NetBSD/sys/dev/scsipi/scsipiconf.h
bouyer 85078af6c4 Add a new quirk flags, "ADEV_NOSENSE", for devices that don't
handle properly the request sense command. Add <FX320S, , q01> as being
sense-unfriendly in the quirk table.
1998-12-17 13:05:05 +00:00

596 lines
19 KiB
C

/* $NetBSD: scsipiconf.h,v 1.28 1998/12/17 13:05:06 bouyer Exp $ */
/*-
* Copyright (c) 1998 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Originally written by Julian Elischer (julian@tfs.com)
* for TRW Financial Systems for use under the MACH(2.5) operating system.
*
* TRW Financial Systems, in accordance with their agreement with Carnegie
* Mellon University, makes this software available to CMU to distribute
* or use in any manner that they see fit as long as this message is kept with
* the software. For this reason TFS also grants any other persons or
* organisations permission to use or modify this software.
*
* TFS supplies this software to be publicly redistributed
* on the understanding that TFS is not responsible for the correct
* functioning of this software in any circumstances.
*
* Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992
*/
#ifndef _DEV_SCSIPI_SCSIPICONF_H_
#define _DEV_SCSIPI_SCSIPICONF_H_
typedef int boolean;
#include <sys/queue.h>
#include <machine/cpu.h>
#include <dev/scsipi/scsipi_debug.h>
/*
* The following documentation tries to describe the relationship between the
* various structures defined in this file:
*
* each adapter type has a scsipi_adapter struct. This describes the adapter
* and identifies routines that can be called to use the adapter.
* each device type has a scsipi_device struct. This describes the device and
* identifies routines that can be called to use the device.
* each existing device position (scsibus + target + lun or atapibus + drive)
* can be described by a scsipi_link struct.
* Only scsipi positions that actually have devices, have a scsipi_link
* structure assigned. so in effect each device has scsipi_link struct.
* The scsipi_link structure contains information identifying both the
* device driver and the adapter driver for that position on that scsipi
* bus, and can be said to 'link' the two.
* each individual scsipi bus has an array that points to all the scsipi_link
* structs associated with that scsipi bus. Slots with no device have
* a NULL pointer.
* each individual device also knows the address of it's own scsipi_link
* structure.
*
* -------------
*
* The key to all this is the scsipi_link structure which associates all the
* other structures with each other in the correct configuration. The
* scsipi_link is the connecting information that allows each part of the
* scsipi system to find the associated other parts.
*/
struct buf;
struct proc;
struct scsipi_link;
struct scsipi_xfer;
struct scsipi_generic {
u_int8_t opcode;
u_int8_t bytes[15];
};
/*
* return values for scsipi_cmd()
*/
#define SUCCESSFULLY_QUEUED 0
#define TRY_AGAIN_LATER 1
#define COMPLETE 2
#define ESCAPE_NOT_SUPPORTED 3
/*
* Device Specific Sense Handlers return either an errno
* or one of these three items.
*/
#define SCSIRET_NOERROR 0 /* No Error */
#define SCSIRET_RETRY -1 /* Retry the command that got this sense */
#define SCSIRET_CONTINUE -2 /* Continue with standard sense processing */
/*
* These entry points are called by the low-end drivers to get services from
* whatever high-end drivers they are attached to. Each device type has one
* of these statically allocated.
*/
struct scsipi_device {
int (*err_handler) __P((struct scsipi_xfer *));
/* returns -1 to say err processing done */
void (*start) __P((void *));
int (*async) __P((void));
/*
* When called with `0' as the second argument, we expect status
* back from the upper-level driver. When called with a `1',
* we're simply notifying the upper-level driver that the command
* is complete and expect no status back.
*/
void (*done) __P((struct scsipi_xfer *));
};
/*
* These entrypoints are called by the high-end drivers to get services from
* whatever low-end drivers they are attached to. Each adapter instance has
* one of these.
*
* scsipi_cmd required
* scsipi_minphys required
* scsipi_ioctl optional
* scsipi_enable optional
*/
struct scsipi_adapter {
int scsipi_refcnt;
int (*scsipi_cmd) __P((struct scsipi_xfer *));
void (*scsipi_minphys) __P((struct buf *));
int (*scsipi_ioctl) __P((struct scsipi_link *, u_long,
caddr_t, int, struct proc *));
int (*scsipi_enable) __P((void *, int));
};
/*
* This structure describes the connection between an adapter driver and
* a device driver, and is used by each to call services provided by
* the other, and to allow generic scsipi glue code to call these services
* as well.
*
* XXX Given the way NetBSD's autoconfiguration works, this is ...
* XXX nasty.
*/
struct scsipi_link {
u_int8_t type; /* device type, i.e. SCSI, ATAPI, ...*/
#define BUS_SCSI 0
#define BUS_ATAPI 1
u_int8_t openings; /* available operations */
u_int8_t active; /* operations in progress */
int flags; /* flags that all devices have */
#define SDEV_REMOVABLE 0x01 /* media is removable */
#define SDEV_MEDIA_LOADED 0x02 /* device figures are still valid */
#define SDEV_WAITING 0x04 /* a process is waiting for this */
#define SDEV_OPEN 0x08 /* at least 1 open session */
#define SDEV_DBX 0xf0 /* debuging flags (scsipi_debug.h) */
#define SDEV_WAITDRAIN 0x100 /* waiting for pending_xfers to drain */
u_int16_t quirks; /* per-device oddities */
#define SDEV_AUTOSAVE 0x0001 /*
* Do implicit SAVEDATAPOINTER on
* disconnect (ancient).
*/
#define SDEV_NOSYNC 0x0002 /* does not grok SDTR */
#define SDEV_NOWIDE 0x0004 /* does not grok WDTR */
#define SDEV_NOTAG 0x0008 /* does not do command tagging */
#define SDEV_NOLUNS 0x0010 /* does not grok LUNs */
#define SDEV_FORCELUNS 0x0020 /* prehistoric drive/ctlr groks LUNs */
#define SDEV_NOMODESENSE 0x0040 /* removable media/optical drives */
#define SDEV_NOSTARTUNIT 0x0080 /*
* Do not issue START UNIT
* requests in sd.c
*/
#define SDEV_NOSYNCCACHE 0x0100 /* does not grok SYNCHRONIZE CACHE */
#define ADEV_CDROM 0x0200 /* device is a CD-ROM */
#define ADEV_LITTLETOC 0x0400 /* Audio TOC uses wrong byte order */
#define ADEV_NOCAPACITY 0x0800 /* no READ_CD_CAPACITY command */
#define ADEV_NOTUR 0x1000 /* no TEST_UNIT_READY command */
#define ADEV_NODOORLOCK 0x2000 /* device can't lock door */
#define ADEV_NOSENSE 0x4000 /* device can't handle request sense */
struct scsipi_device *device; /* device entry points etc. */
void *device_softc; /* needed for call to foo_start */
struct scsipi_adapter *adapter;/* adapter entry points etc. */
void *adapter_softc; /* needed for call to foo_scsipi_cmd */
union { /* needed for call to foo_scsipi_cmd */
struct scsi_link {
int channel; /* channel, i.e. bus # on controller */
u_int8_t scsi_version; /* SCSI-I, SCSI-II, etc. */
u_int8_t scsibus; /* the Nth scsibus */
u_int8_t target; /* targ of this dev */
u_int8_t lun; /* lun of this dev */
u_int8_t adapter_target;/* what are we on the scsi
bus */
int16_t max_target; /* XXX max target supported
by adapter (inclusive) */
int16_t max_lun; /* XXX number of luns supported
by adapter (inclusive) */
} scsipi_scsi;
struct atapi_link {
u_int8_t drive; /* drive number on the bus */
u_int8_t channel; /* channel, i.e. bus # on
controller */
u_int8_t atapibus;
u_int8_t cap; /* drive capability */
#define ACAP_DRQ_MPROC 0x0000 /* microprocessor DRQ */
#define ACAP_DRQ_INTR 0x0200 /* interrupt DRQ */
#define ACAP_DRQ_ACCEL 0x0400 /* accelerated DRQ */
#define ACAP_DRQ_MASK 0x0600 /* same as in ataparams */
#define ACAP_LEN 0x0100 /* 16 bit commands */
} scsipi_atapi;
} _scsipi_link;
TAILQ_HEAD(, scsipi_xfer) pending_xfers;
int (*scsipi_cmd) __P((struct scsipi_link *, struct scsipi_generic *,
int cmdlen, u_char *data_addr, int datalen, int retries,
int timeout, struct buf *bp, int flags));
int (*scsipi_interpret_sense) __P((struct scsipi_xfer *));
void (*sc_print_addr) __P((struct scsipi_link *sc_link));
};
#define scsipi_scsi _scsipi_link.scsipi_scsi
#define scsipi_atapi _scsipi_link.scsipi_atapi
/*
* Each scsipi transaction is fully described by one of these structures
* It includes information about the source of the command and also the
* device and adapter for which the command is destined.
* (via the scsipi_link structure)
*
* The adapter_q member may be used by host adapter drivers to queue
* requests, if necessary.
*
* The device_q member is maintained by the scsipi middle layer. When
* a device issues a command, the xfer is placed on that device's
* pending commands queue. When an xfer is done and freed, it is taken
* off the device's queue. This allows for a device to wait for all of
* its pending commands to complete.
*/
struct scsipi_xfer {
TAILQ_ENTRY(scsipi_xfer) adapter_q; /* queue entry for use by adapter */
TAILQ_ENTRY(scsipi_xfer) device_q; /* device's pending xfers */
volatile int flags; /* 0x00ff0000 reserved for ATAPI */
struct scsipi_link *sc_link; /* all about our device and adapter */
int retries; /* the number of times to retry */
int timeout; /* in milliseconds */
struct scsipi_generic *cmd; /* The scsipi command to execute */
int cmdlen; /* how long it is */
u_char *data; /* dma address OR a uio address */
int datalen; /* data len (blank if uio) */
int resid; /* how much buffer was not touched */
int error; /* an error value */
struct buf *bp; /* If we need to associate with */
/* a buf */
union {
struct scsipi_sense_data scsi_sense; /* 32 bytes */
u_int32_t atapi_sense;
} sense;
/*
* Believe it or not, Some targets fall on the ground with
* anything but a certain sense length.
*/
int req_sense_length; /* Explicit request sense length */
u_int8_t status; /* SCSI status */
struct scsipi_generic cmdstore
__attribute__ ((aligned (4)));/* stash the command in here */
};
/*
* Per-request Flag values
*/
#define SCSI_NOSLEEP 0x0001 /* don't sleep */
#define SCSI_POLL 0x0002 /* poll for completion */
#define SCSI_AUTOCONF (SCSI_NOSLEEP | SCSI_POLL)
#define SCSI_USER 0x0004 /* Is a user cmd, call scsipi_user_done */
#define ITSDONE 0x0008 /* the transfer is as done as it gets */
#define INUSE 0x0010 /* The scsipi_xfer block is in use */
#define SCSI_SILENT 0x0020 /* don't announce NOT READY or MEDIA CHANGE */
#define SCSI_IGNORE_NOT_READY 0x0040 /* ignore NOT READY */
#define SCSI_IGNORE_MEDIA_CHANGE 0x0080 /* ignore MEDIA CHANGE */
#define SCSI_IGNORE_ILLEGAL_REQUEST 0x0100 /* ignore ILLEGAL REQUEST */
#define SCSI_RESET 0x0200 /* Reset the device in question */
#define SCSI_DATA_UIO 0x0400 /* The data address refers to a UIO */
#define SCSI_DATA_IN 0x0800 /* expect data to come INTO memory */
#define SCSI_DATA_OUT 0x1000 /* expect data to flow OUT of memory */
#define SCSI_TARGET 0x2000 /* This defines a TARGET mode op. */
#define SCSI_ESCAPE 0x4000 /* Escape operation */
#define SCSI_URGENT 0x8000 /* Urgent operation (e.g., HTAG) */
/* 0x00ff0000 reserved for ATAPI. */
/*
* Error values an adapter driver may return
*/
#define XS_NOERROR 0 /* there is no error, (sense is invalid) */
#define XS_SENSE 1 /* Check the returned sense for the error */
#define XS_SHORTSENSE 2 /* Check the ATAPI sense for the error */
#define XS_DRIVER_STUFFUP 3 /* Driver failed to perform operation */
#define XS_SELTIMEOUT 4 /* The device timed out.. turned off? */
#define XS_TIMEOUT 5 /* The Timeout reported was caught by SW */
#define XS_BUSY 7 /* The device busy, try again later? */
#define XS_RESET 8 /* bus was reset; possible retry command */
/*
* This describes matching information for scsipi_inqmatch(). The more things
* match, the higher the configuration priority.
*/
struct scsipi_inquiry_pattern {
u_int8_t type;
boolean removable;
char *vendor;
char *product;
char *revision;
};
/*
* This is used to pass information from the high-level configuration code
* to the device-specific drivers.
*/
struct scsipibus_attach_args {
struct scsipi_link *sa_sc_link;
struct scsipi_inquiry_pattern sa_inqbuf;
union { /* bus-type specific infos */
u_int8_t scsi_version; /* SCSI version */
} scsipi_info;
};
/*
* this describes a quirk entry
*/
struct scsi_quirk_inquiry_pattern {
struct scsipi_inquiry_pattern pattern;
u_int16_t quirks;
};
/*
* Macro to issue a SCSI command. Treat it like a function:
*
* int scsipi_command __P((struct scsipi_link *link,
* struct scsipi_generic *scsipi_cmd, int cmdlen,
* u_char *data_addr, int datalen, int retries,
* int timeout, struct buf *bp, int flags));
*/
#define scsipi_command(l, c, cl, da, dl, r, t, b, f) \
(*(l)->scsipi_cmd)((l), (c), (cl), (da), (dl), (r), (t), (b), (f))
/*
* Similar, but invoke the controller directly with a scsipi_xfer.
*/
#define scsipi_command_direct(xs) \
(*(xs)->sc_link->adapter->scsipi_cmd)((xs))
/*
* Macro to test whether a request will complete asynchronously.
*/
#define SCSIPI_XFER_ASYNC(xs) \
((xs->flags & (SCSI_NOSLEEP | SCSI_POLL)) == SCSI_NOSLEEP)
#ifdef _KERNEL
void scsipi_init __P((void));
caddr_t scsipi_inqmatch __P((struct scsipi_inquiry_pattern *, caddr_t,
int, int, int *));
char *scsipi_dtype __P((int));
void scsipi_strvis __P((u_char *, int, u_char *, int));
int scsipi_execute_xs __P((struct scsipi_xfer *));
u_long scsipi_size __P((struct scsipi_link *, int));
int scsipi_test_unit_ready __P((struct scsipi_link *, int));
int scsipi_prevent __P((struct scsipi_link *, int, int));
int scsipi_inquire __P((struct scsipi_link *,
struct scsipi_inquiry_data *, int));
int scsipi_start __P((struct scsipi_link *, int, int));
void scsipi_done __P((struct scsipi_xfer *));
void scsipi_user_done __P((struct scsipi_xfer *));
int scsipi_interpret_sense __P((struct scsipi_xfer *));
void scsipi_wait_drain __P((struct scsipi_link *));
#ifdef SCSIVERBOSE
void scsipi_print_sense __P((struct scsipi_xfer *, int));
void scsipi_print_sense_data __P((struct scsipi_sense_data *, int));
char *scsipi_decode_sense __P((void *, int));
#endif
int scsipi_do_ioctl __P((struct scsipi_link *, dev_t, u_long, caddr_t,
int, struct proc *));
int scsipi_adapter_addref __P((struct scsipi_link *));
void scsipi_adapter_delref __P((struct scsipi_link *));
void show_scsipi_xs __P((struct scsipi_xfer *));
void show_scsipi_cmd __P((struct scsipi_xfer *));
void show_mem __P((u_char *, int));
#endif /* _KERNEL */
static __inline void _lto2b __P((u_int32_t val, u_int8_t *bytes))
__attribute__ ((unused));
static __inline void _lto3b __P((u_int32_t val, u_int8_t *bytes))
__attribute__ ((unused));
static __inline void _lto4b __P((u_int32_t val, u_int8_t *bytes))
__attribute__ ((unused));
static __inline u_int32_t _2btol __P((const u_int8_t *bytes))
__attribute__ ((unused));
static __inline u_int32_t _3btol __P((const u_int8_t *bytes))
__attribute__ ((unused));
static __inline u_int32_t _4btol __P((const u_int8_t *bytes))
__attribute__ ((unused));
static __inline void _lto2l __P((u_int32_t val, u_int8_t *bytes))
__attribute__ ((unused));
static __inline void _lto3l __P((u_int32_t val, u_int8_t *bytes))
__attribute__ ((unused));
static __inline void _lto4l __P((u_int32_t val, u_int8_t *bytes))
__attribute__ ((unused));
static __inline u_int32_t _2ltol __P((const u_int8_t *bytes))
__attribute__ ((unused));
static __inline u_int32_t _3ltol __P((const u_int8_t *bytes))
__attribute__ ((unused));
static __inline u_int32_t _4ltol __P((const u_int8_t *bytes))
__attribute__ ((unused));
static __inline void bswap __P((char *, int))
__attribute__ ((unused));
static __inline void
_lto2b(val, bytes)
u_int32_t val;
u_int8_t *bytes;
{
bytes[0] = (val >> 8) & 0xff;
bytes[1] = val & 0xff;
}
static __inline void
_lto3b(val, bytes)
u_int32_t val;
u_int8_t *bytes;
{
bytes[0] = (val >> 16) & 0xff;
bytes[1] = (val >> 8) & 0xff;
bytes[2] = val & 0xff;
}
static __inline void
_lto4b(val, bytes)
u_int32_t val;
u_int8_t *bytes;
{
bytes[0] = (val >> 24) & 0xff;
bytes[1] = (val >> 16) & 0xff;
bytes[2] = (val >> 8) & 0xff;
bytes[3] = val & 0xff;
}
static __inline u_int32_t
_2btol(bytes)
const u_int8_t *bytes;
{
register u_int32_t rv;
rv = (bytes[0] << 8) |
bytes[1];
return (rv);
}
static __inline u_int32_t
_3btol(bytes)
const u_int8_t *bytes;
{
register u_int32_t rv;
rv = (bytes[0] << 16) |
(bytes[1] << 8) |
bytes[2];
return (rv);
}
static __inline u_int32_t
_4btol(bytes)
const u_int8_t *bytes;
{
register u_int32_t rv;
rv = (bytes[0] << 24) |
(bytes[1] << 16) |
(bytes[2] << 8) |
bytes[3];
return (rv);
}
static __inline void
_lto2l(val, bytes)
u_int32_t val;
u_int8_t *bytes;
{
bytes[0] = val & 0xff;
bytes[1] = (val >> 8) & 0xff;
}
static __inline void
_lto3l(val, bytes)
u_int32_t val;
u_int8_t *bytes;
{
bytes[0] = val & 0xff;
bytes[1] = (val >> 8) & 0xff;
bytes[2] = (val >> 16) & 0xff;
}
static __inline void
_lto4l(val, bytes)
u_int32_t val;
u_int8_t *bytes;
{
bytes[0] = val & 0xff;
bytes[1] = (val >> 8) & 0xff;
bytes[2] = (val >> 16) & 0xff;
bytes[3] = (val >> 24) & 0xff;
}
static __inline u_int32_t
_2ltol(bytes)
const u_int8_t *bytes;
{
register u_int32_t rv;
rv = bytes[0] |
(bytes[1] << 8);
return (rv);
}
static __inline u_int32_t
_3ltol(bytes)
const u_int8_t *bytes;
{
register u_int32_t rv;
rv = bytes[0] |
(bytes[1] << 8) |
(bytes[2] << 16);
return (rv);
}
static __inline u_int32_t
_4ltol(bytes)
const u_int8_t *bytes;
{
register u_int32_t rv;
rv = bytes[0] |
(bytes[1] << 8) |
(bytes[2] << 16) |
(bytes[3] << 24);
return (rv);
}
static __inline void
bswap (buf, len)
char *buf;
int len;
{
u_int16_t *p = (u_int16_t *)(buf + len);
while (--p >= (u_int16_t *)buf)
*p = (*p & 0xff) << 8 | (*p >> 8 & 0xff);
}
#endif /* _DEV_SCSIPI_SCSIPICONF_H_ */