/* $NetBSD: scsipiconf.h,v 1.28 1998/12/17 13:05:06 bouyer Exp $ */ /*- * Copyright (c) 1998 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Charles M. Hannum. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by the NetBSD * Foundation, Inc. and its contributors. * 4. Neither the name of The NetBSD Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * Originally written by Julian Elischer (julian@tfs.com) * for TRW Financial Systems for use under the MACH(2.5) operating system. * * TRW Financial Systems, in accordance with their agreement with Carnegie * Mellon University, makes this software available to CMU to distribute * or use in any manner that they see fit as long as this message is kept with * the software. For this reason TFS also grants any other persons or * organisations permission to use or modify this software. * * TFS supplies this software to be publicly redistributed * on the understanding that TFS is not responsible for the correct * functioning of this software in any circumstances. * * Ported to run under 386BSD by Julian Elischer (julian@tfs.com) Sept 1992 */ #ifndef _DEV_SCSIPI_SCSIPICONF_H_ #define _DEV_SCSIPI_SCSIPICONF_H_ typedef int boolean; #include #include #include /* * The following documentation tries to describe the relationship between the * various structures defined in this file: * * each adapter type has a scsipi_adapter struct. This describes the adapter * and identifies routines that can be called to use the adapter. * each device type has a scsipi_device struct. This describes the device and * identifies routines that can be called to use the device. * each existing device position (scsibus + target + lun or atapibus + drive) * can be described by a scsipi_link struct. * Only scsipi positions that actually have devices, have a scsipi_link * structure assigned. so in effect each device has scsipi_link struct. * The scsipi_link structure contains information identifying both the * device driver and the adapter driver for that position on that scsipi * bus, and can be said to 'link' the two. * each individual scsipi bus has an array that points to all the scsipi_link * structs associated with that scsipi bus. Slots with no device have * a NULL pointer. * each individual device also knows the address of it's own scsipi_link * structure. * * ------------- * * The key to all this is the scsipi_link structure which associates all the * other structures with each other in the correct configuration. The * scsipi_link is the connecting information that allows each part of the * scsipi system to find the associated other parts. */ struct buf; struct proc; struct scsipi_link; struct scsipi_xfer; struct scsipi_generic { u_int8_t opcode; u_int8_t bytes[15]; }; /* * return values for scsipi_cmd() */ #define SUCCESSFULLY_QUEUED 0 #define TRY_AGAIN_LATER 1 #define COMPLETE 2 #define ESCAPE_NOT_SUPPORTED 3 /* * Device Specific Sense Handlers return either an errno * or one of these three items. */ #define SCSIRET_NOERROR 0 /* No Error */ #define SCSIRET_RETRY -1 /* Retry the command that got this sense */ #define SCSIRET_CONTINUE -2 /* Continue with standard sense processing */ /* * These entry points are called by the low-end drivers to get services from * whatever high-end drivers they are attached to. Each device type has one * of these statically allocated. */ struct scsipi_device { int (*err_handler) __P((struct scsipi_xfer *)); /* returns -1 to say err processing done */ void (*start) __P((void *)); int (*async) __P((void)); /* * When called with `0' as the second argument, we expect status * back from the upper-level driver. When called with a `1', * we're simply notifying the upper-level driver that the command * is complete and expect no status back. */ void (*done) __P((struct scsipi_xfer *)); }; /* * These entrypoints are called by the high-end drivers to get services from * whatever low-end drivers they are attached to. Each adapter instance has * one of these. * * scsipi_cmd required * scsipi_minphys required * scsipi_ioctl optional * scsipi_enable optional */ struct scsipi_adapter { int scsipi_refcnt; int (*scsipi_cmd) __P((struct scsipi_xfer *)); void (*scsipi_minphys) __P((struct buf *)); int (*scsipi_ioctl) __P((struct scsipi_link *, u_long, caddr_t, int, struct proc *)); int (*scsipi_enable) __P((void *, int)); }; /* * This structure describes the connection between an adapter driver and * a device driver, and is used by each to call services provided by * the other, and to allow generic scsipi glue code to call these services * as well. * * XXX Given the way NetBSD's autoconfiguration works, this is ... * XXX nasty. */ struct scsipi_link { u_int8_t type; /* device type, i.e. SCSI, ATAPI, ...*/ #define BUS_SCSI 0 #define BUS_ATAPI 1 u_int8_t openings; /* available operations */ u_int8_t active; /* operations in progress */ int flags; /* flags that all devices have */ #define SDEV_REMOVABLE 0x01 /* media is removable */ #define SDEV_MEDIA_LOADED 0x02 /* device figures are still valid */ #define SDEV_WAITING 0x04 /* a process is waiting for this */ #define SDEV_OPEN 0x08 /* at least 1 open session */ #define SDEV_DBX 0xf0 /* debuging flags (scsipi_debug.h) */ #define SDEV_WAITDRAIN 0x100 /* waiting for pending_xfers to drain */ u_int16_t quirks; /* per-device oddities */ #define SDEV_AUTOSAVE 0x0001 /* * Do implicit SAVEDATAPOINTER on * disconnect (ancient). */ #define SDEV_NOSYNC 0x0002 /* does not grok SDTR */ #define SDEV_NOWIDE 0x0004 /* does not grok WDTR */ #define SDEV_NOTAG 0x0008 /* does not do command tagging */ #define SDEV_NOLUNS 0x0010 /* does not grok LUNs */ #define SDEV_FORCELUNS 0x0020 /* prehistoric drive/ctlr groks LUNs */ #define SDEV_NOMODESENSE 0x0040 /* removable media/optical drives */ #define SDEV_NOSTARTUNIT 0x0080 /* * Do not issue START UNIT * requests in sd.c */ #define SDEV_NOSYNCCACHE 0x0100 /* does not grok SYNCHRONIZE CACHE */ #define ADEV_CDROM 0x0200 /* device is a CD-ROM */ #define ADEV_LITTLETOC 0x0400 /* Audio TOC uses wrong byte order */ #define ADEV_NOCAPACITY 0x0800 /* no READ_CD_CAPACITY command */ #define ADEV_NOTUR 0x1000 /* no TEST_UNIT_READY command */ #define ADEV_NODOORLOCK 0x2000 /* device can't lock door */ #define ADEV_NOSENSE 0x4000 /* device can't handle request sense */ struct scsipi_device *device; /* device entry points etc. */ void *device_softc; /* needed for call to foo_start */ struct scsipi_adapter *adapter;/* adapter entry points etc. */ void *adapter_softc; /* needed for call to foo_scsipi_cmd */ union { /* needed for call to foo_scsipi_cmd */ struct scsi_link { int channel; /* channel, i.e. bus # on controller */ u_int8_t scsi_version; /* SCSI-I, SCSI-II, etc. */ u_int8_t scsibus; /* the Nth scsibus */ u_int8_t target; /* targ of this dev */ u_int8_t lun; /* lun of this dev */ u_int8_t adapter_target;/* what are we on the scsi bus */ int16_t max_target; /* XXX max target supported by adapter (inclusive) */ int16_t max_lun; /* XXX number of luns supported by adapter (inclusive) */ } scsipi_scsi; struct atapi_link { u_int8_t drive; /* drive number on the bus */ u_int8_t channel; /* channel, i.e. bus # on controller */ u_int8_t atapibus; u_int8_t cap; /* drive capability */ #define ACAP_DRQ_MPROC 0x0000 /* microprocessor DRQ */ #define ACAP_DRQ_INTR 0x0200 /* interrupt DRQ */ #define ACAP_DRQ_ACCEL 0x0400 /* accelerated DRQ */ #define ACAP_DRQ_MASK 0x0600 /* same as in ataparams */ #define ACAP_LEN 0x0100 /* 16 bit commands */ } scsipi_atapi; } _scsipi_link; TAILQ_HEAD(, scsipi_xfer) pending_xfers; int (*scsipi_cmd) __P((struct scsipi_link *, struct scsipi_generic *, int cmdlen, u_char *data_addr, int datalen, int retries, int timeout, struct buf *bp, int flags)); int (*scsipi_interpret_sense) __P((struct scsipi_xfer *)); void (*sc_print_addr) __P((struct scsipi_link *sc_link)); }; #define scsipi_scsi _scsipi_link.scsipi_scsi #define scsipi_atapi _scsipi_link.scsipi_atapi /* * Each scsipi transaction is fully described by one of these structures * It includes information about the source of the command and also the * device and adapter for which the command is destined. * (via the scsipi_link structure) * * The adapter_q member may be used by host adapter drivers to queue * requests, if necessary. * * The device_q member is maintained by the scsipi middle layer. When * a device issues a command, the xfer is placed on that device's * pending commands queue. When an xfer is done and freed, it is taken * off the device's queue. This allows for a device to wait for all of * its pending commands to complete. */ struct scsipi_xfer { TAILQ_ENTRY(scsipi_xfer) adapter_q; /* queue entry for use by adapter */ TAILQ_ENTRY(scsipi_xfer) device_q; /* device's pending xfers */ volatile int flags; /* 0x00ff0000 reserved for ATAPI */ struct scsipi_link *sc_link; /* all about our device and adapter */ int retries; /* the number of times to retry */ int timeout; /* in milliseconds */ struct scsipi_generic *cmd; /* The scsipi command to execute */ int cmdlen; /* how long it is */ u_char *data; /* dma address OR a uio address */ int datalen; /* data len (blank if uio) */ int resid; /* how much buffer was not touched */ int error; /* an error value */ struct buf *bp; /* If we need to associate with */ /* a buf */ union { struct scsipi_sense_data scsi_sense; /* 32 bytes */ u_int32_t atapi_sense; } sense; /* * Believe it or not, Some targets fall on the ground with * anything but a certain sense length. */ int req_sense_length; /* Explicit request sense length */ u_int8_t status; /* SCSI status */ struct scsipi_generic cmdstore __attribute__ ((aligned (4)));/* stash the command in here */ }; /* * Per-request Flag values */ #define SCSI_NOSLEEP 0x0001 /* don't sleep */ #define SCSI_POLL 0x0002 /* poll for completion */ #define SCSI_AUTOCONF (SCSI_NOSLEEP | SCSI_POLL) #define SCSI_USER 0x0004 /* Is a user cmd, call scsipi_user_done */ #define ITSDONE 0x0008 /* the transfer is as done as it gets */ #define INUSE 0x0010 /* The scsipi_xfer block is in use */ #define SCSI_SILENT 0x0020 /* don't announce NOT READY or MEDIA CHANGE */ #define SCSI_IGNORE_NOT_READY 0x0040 /* ignore NOT READY */ #define SCSI_IGNORE_MEDIA_CHANGE 0x0080 /* ignore MEDIA CHANGE */ #define SCSI_IGNORE_ILLEGAL_REQUEST 0x0100 /* ignore ILLEGAL REQUEST */ #define SCSI_RESET 0x0200 /* Reset the device in question */ #define SCSI_DATA_UIO 0x0400 /* The data address refers to a UIO */ #define SCSI_DATA_IN 0x0800 /* expect data to come INTO memory */ #define SCSI_DATA_OUT 0x1000 /* expect data to flow OUT of memory */ #define SCSI_TARGET 0x2000 /* This defines a TARGET mode op. */ #define SCSI_ESCAPE 0x4000 /* Escape operation */ #define SCSI_URGENT 0x8000 /* Urgent operation (e.g., HTAG) */ /* 0x00ff0000 reserved for ATAPI. */ /* * Error values an adapter driver may return */ #define XS_NOERROR 0 /* there is no error, (sense is invalid) */ #define XS_SENSE 1 /* Check the returned sense for the error */ #define XS_SHORTSENSE 2 /* Check the ATAPI sense for the error */ #define XS_DRIVER_STUFFUP 3 /* Driver failed to perform operation */ #define XS_SELTIMEOUT 4 /* The device timed out.. turned off? */ #define XS_TIMEOUT 5 /* The Timeout reported was caught by SW */ #define XS_BUSY 7 /* The device busy, try again later? */ #define XS_RESET 8 /* bus was reset; possible retry command */ /* * This describes matching information for scsipi_inqmatch(). The more things * match, the higher the configuration priority. */ struct scsipi_inquiry_pattern { u_int8_t type; boolean removable; char *vendor; char *product; char *revision; }; /* * This is used to pass information from the high-level configuration code * to the device-specific drivers. */ struct scsipibus_attach_args { struct scsipi_link *sa_sc_link; struct scsipi_inquiry_pattern sa_inqbuf; union { /* bus-type specific infos */ u_int8_t scsi_version; /* SCSI version */ } scsipi_info; }; /* * this describes a quirk entry */ struct scsi_quirk_inquiry_pattern { struct scsipi_inquiry_pattern pattern; u_int16_t quirks; }; /* * Macro to issue a SCSI command. Treat it like a function: * * int scsipi_command __P((struct scsipi_link *link, * struct scsipi_generic *scsipi_cmd, int cmdlen, * u_char *data_addr, int datalen, int retries, * int timeout, struct buf *bp, int flags)); */ #define scsipi_command(l, c, cl, da, dl, r, t, b, f) \ (*(l)->scsipi_cmd)((l), (c), (cl), (da), (dl), (r), (t), (b), (f)) /* * Similar, but invoke the controller directly with a scsipi_xfer. */ #define scsipi_command_direct(xs) \ (*(xs)->sc_link->adapter->scsipi_cmd)((xs)) /* * Macro to test whether a request will complete asynchronously. */ #define SCSIPI_XFER_ASYNC(xs) \ ((xs->flags & (SCSI_NOSLEEP | SCSI_POLL)) == SCSI_NOSLEEP) #ifdef _KERNEL void scsipi_init __P((void)); caddr_t scsipi_inqmatch __P((struct scsipi_inquiry_pattern *, caddr_t, int, int, int *)); char *scsipi_dtype __P((int)); void scsipi_strvis __P((u_char *, int, u_char *, int)); int scsipi_execute_xs __P((struct scsipi_xfer *)); u_long scsipi_size __P((struct scsipi_link *, int)); int scsipi_test_unit_ready __P((struct scsipi_link *, int)); int scsipi_prevent __P((struct scsipi_link *, int, int)); int scsipi_inquire __P((struct scsipi_link *, struct scsipi_inquiry_data *, int)); int scsipi_start __P((struct scsipi_link *, int, int)); void scsipi_done __P((struct scsipi_xfer *)); void scsipi_user_done __P((struct scsipi_xfer *)); int scsipi_interpret_sense __P((struct scsipi_xfer *)); void scsipi_wait_drain __P((struct scsipi_link *)); #ifdef SCSIVERBOSE void scsipi_print_sense __P((struct scsipi_xfer *, int)); void scsipi_print_sense_data __P((struct scsipi_sense_data *, int)); char *scsipi_decode_sense __P((void *, int)); #endif int scsipi_do_ioctl __P((struct scsipi_link *, dev_t, u_long, caddr_t, int, struct proc *)); int scsipi_adapter_addref __P((struct scsipi_link *)); void scsipi_adapter_delref __P((struct scsipi_link *)); void show_scsipi_xs __P((struct scsipi_xfer *)); void show_scsipi_cmd __P((struct scsipi_xfer *)); void show_mem __P((u_char *, int)); #endif /* _KERNEL */ static __inline void _lto2b __P((u_int32_t val, u_int8_t *bytes)) __attribute__ ((unused)); static __inline void _lto3b __P((u_int32_t val, u_int8_t *bytes)) __attribute__ ((unused)); static __inline void _lto4b __P((u_int32_t val, u_int8_t *bytes)) __attribute__ ((unused)); static __inline u_int32_t _2btol __P((const u_int8_t *bytes)) __attribute__ ((unused)); static __inline u_int32_t _3btol __P((const u_int8_t *bytes)) __attribute__ ((unused)); static __inline u_int32_t _4btol __P((const u_int8_t *bytes)) __attribute__ ((unused)); static __inline void _lto2l __P((u_int32_t val, u_int8_t *bytes)) __attribute__ ((unused)); static __inline void _lto3l __P((u_int32_t val, u_int8_t *bytes)) __attribute__ ((unused)); static __inline void _lto4l __P((u_int32_t val, u_int8_t *bytes)) __attribute__ ((unused)); static __inline u_int32_t _2ltol __P((const u_int8_t *bytes)) __attribute__ ((unused)); static __inline u_int32_t _3ltol __P((const u_int8_t *bytes)) __attribute__ ((unused)); static __inline u_int32_t _4ltol __P((const u_int8_t *bytes)) __attribute__ ((unused)); static __inline void bswap __P((char *, int)) __attribute__ ((unused)); static __inline void _lto2b(val, bytes) u_int32_t val; u_int8_t *bytes; { bytes[0] = (val >> 8) & 0xff; bytes[1] = val & 0xff; } static __inline void _lto3b(val, bytes) u_int32_t val; u_int8_t *bytes; { bytes[0] = (val >> 16) & 0xff; bytes[1] = (val >> 8) & 0xff; bytes[2] = val & 0xff; } static __inline void _lto4b(val, bytes) u_int32_t val; u_int8_t *bytes; { bytes[0] = (val >> 24) & 0xff; bytes[1] = (val >> 16) & 0xff; bytes[2] = (val >> 8) & 0xff; bytes[3] = val & 0xff; } static __inline u_int32_t _2btol(bytes) const u_int8_t *bytes; { register u_int32_t rv; rv = (bytes[0] << 8) | bytes[1]; return (rv); } static __inline u_int32_t _3btol(bytes) const u_int8_t *bytes; { register u_int32_t rv; rv = (bytes[0] << 16) | (bytes[1] << 8) | bytes[2]; return (rv); } static __inline u_int32_t _4btol(bytes) const u_int8_t *bytes; { register u_int32_t rv; rv = (bytes[0] << 24) | (bytes[1] << 16) | (bytes[2] << 8) | bytes[3]; return (rv); } static __inline void _lto2l(val, bytes) u_int32_t val; u_int8_t *bytes; { bytes[0] = val & 0xff; bytes[1] = (val >> 8) & 0xff; } static __inline void _lto3l(val, bytes) u_int32_t val; u_int8_t *bytes; { bytes[0] = val & 0xff; bytes[1] = (val >> 8) & 0xff; bytes[2] = (val >> 16) & 0xff; } static __inline void _lto4l(val, bytes) u_int32_t val; u_int8_t *bytes; { bytes[0] = val & 0xff; bytes[1] = (val >> 8) & 0xff; bytes[2] = (val >> 16) & 0xff; bytes[3] = (val >> 24) & 0xff; } static __inline u_int32_t _2ltol(bytes) const u_int8_t *bytes; { register u_int32_t rv; rv = bytes[0] | (bytes[1] << 8); return (rv); } static __inline u_int32_t _3ltol(bytes) const u_int8_t *bytes; { register u_int32_t rv; rv = bytes[0] | (bytes[1] << 8) | (bytes[2] << 16); return (rv); } static __inline u_int32_t _4ltol(bytes) const u_int8_t *bytes; { register u_int32_t rv; rv = bytes[0] | (bytes[1] << 8) | (bytes[2] << 16) | (bytes[3] << 24); return (rv); } static __inline void bswap (buf, len) char *buf; int len; { u_int16_t *p = (u_int16_t *)(buf + len); while (--p >= (u_int16_t *)buf) *p = (*p & 0xff) << 8 | (*p >> 8 & 0xff); } #endif /* _DEV_SCSIPI_SCSIPICONF_H_ */