { bus_dmamap_unload(mly->mly_dmat, dmamap); bus_dmamap_destroy(mly->mly_dmat, dmamap); bus_dmamem_unmap(mly->mly_dmat, kva, size); bus_dmamem_free(mly->mly_dmat, seg, 1); } /* * Accept an open operation on the control device. */ int mlyopen(dev_t dev, int flag, int mode, struct lwp *l) { struct mly_softc *mly; if ((mly = device_lookup_private(&mly_cd, minor(dev))) == NULL) return (ENXIO); if ((mly->mly_state & MLY_STATE_INITOK) == 0) return (ENXIO); if ((mly->mly_state & MLY_STATE_OPEN) != 0) return (EBUSY); mly->mly_state |= MLY_STATE_OPEN; return (0); } /* * Accept the last close on the control device. */ int mlyclose(dev_t dev, int flag, int mode, struct lwp *l) { struct mly_softc *mly; mly = device_lookup_private(&mly_cd, minor(dev)); mly->mly_state &= ~MLY_STATE_OPEN; return (0); } /* * Handle control operations. */ int mlyioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) { struct mly_softc *mly; int rv; mly = device_lookup_private(&mly_cd, minor(dev)); switch (cmd) { case MLYIO_COMMAND: rv = kauth_authorize_device_passthru(l->l_cred, dev, KAUTH_REQ_DEVICE_RAWIO_PASSTHRU_ALL, data); if (rv) break; rv = mly_user_command(mly, (void *)data); break; case MLYIO_HEALTH: rv = mly_user_health(mly, (void *)data); break; default: rv = ENOTTY; break; } return (rv); } /* * Execute a command passed in from userspace. * * The control structure contains the actual command for the controller, as * well as the user-space data pointer and data size, and an optional sense * buffer size/pointer. On completion, the data size is adjusted to the * command residual, and the sense buffer size to the size of the returned * sense data. */ static int mly_user_command(struct mly_softc *mly, struct mly_user_command *uc) { struct mly_ccb *mc; int rv, mapped; if ((rv = mly_ccb_alloc(mly, &mc)) != 0) return (rv); mapped = 0; mc->mc_data = NULL; /* * Handle data size/direction. */ if ((mc->mc_length = abs(uc->DataTransferLength)) != 0) { if (mc->mc_length > MAXPHYS) { rv = EINVAL; goto out; } mc->mc_data = malloc(mc->mc_length, M_DEVBUF, M_WAITOK); if (mc->mc_data == NULL) { rv = ENOMEM; goto out; } if (uc->DataTransferLength > 0) { mc->mc_flags |= MLY_CCB_DATAIN; memset(mc->mc_data, 0, mc->mc_length); } if (uc->DataTransferLength < 0) { mc->mc_flags |= MLY_CCB_DATAOUT; rv = copyin(uc->DataTransferBuffer, mc->mc_data, mc->mc_length); if (rv != 0) goto out; } if ((rv = mly_ccb_map(mly, mc)) != 0) goto out; mapped = 1; } /* Copy in the command and execute it. */ memcpy(mc->mc_packet, &uc->CommandMailbox, sizeof(uc->CommandMailbox)); if ((rv = mly_ccb_wait(mly, mc, 60000)) != 0) goto out; /* Return the data to userspace. */ if (uc->DataTransferLength > 0) { rv = copyout(mc->mc_data, uc->DataTransferBuffer, mc->mc_length); if (rv != 0) goto out; } /* Return the sense buffer to userspace. */ if (uc->RequestSenseLength > 0 && mc->mc_sense > 0) { rv = copyout(mc->mc_packet, uc->RequestSenseBuffer, min(uc->RequestSenseLength, mc->mc_sense)); if (rv != 0) goto out; } /* Return command results to userspace (caller will copy out). */ uc->DataTransferLength = mc->mc_resid; uc->RequestSenseLength = min(uc->RequestSenseLength, mc->mc_sense); uc->CommandStatus = mc->mc_status; rv = 0; out: if (mapped) mly_ccb_unmap(mly, mc); if (mc->mc_data != NULL) free(mc->mc_data, M_DEVBUF); mly_ccb_free(mly, mc); return (rv); } /* * Return health status to userspace. If the health change index in the * user structure does not match that currently exported by the controller, * we return the current status immediately. Otherwise, we block until * either interrupted or new status is delivered. */ static int mly_user_health(struct mly_softc *mly, struct mly_user_health *uh) { struct mly_health_status mh; int rv, s; /* Fetch the current health status from userspace. */ rv = copyin(uh->HealthStatusBuffer, &mh, sizeof(mh)); if (rv != 0) return (rv); /* spin waiting for a status update */ s = splbio(); if (mly->mly_event_change == mh.change_counter) rv = tsleep(&mly->mly_event_change, PRIBIO | PCATCH, "mlyhealth", 0); splx(s); if (rv == 0) { /* * Copy the controller's health status buffer out (there is * a race here if it changes again). */ rv = copyout(&mly->mly_mmbox->mmm_health.status, uh->HealthStatusBuffer, sizeof(uh->HealthStatusBuffer)); } return (rv); }