NetBSD/sys/netinet/udp_usrreq.c
2005-09-03 18:01:07 +00:00

1531 lines
37 KiB
C

/* $NetBSD: udp_usrreq.c,v 1.142 2005/09/03 18:01:07 kleink Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: udp_usrreq.c,v 1.142 2005/09/03 18:01:07 kleink Exp $");
#include "opt_inet.h"
#include "opt_ipsec.h"
#include "opt_inet_csum.h"
#include "opt_ipkdb.h"
#include "opt_mbuftrace.h"
#include <sys/param.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/stat.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/domain.h>
#include <sys/sysctl.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/ip_var.h>
#include <netinet/ip_icmp.h>
#include <netinet/udp.h>
#include <netinet/udp_var.h>
#ifdef IPSEC_NAT_T
#include <netinet6/ipsec.h>
#include <netinet6/esp.h>
#endif
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet/icmp6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_pcb.h>
#include <netinet6/udp6_var.h>
#endif
#ifndef INET6
/* always need ip6.h for IP6_EXTHDR_GET */
#include <netinet/ip6.h>
#endif
#include "faith.h"
#if defined(NFAITH) && NFAITH > 0
#include <net/if_faith.h>
#endif
#include <machine/stdarg.h>
#ifdef FAST_IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
#ifdef INET6
#include <netipsec/ipsec6.h>
#endif
#endif /* FAST_IPSEC*/
#ifdef IPSEC
#include <netinet6/ipsec.h>
#include <netkey/key.h>
#endif /*IPSEC*/
#ifdef IPKDB
#include <ipkdb/ipkdb.h>
#endif
/*
* UDP protocol implementation.
* Per RFC 768, August, 1980.
*/
#ifndef COMPAT_42
int udpcksum = 1;
#else
int udpcksum = 0; /* XXX */
#endif
int udp_do_loopback_cksum = 0;
struct inpcbtable udbtable;
struct udpstat udpstat;
#ifdef INET
#ifdef IPSEC_NAT_T
static int udp4_espinudp (struct mbuf *, int, struct sockaddr *,
struct socket *);
#endif
static void udp4_sendup (struct mbuf *, int, struct sockaddr *,
struct socket *);
static int udp4_realinput (struct sockaddr_in *, struct sockaddr_in *,
struct mbuf *, int);
static int udp4_input_checksum(struct mbuf *, const struct udphdr *, int, int);
#endif
#ifdef INET6
static void udp6_sendup (struct mbuf *, int, struct sockaddr *,
struct socket *);
static int udp6_realinput (int, struct sockaddr_in6 *,
struct sockaddr_in6 *, struct mbuf *, int);
static int udp6_input_checksum(struct mbuf *, const struct udphdr *, int, int);
#endif
#ifdef INET
static void udp_notify (struct inpcb *, int);
#endif
#ifndef UDBHASHSIZE
#define UDBHASHSIZE 128
#endif
int udbhashsize = UDBHASHSIZE;
#ifdef MBUFTRACE
struct mowner udp_mowner = { "udp" };
struct mowner udp_rx_mowner = { "udp", "rx" };
struct mowner udp_tx_mowner = { "udp", "tx" };
#endif
#ifdef UDP_CSUM_COUNTERS
#include <sys/device.h>
#if defined(INET)
struct evcnt udp_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp", "hwcsum bad");
struct evcnt udp_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp", "hwcsum ok");
struct evcnt udp_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp", "hwcsum data");
struct evcnt udp_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp", "swcsum");
EVCNT_ATTACH_STATIC(udp_hwcsum_bad);
EVCNT_ATTACH_STATIC(udp_hwcsum_ok);
EVCNT_ATTACH_STATIC(udp_hwcsum_data);
EVCNT_ATTACH_STATIC(udp_swcsum);
#endif /* defined(INET) */
#if defined(INET6)
struct evcnt udp6_hwcsum_bad = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp6", "hwcsum bad");
struct evcnt udp6_hwcsum_ok = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp6", "hwcsum ok");
struct evcnt udp6_hwcsum_data = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp6", "hwcsum data");
struct evcnt udp6_swcsum = EVCNT_INITIALIZER(EVCNT_TYPE_MISC,
NULL, "udp6", "swcsum");
EVCNT_ATTACH_STATIC(udp6_hwcsum_bad);
EVCNT_ATTACH_STATIC(udp6_hwcsum_ok);
EVCNT_ATTACH_STATIC(udp6_hwcsum_data);
EVCNT_ATTACH_STATIC(udp6_swcsum);
#endif /* defined(INET6) */
#define UDP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
#else
#define UDP_CSUM_COUNTER_INCR(ev) /* nothing */
#endif /* UDP_CSUM_COUNTERS */
void
udp_init(void)
{
in_pcbinit(&udbtable, udbhashsize, udbhashsize);
MOWNER_ATTACH(&udp_tx_mowner);
MOWNER_ATTACH(&udp_rx_mowner);
MOWNER_ATTACH(&udp_mowner);
}
/*
* Checksum extended UDP header and data.
*/
int
udp_input_checksum(int af, struct mbuf *m, const struct udphdr *uh,
int iphlen, int len)
{
switch (af) {
#ifdef INET
case AF_INET:
return udp4_input_checksum(m, uh, iphlen, len);
#endif
#ifdef INET6
case AF_INET6:
return udp6_input_checksum(m, uh, iphlen, len);
#endif
}
#ifdef DIAGNOSTIC
panic("udp_input_checksum: unknown af %d", af);
#endif
/* NOTREACHED */
return -1;
}
#ifdef INET
/*
* Checksum extended UDP header and data.
*/
static int
udp4_input_checksum(struct mbuf *m, const struct udphdr *uh,
int iphlen, int len)
{
/*
* XXX it's better to record and check if this mbuf is
* already checked.
*/
if (uh->uh_sum == 0)
return 0;
switch (m->m_pkthdr.csum_flags &
((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_UDPv4) |
M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
case M_CSUM_UDPv4|M_CSUM_TCP_UDP_BAD:
UDP_CSUM_COUNTER_INCR(&udp_hwcsum_bad);
goto badcsum;
case M_CSUM_UDPv4|M_CSUM_DATA: {
u_int32_t hw_csum = m->m_pkthdr.csum_data;
UDP_CSUM_COUNTER_INCR(&udp_hwcsum_data);
if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
const struct ip *ip =
mtod(m, const struct ip *);
hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
ip->ip_dst.s_addr,
htons(hw_csum + len + IPPROTO_UDP));
}
if ((hw_csum ^ 0xffff) != 0)
goto badcsum;
break;
}
case M_CSUM_UDPv4:
/* Checksum was okay. */
UDP_CSUM_COUNTER_INCR(&udp_hwcsum_ok);
break;
default:
/*
* Need to compute it ourselves. Maybe skip checksum
* on loopback interfaces.
*/
if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
IFF_LOOPBACK) ||
udp_do_loopback_cksum)) {
UDP_CSUM_COUNTER_INCR(&udp_swcsum);
if (in4_cksum(m, IPPROTO_UDP, iphlen, len) != 0)
goto badcsum;
}
break;
}
return 0;
badcsum:
udpstat.udps_badsum++;
return -1;
}
void
udp_input(struct mbuf *m, ...)
{
va_list ap;
struct sockaddr_in src, dst;
struct ip *ip;
struct udphdr *uh;
int iphlen;
int len;
int n;
u_int16_t ip_len;
va_start(ap, m);
iphlen = va_arg(ap, int);
(void)va_arg(ap, int); /* ignore value, advance ap */
va_end(ap);
MCLAIM(m, &udp_rx_mowner);
udpstat.udps_ipackets++;
/*
* Get IP and UDP header together in first mbuf.
*/
ip = mtod(m, struct ip *);
IP6_EXTHDR_GET(uh, struct udphdr *, m, iphlen, sizeof(struct udphdr));
if (uh == NULL) {
udpstat.udps_hdrops++;
return;
}
KASSERT(UDP_HDR_ALIGNED_P(uh));
/* destination port of 0 is illegal, based on RFC768. */
if (uh->uh_dport == 0)
goto bad;
/*
* Make mbuf data length reflect UDP length.
* If not enough data to reflect UDP length, drop.
*/
ip_len = ntohs(ip->ip_len);
len = ntohs((u_int16_t)uh->uh_ulen);
if (ip_len != iphlen + len) {
if (ip_len < iphlen + len || len < sizeof(struct udphdr)) {
udpstat.udps_badlen++;
goto bad;
}
m_adj(m, iphlen + len - ip_len);
}
/*
* Checksum extended UDP header and data.
*/
if (udp4_input_checksum(m, uh, iphlen, len))
goto badcsum;
/* construct source and dst sockaddrs. */
bzero(&src, sizeof(src));
src.sin_family = AF_INET;
src.sin_len = sizeof(struct sockaddr_in);
bcopy(&ip->ip_src, &src.sin_addr, sizeof(src.sin_addr));
src.sin_port = uh->uh_sport;
bzero(&dst, sizeof(dst));
dst.sin_family = AF_INET;
dst.sin_len = sizeof(struct sockaddr_in);
bcopy(&ip->ip_dst, &dst.sin_addr, sizeof(dst.sin_addr));
dst.sin_port = uh->uh_dport;
n = udp4_realinput(&src, &dst, m, iphlen);
#ifdef INET6
if (IN_MULTICAST(ip->ip_dst.s_addr) || n == 0) {
struct sockaddr_in6 src6, dst6;
bzero(&src6, sizeof(src6));
src6.sin6_family = AF_INET6;
src6.sin6_len = sizeof(struct sockaddr_in6);
src6.sin6_addr.s6_addr[10] = src6.sin6_addr.s6_addr[11] = 0xff;
bcopy(&ip->ip_src, &src6.sin6_addr.s6_addr[12],
sizeof(ip->ip_src));
src6.sin6_port = uh->uh_sport;
bzero(&dst6, sizeof(dst6));
dst6.sin6_family = AF_INET6;
dst6.sin6_len = sizeof(struct sockaddr_in6);
dst6.sin6_addr.s6_addr[10] = dst6.sin6_addr.s6_addr[11] = 0xff;
bcopy(&ip->ip_dst, &dst6.sin6_addr.s6_addr[12],
sizeof(ip->ip_dst));
dst6.sin6_port = uh->uh_dport;
n += udp6_realinput(AF_INET, &src6, &dst6, m, iphlen);
}
#endif
if (n == 0) {
if (m->m_flags & (M_BCAST | M_MCAST)) {
udpstat.udps_noportbcast++;
goto bad;
}
udpstat.udps_noport++;
#ifdef IPKDB
if (checkipkdb(&ip->ip_src, uh->uh_sport, uh->uh_dport,
m, iphlen + sizeof(struct udphdr),
m->m_pkthdr.len - iphlen - sizeof(struct udphdr))) {
/*
* It was a debugger connect packet,
* just drop it now
*/
goto bad;
}
#endif
icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0);
m = NULL;
}
bad:
if (m)
m_freem(m);
return;
badcsum:
m_freem(m);
}
#endif
#ifdef INET6
static int
udp6_input_checksum(struct mbuf *m, const struct udphdr *uh, int off, int len)
{
/*
* XXX it's better to record and check if this mbuf is
* already checked.
*/
if (__predict_false((m->m_flags & M_LOOP) && !udp_do_loopback_cksum)) {
goto good;
}
if (uh->uh_sum == 0) {
udp6stat.udp6s_nosum++;
goto bad;
}
switch (m->m_pkthdr.csum_flags &
((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_UDPv6) |
M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
case M_CSUM_UDPv6|M_CSUM_TCP_UDP_BAD:
UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_bad);
udp6stat.udp6s_badsum++;
goto bad;
#if 0 /* notyet */
case M_CSUM_UDPv6|M_CSUM_DATA:
#endif
case M_CSUM_UDPv6:
/* Checksum was okay. */
UDP_CSUM_COUNTER_INCR(&udp6_hwcsum_ok);
break;
default:
/*
* Need to compute it ourselves. Maybe skip checksum
* on loopback interfaces.
*/
UDP_CSUM_COUNTER_INCR(&udp6_swcsum);
if (in6_cksum(m, IPPROTO_UDP, off, len) != 0) {
udp6stat.udp6s_badsum++;
goto bad;
}
}
good:
return 0;
bad:
return -1;
}
int
udp6_input(struct mbuf **mp, int *offp, int proto)
{
struct mbuf *m = *mp;
int off = *offp;
struct sockaddr_in6 src, dst;
struct ip6_hdr *ip6;
struct udphdr *uh;
u_int32_t plen, ulen;
ip6 = mtod(m, struct ip6_hdr *);
#if defined(NFAITH) && 0 < NFAITH
if (faithprefix(&ip6->ip6_dst)) {
/* send icmp6 host unreach? */
m_freem(m);
return IPPROTO_DONE;
}
#endif
udp6stat.udp6s_ipackets++;
/* check for jumbogram is done in ip6_input. we can trust pkthdr.len */
plen = m->m_pkthdr.len - off;
IP6_EXTHDR_GET(uh, struct udphdr *, m, off, sizeof(struct udphdr));
if (uh == NULL) {
ip6stat.ip6s_tooshort++;
return IPPROTO_DONE;
}
KASSERT(UDP_HDR_ALIGNED_P(uh));
ulen = ntohs((u_short)uh->uh_ulen);
/*
* RFC2675 section 4: jumbograms will have 0 in the UDP header field,
* iff payload length > 0xffff.
*/
if (ulen == 0 && plen > 0xffff)
ulen = plen;
if (plen != ulen) {
udp6stat.udp6s_badlen++;
goto bad;
}
/* destination port of 0 is illegal, based on RFC768. */
if (uh->uh_dport == 0)
goto bad;
/* Be proactive about malicious use of IPv4 mapped address */
if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
/* XXX stat */
goto bad;
}
/*
* Checksum extended UDP header and data. Maybe skip checksum
* on loopback interfaces.
*/
if (udp6_input_checksum(m, uh, off, ulen))
goto bad;
/*
* Construct source and dst sockaddrs.
* Note that ifindex (s6_addr16[1]) is already filled.
*/
bzero(&src, sizeof(src));
src.sin6_family = AF_INET6;
src.sin6_len = sizeof(struct sockaddr_in6);
/* KAME hack: recover scopeid */
(void)in6_recoverscope(&src, &ip6->ip6_src, m->m_pkthdr.rcvif);
src.sin6_port = uh->uh_sport;
bzero(&dst, sizeof(dst));
dst.sin6_family = AF_INET6;
dst.sin6_len = sizeof(struct sockaddr_in6);
/* KAME hack: recover scopeid */
(void)in6_recoverscope(&dst, &ip6->ip6_dst, m->m_pkthdr.rcvif);
dst.sin6_port = uh->uh_dport;
if (udp6_realinput(AF_INET6, &src, &dst, m, off) == 0) {
if (m->m_flags & M_MCAST) {
udp6stat.udp6s_noportmcast++;
goto bad;
}
udp6stat.udp6s_noport++;
icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_NOPORT, 0);
m = NULL;
}
bad:
if (m)
m_freem(m);
return IPPROTO_DONE;
}
#endif
#ifdef INET
static void
udp4_sendup(struct mbuf *m, int off /* offset of data portion */,
struct sockaddr *src, struct socket *so)
{
struct mbuf *opts = NULL;
struct mbuf *n;
struct inpcb *inp = NULL;
if (!so)
return;
switch (so->so_proto->pr_domain->dom_family) {
case AF_INET:
inp = sotoinpcb(so);
break;
#ifdef INET6
case AF_INET6:
break;
#endif
default:
return;
}
#if defined(IPSEC) || defined(FAST_IPSEC)
/* check AH/ESP integrity. */
if (so != NULL && ipsec4_in_reject_so(m, so)) {
ipsecstat.in_polvio++;
if ((n = m_copy(m, 0, M_COPYALL)) != NULL)
icmp_error(n, ICMP_UNREACH, ICMP_UNREACH_ADMIN_PROHIBIT,
0, 0);
return;
}
#endif /*IPSEC*/
if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
if (inp && (inp->inp_flags & INP_CONTROLOPTS
|| so->so_options & SO_TIMESTAMP)) {
struct ip *ip = mtod(n, struct ip *);
ip_savecontrol(inp, &opts, ip, n);
}
m_adj(n, off);
if (sbappendaddr(&so->so_rcv, src, n,
opts) == 0) {
m_freem(n);
if (opts)
m_freem(opts);
so->so_rcv.sb_overflowed++;
udpstat.udps_fullsock++;
} else
sorwakeup(so);
}
}
#endif
#ifdef INET6
static void
udp6_sendup(struct mbuf *m, int off /* offset of data portion */,
struct sockaddr *src, struct socket *so)
{
struct mbuf *opts = NULL;
struct mbuf *n;
struct in6pcb *in6p = NULL;
if (!so)
return;
if (so->so_proto->pr_domain->dom_family != AF_INET6)
return;
in6p = sotoin6pcb(so);
#if defined(IPSEC) || defined(FAST_IPSEC)
/* check AH/ESP integrity. */
if (so != NULL && ipsec6_in_reject_so(m, so)) {
ipsec6stat.in_polvio++;
if ((n = m_copy(m, 0, M_COPYALL)) != NULL)
icmp6_error(n, ICMP6_DST_UNREACH,
ICMP6_DST_UNREACH_ADMIN, 0);
return;
}
#endif /*IPSEC*/
if ((n = m_copy(m, 0, M_COPYALL)) != NULL) {
if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS
|| in6p->in6p_socket->so_options & SO_TIMESTAMP)) {
struct ip6_hdr *ip6 = mtod(n, struct ip6_hdr *);
ip6_savecontrol(in6p, &opts, ip6, n);
}
m_adj(n, off);
if (sbappendaddr(&so->so_rcv, src, n, opts) == 0) {
m_freem(n);
if (opts)
m_freem(opts);
so->so_rcv.sb_overflowed++;
udp6stat.udp6s_fullsock++;
} else
sorwakeup(so);
}
}
#endif
#ifdef INET
static int
udp4_realinput(struct sockaddr_in *src, struct sockaddr_in *dst,
struct mbuf *m, int off /* offset of udphdr */)
{
u_int16_t *sport, *dport;
int rcvcnt;
struct in_addr *src4, *dst4;
struct inpcb_hdr *inph;
struct inpcb *inp;
rcvcnt = 0;
off += sizeof(struct udphdr); /* now, offset of payload */
if (src->sin_family != AF_INET || dst->sin_family != AF_INET)
goto bad;
src4 = &src->sin_addr;
sport = &src->sin_port;
dst4 = &dst->sin_addr;
dport = &dst->sin_port;
if (IN_MULTICAST(dst4->s_addr) ||
in_broadcast(*dst4, m->m_pkthdr.rcvif)) {
/*
* Deliver a multicast or broadcast datagram to *all* sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multi/broadcasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/
/*
* KAME note: traditionally we dropped udpiphdr from mbuf here.
* we need udpiphdr for IPsec processing so we do that later.
*/
/*
* Locate pcb(s) for datagram.
*/
CIRCLEQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) {
inp = (struct inpcb *)inph;
if (inp->inp_af != AF_INET)
continue;
if (inp->inp_lport != *dport)
continue;
if (!in_nullhost(inp->inp_laddr)) {
if (!in_hosteq(inp->inp_laddr, *dst4))
continue;
}
if (!in_nullhost(inp->inp_faddr)) {
if (!in_hosteq(inp->inp_faddr, *src4) ||
inp->inp_fport != *sport)
continue;
}
udp4_sendup(m, off, (struct sockaddr *)src,
inp->inp_socket);
rcvcnt++;
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It assumes that an application will never
* clear these options after setting them.
*/
if ((inp->inp_socket->so_options &
(SO_REUSEPORT|SO_REUSEADDR)) == 0)
break;
}
} else {
/*
* Locate pcb for datagram.
*/
inp = in_pcblookup_connect(&udbtable, *src4, *sport, *dst4, *dport);
if (inp == 0) {
++udpstat.udps_pcbhashmiss;
inp = in_pcblookup_bind(&udbtable, *dst4, *dport);
if (inp == 0)
return rcvcnt;
}
#ifdef IPSEC_NAT_T
/* Handle ESP over UDP */
if (inp->inp_flags & INP_ESPINUDP_ALL) {
struct sockaddr *sa = (struct sockaddr *)src;
if (udp4_espinudp(m, off, sa, inp->inp_socket) != 0) {
rcvcnt++;
goto bad;
}
/* Normal UDP processing will take place */
}
#endif
udp4_sendup(m, off, (struct sockaddr *)src, inp->inp_socket);
rcvcnt++;
}
bad:
return rcvcnt;
}
#endif
#ifdef INET6
static int
udp6_realinput(int af, struct sockaddr_in6 *src, struct sockaddr_in6 *dst,
struct mbuf *m, int off)
{
u_int16_t sport, dport;
int rcvcnt;
struct in6_addr src6, dst6;
const struct in_addr *dst4;
struct inpcb_hdr *inph;
struct in6pcb *in6p;
rcvcnt = 0;
off += sizeof(struct udphdr); /* now, offset of payload */
if (af != AF_INET && af != AF_INET6)
goto bad;
if (src->sin6_family != AF_INET6 || dst->sin6_family != AF_INET6)
goto bad;
in6_embedscope(&src6, src, NULL, NULL);
sport = src->sin6_port;
in6_embedscope(&dst6, dst, NULL, NULL);
dport = dst->sin6_port;
dst4 = (struct in_addr *)&dst->sin6_addr.s6_addr[12];
if (IN6_IS_ADDR_MULTICAST(&dst6) ||
(af == AF_INET && IN_MULTICAST(dst4->s_addr))) {
/*
* Deliver a multicast or broadcast datagram to *all* sockets
* for which the local and remote addresses and ports match
* those of the incoming datagram. This allows more than
* one process to receive multi/broadcasts on the same port.
* (This really ought to be done for unicast datagrams as
* well, but that would cause problems with existing
* applications that open both address-specific sockets and
* a wildcard socket listening to the same port -- they would
* end up receiving duplicates of every unicast datagram.
* Those applications open the multiple sockets to overcome an
* inadequacy of the UDP socket interface, but for backwards
* compatibility we avoid the problem here rather than
* fixing the interface. Maybe 4.5BSD will remedy this?)
*/
/*
* KAME note: traditionally we dropped udpiphdr from mbuf here.
* we need udpiphdr for IPsec processing so we do that later.
*/
/*
* Locate pcb(s) for datagram.
*/
CIRCLEQ_FOREACH(inph, &udbtable.inpt_queue, inph_queue) {
in6p = (struct in6pcb *)inph;
if (in6p->in6p_af != AF_INET6)
continue;
if (in6p->in6p_lport != dport)
continue;
if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_laddr)) {
if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_laddr, &dst6))
continue;
} else {
if (IN6_IS_ADDR_V4MAPPED(&dst6) &&
(in6p->in6p_flags & IN6P_IPV6_V6ONLY))
continue;
}
if (!IN6_IS_ADDR_UNSPECIFIED(&in6p->in6p_faddr)) {
if (!IN6_ARE_ADDR_EQUAL(&in6p->in6p_faddr,
&src6) || in6p->in6p_fport != sport)
continue;
} else {
if (IN6_IS_ADDR_V4MAPPED(&src6) &&
(in6p->in6p_flags & IN6P_IPV6_V6ONLY))
continue;
}
udp6_sendup(m, off, (struct sockaddr *)src,
in6p->in6p_socket);
rcvcnt++;
/*
* Don't look for additional matches if this one does
* not have either the SO_REUSEPORT or SO_REUSEADDR
* socket options set. This heuristic avoids searching
* through all pcbs in the common case of a non-shared
* port. It assumes that an application will never
* clear these options after setting them.
*/
if ((in6p->in6p_socket->so_options &
(SO_REUSEPORT|SO_REUSEADDR)) == 0)
break;
}
} else {
/*
* Locate pcb for datagram.
*/
in6p = in6_pcblookup_connect(&udbtable, &src6, sport,
&dst6, dport, 0);
if (in6p == 0) {
++udpstat.udps_pcbhashmiss;
in6p = in6_pcblookup_bind(&udbtable, &dst6, dport, 0);
if (in6p == 0)
return rcvcnt;
}
udp6_sendup(m, off, (struct sockaddr *)src, in6p->in6p_socket);
rcvcnt++;
}
bad:
return rcvcnt;
}
#endif
#ifdef INET
/*
* Notify a udp user of an asynchronous error;
* just wake up so that he can collect error status.
*/
static void
udp_notify(struct inpcb *inp, int errno)
{
inp->inp_socket->so_error = errno;
sorwakeup(inp->inp_socket);
sowwakeup(inp->inp_socket);
}
void *
udp_ctlinput(int cmd, struct sockaddr *sa, void *v)
{
struct ip *ip = v;
struct udphdr *uh;
void (*notify)(struct inpcb *, int) = udp_notify;
int errno;
if (sa->sa_family != AF_INET
|| sa->sa_len != sizeof(struct sockaddr_in))
return NULL;
if ((unsigned)cmd >= PRC_NCMDS)
return NULL;
errno = inetctlerrmap[cmd];
if (PRC_IS_REDIRECT(cmd))
notify = in_rtchange, ip = 0;
else if (cmd == PRC_HOSTDEAD)
ip = 0;
else if (errno == 0)
return NULL;
if (ip) {
uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2));
in_pcbnotify(&udbtable, satosin(sa)->sin_addr, uh->uh_dport,
ip->ip_src, uh->uh_sport, errno, notify);
/* XXX mapped address case */
} else
in_pcbnotifyall(&udbtable, satosin(sa)->sin_addr, errno,
notify);
return NULL;
}
int
udp_ctloutput(op, so, level, optname, mp)
int op;
struct socket *so;
int level, optname;
struct mbuf **mp;
{
int s;
int error = 0;
struct mbuf *m;
struct inpcb *inp;
int family;
family = so->so_proto->pr_domain->dom_family;
s = splsoftnet();
switch (family) {
#ifdef INET
case PF_INET:
if (level != IPPROTO_UDP) {
error = ip_ctloutput(op, so, level, optname, mp);
goto end;
}
break;
#endif
#ifdef INET6
case PF_INET6:
if (level != IPPROTO_UDP) {
error = ip6_ctloutput(op, so, level, optname, mp);
goto end;
}
break;
#endif
default:
error = EAFNOSUPPORT;
goto end;
break;
}
switch (op) {
case PRCO_SETOPT:
m = *mp;
inp = sotoinpcb(so);
switch (optname) {
case UDP_ENCAP:
if (m == NULL || m->m_len < sizeof (int)) {
error = EINVAL;
goto end;
}
switch(*mtod(m, int *)) {
#ifdef IPSEC_NAT_T
case 0:
inp->inp_flags &= ~INP_ESPINUDP_ALL;
break;
case UDP_ENCAP_ESPINUDP:
inp->inp_flags &= ~INP_ESPINUDP_ALL;
inp->inp_flags |= INP_ESPINUDP;
break;
case UDP_ENCAP_ESPINUDP_NON_IKE:
inp->inp_flags &= ~INP_ESPINUDP_ALL;
inp->inp_flags |= INP_ESPINUDP_NON_IKE;
break;
#endif
default:
error = EINVAL;
goto end;
break;
}
break;
default:
error = ENOPROTOOPT;
goto end;
break;
}
break;
default:
error = EINVAL;
goto end;
break;
}
end:
splx(s);
return error;
}
int
udp_output(struct mbuf *m, ...)
{
struct inpcb *inp;
struct udpiphdr *ui;
struct route *ro;
int len = m->m_pkthdr.len;
int error = 0;
va_list ap;
MCLAIM(m, &udp_tx_mowner);
va_start(ap, m);
inp = va_arg(ap, struct inpcb *);
va_end(ap);
/*
* Calculate data length and get a mbuf
* for UDP and IP headers.
*/
M_PREPEND(m, sizeof(struct udpiphdr), M_DONTWAIT);
if (m == 0) {
error = ENOBUFS;
goto release;
}
/*
* Compute the packet length of the IP header, and
* punt if the length looks bogus.
*/
if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) {
error = EMSGSIZE;
goto release;
}
/*
* Fill in mbuf with extended UDP header
* and addresses and length put into network format.
*/
ui = mtod(m, struct udpiphdr *);
ui->ui_pr = IPPROTO_UDP;
ui->ui_src = inp->inp_laddr;
ui->ui_dst = inp->inp_faddr;
ui->ui_sport = inp->inp_lport;
ui->ui_dport = inp->inp_fport;
ui->ui_ulen = htons((u_int16_t)len + sizeof(struct udphdr));
ro = &inp->inp_route;
/*
* Set up checksum and output datagram.
*/
if (udpcksum) {
/*
* XXX Cache pseudo-header checksum part for
* XXX "connected" UDP sockets.
*/
ui->ui_sum = in_cksum_phdr(ui->ui_src.s_addr,
ui->ui_dst.s_addr, htons((u_int16_t)len +
sizeof(struct udphdr) + IPPROTO_UDP));
m->m_pkthdr.csum_flags = M_CSUM_UDPv4;
m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum);
} else
ui->ui_sum = 0;
((struct ip *)ui)->ip_len = htons(sizeof (struct udpiphdr) + len);
((struct ip *)ui)->ip_ttl = inp->inp_ip.ip_ttl; /* XXX */
((struct ip *)ui)->ip_tos = inp->inp_ip.ip_tos; /* XXX */
udpstat.udps_opackets++;
return (ip_output(m, inp->inp_options, ro,
inp->inp_socket->so_options & (SO_DONTROUTE | SO_BROADCAST),
inp->inp_moptions, inp->inp_socket));
release:
m_freem(m);
return (error);
}
int udp_sendspace = 9216; /* really max datagram size */
int udp_recvspace = 40 * (1024 + sizeof(struct sockaddr_in));
/* 40 1K datagrams */
/*ARGSUSED*/
int
udp_usrreq(struct socket *so, int req, struct mbuf *m, struct mbuf *nam,
struct mbuf *control, struct proc *p)
{
struct inpcb *inp;
int s;
int error = 0;
if (req == PRU_CONTROL)
return (in_control(so, (long)m, (caddr_t)nam,
(struct ifnet *)control, p));
if (req == PRU_PURGEIF) {
in_pcbpurgeif0(&udbtable, (struct ifnet *)control);
in_purgeif((struct ifnet *)control);
in_pcbpurgeif(&udbtable, (struct ifnet *)control);
return (0);
}
s = splsoftnet();
inp = sotoinpcb(so);
#ifdef DIAGNOSTIC
if (req != PRU_SEND && req != PRU_SENDOOB && control)
panic("udp_usrreq: unexpected control mbuf");
#endif
if (inp == 0 && req != PRU_ATTACH) {
error = EINVAL;
goto release;
}
/*
* Note: need to block udp_input while changing
* the udp pcb queue and/or pcb addresses.
*/
switch (req) {
case PRU_ATTACH:
if (inp != 0) {
error = EISCONN;
break;
}
#ifdef MBUFTRACE
so->so_mowner = &udp_mowner;
so->so_rcv.sb_mowner = &udp_rx_mowner;
so->so_snd.sb_mowner = &udp_tx_mowner;
#endif
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
error = soreserve(so, udp_sendspace, udp_recvspace);
if (error)
break;
}
error = in_pcballoc(so, &udbtable);
if (error)
break;
inp = sotoinpcb(so);
inp->inp_ip.ip_ttl = ip_defttl;
break;
case PRU_DETACH:
in_pcbdetach(inp);
break;
case PRU_BIND:
error = in_pcbbind(inp, nam, p);
break;
case PRU_LISTEN:
error = EOPNOTSUPP;
break;
case PRU_CONNECT:
error = in_pcbconnect(inp, nam);
if (error)
break;
soisconnected(so);
break;
case PRU_CONNECT2:
error = EOPNOTSUPP;
break;
case PRU_DISCONNECT:
/*soisdisconnected(so);*/
so->so_state &= ~SS_ISCONNECTED; /* XXX */
in_pcbdisconnect(inp);
inp->inp_laddr = zeroin_addr; /* XXX */
in_pcbstate(inp, INP_BOUND); /* XXX */
break;
case PRU_SHUTDOWN:
socantsendmore(so);
break;
case PRU_RCVD:
error = EOPNOTSUPP;
break;
case PRU_SEND:
if (control && control->m_len) {
m_freem(control);
m_freem(m);
error = EINVAL;
break;
}
{
struct in_addr laddr; /* XXX */
if (nam) {
laddr = inp->inp_laddr; /* XXX */
if ((so->so_state & SS_ISCONNECTED) != 0) {
error = EISCONN;
goto die;
}
error = in_pcbconnect(inp, nam);
if (error)
goto die;
} else {
if ((so->so_state & SS_ISCONNECTED) == 0) {
error = ENOTCONN;
goto die;
}
}
error = udp_output(m, inp);
m = NULL;
if (nam) {
in_pcbdisconnect(inp);
inp->inp_laddr = laddr; /* XXX */
in_pcbstate(inp, INP_BOUND); /* XXX */
}
die:
if (m)
m_freem(m);
}
break;
case PRU_SENSE:
/*
* stat: don't bother with a blocksize.
*/
splx(s);
return (0);
case PRU_RCVOOB:
error = EOPNOTSUPP;
break;
case PRU_SENDOOB:
m_freem(control);
m_freem(m);
error = EOPNOTSUPP;
break;
case PRU_SOCKADDR:
in_setsockaddr(inp, nam);
break;
case PRU_PEERADDR:
in_setpeeraddr(inp, nam);
break;
default:
panic("udp_usrreq");
}
release:
splx(s);
return (error);
}
/*
* Sysctl for udp variables.
*/
SYSCTL_SETUP(sysctl_net_inet_udp_setup, "sysctl net.inet.udp subtree setup")
{
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "net", NULL,
NULL, 0, NULL, 0,
CTL_NET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "inet", NULL,
NULL, 0, NULL, 0,
CTL_NET, PF_INET, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "udp",
SYSCTL_DESCR("UDPv4 related settings"),
NULL, 0, NULL, 0,
CTL_NET, PF_INET, IPPROTO_UDP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "checksum",
SYSCTL_DESCR("Compute UDP checksums"),
NULL, 0, &udpcksum, 0,
CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_CHECKSUM,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "sendspace",
SYSCTL_DESCR("Default UDP send buffer size"),
NULL, 0, &udp_sendspace, 0,
CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_SENDSPACE,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "recvspace",
SYSCTL_DESCR("Default UDP receive buffer size"),
NULL, 0, &udp_recvspace, 0,
CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_RECVSPACE,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "do_loopback_cksum",
SYSCTL_DESCR("Perform UDP checksum on loopback"),
NULL, 0, &udp_do_loopback_cksum, 0,
CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_LOOPBACKCKSUM,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "pcblist",
SYSCTL_DESCR("UDP protocol control block list"),
sysctl_inpcblist, 0, &udbtable, 0,
CTL_NET, PF_INET, IPPROTO_UDP, CTL_CREATE,
CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "stats",
SYSCTL_DESCR("UDP statistics"),
NULL, 0, &udpstat, sizeof(udpstat),
CTL_NET, PF_INET, IPPROTO_UDP, UDPCTL_STATS,
CTL_EOL);
}
#endif
#if (defined INET && defined IPSEC_NAT_T)
/*
* Returns:
* 1 if the packet was processed
* 0 if normal UDP processing should take place
*/
static int
udp4_espinudp(m, off, src, so)
struct mbuf *m;
int off;
struct sockaddr *src;
struct socket *so;
{
size_t len;
caddr_t data;
struct inpcb *inp;
size_t skip = 0;
size_t minlen;
size_t iphdrlen;
struct ip *ip;
struct mbuf *n;
struct m_tag *tag;
struct udphdr *udphdr;
u_int16_t sport, dport;
/*
* Collapse the mbuf chain if the first mbuf is too short
* The longest case is: UDP + non ESP marker + ESP
*/
minlen = off + sizeof(u_int64_t) + sizeof(struct esp);
if (minlen > m->m_pkthdr.len)
minlen = m->m_pkthdr.len;
if (m->m_len < minlen) {
if ((m = m_pullup(m, minlen)) == NULL) {
printf("udp4_espinudp: m_pullup failed\n");
return 0;
}
}
len = m->m_len - off;
data = mtod(m, caddr_t) + off;
inp = sotoinpcb(so);
/* Ignore keepalive packets */
if ((len == 1) && (data[0] == '\xff')) {
return 1;
}
/*
* Check that the payload is long enough to hold
* an ESP header and compute the length of encapsulation
* header to remove
*/
if (inp->inp_flags & INP_ESPINUDP) {
u_int32_t *st = (u_int32_t *)data;
if ((len <= sizeof(struct esp)) || (*st == 0))
return 0; /* Normal UDP processing */
skip = sizeof(struct udphdr);
}
if (inp->inp_flags & INP_ESPINUDP_NON_IKE) {
u_int32_t *st = (u_int32_t *)data;
if ((len <= sizeof(u_int64_t) + sizeof(struct esp))
|| ((st[0] | st[1]) != 0))
return 0; /* Normal UDP processing */
skip = sizeof(struct udphdr) + sizeof(u_int64_t);
}
/*
* Get the UDP ports. They are handled in network
* order everywhere in IPSEC_NAT_T code.
*/
udphdr = (struct udphdr *)(data - skip);
sport = udphdr->uh_sport;
dport = udphdr->uh_dport;
/*
* Remove the UDP header (and possibly the non ESP marker)
* IP header lendth is iphdrlen
* Before:
* <--- off --->
* +----+------+-----+
* | IP | UDP | ESP |
* +----+------+-----+
* <-skip->
* After:
* +----+-----+
* | IP | ESP |
* +----+-----+
* <-skip->
*/
iphdrlen = off - sizeof(struct udphdr);
memmove(mtod(m, caddr_t) + skip, mtod(m, caddr_t), iphdrlen);
m_adj(m, skip);
ip = mtod(m, struct ip *);
ip->ip_len = htons(ntohs(ip->ip_len) - skip);
ip->ip_p = IPPROTO_ESP;
/*
* Copy the mbuf to avoid multiple free, as both
* esp4_input (which we call) and udp_input (which
* called us) free the mbuf.
*/
if ((n = m_dup(m, 0, M_COPYALL, M_DONTWAIT)) == NULL) {
printf("udp4_espinudp: m_dup failed\n");
return 0;
}
/*
* Add a PACKET_TAG_IPSEC_NAT_T_PORT tag to remember
* the source UDP port. This is required if we want
* to select the right SPD for multiple hosts behind
* same NAT
*/
if ((tag = m_tag_get(PACKET_TAG_IPSEC_NAT_T_PORTS,
sizeof(sport) + sizeof(dport), M_DONTWAIT)) == NULL) {
printf("udp4_espinudp: m_tag_get failed\n");
m_freem(n);
return 0;
}
((u_int16_t *)(tag + 1))[0] = sport;
((u_int16_t *)(tag + 1))[1] = dport;
m_tag_prepend(n, tag);
esp4_input(n, iphdrlen);
/* We handled it, it shoudln't be handled by UDP */
return 1;
}
#endif