NetBSD/sys/dev/raidframe/rf_engine.c
jld f1a1ad338d Finally commit the RAIDframe parity map Summer Of Code project.
Drastically reduces the amount of time spent rewriting parity after an
unclean shutdown by keeping better track of which regions might have had
outstanding writes.  Enabled by default; can be disabled on a per-set
basis, or tuned, with the new raidctl(8) commands.

Discussed on tech-kern@ to a general air of approval; exhortations to
commit from mrg@, christos@, and others.

Thanks to Google for their sponsorship, oster@ for mentoring the
project, assorted developers for trying very hard to break it, and
probably more I'm forgetting.
2009-11-17 18:54:26 +00:00

891 lines
25 KiB
C

/* $NetBSD: rf_engine.c,v 1.40 2009/11/17 18:54:26 jld Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
*
* Author: William V. Courtright II, Mark Holland, Rachad Youssef
*
* Permission to use, copy, modify and distribute this software and
* its documentation is hereby granted, provided that both the copyright
* notice and this permission notice appear in all copies of the
* software, derivative works or modified versions, and any portions
* thereof, and that both notices appear in supporting documentation.
*
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
*
* Carnegie Mellon requests users of this software to return to
*
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
* School of Computer Science
* Carnegie Mellon University
* Pittsburgh PA 15213-3890
*
* any improvements or extensions that they make and grant Carnegie the
* rights to redistribute these changes.
*/
/****************************************************************************
* *
* engine.c -- code for DAG execution engine *
* *
* Modified to work as follows (holland): *
* A user-thread calls into DispatchDAG, which fires off the nodes that *
* are direct successors to the header node. DispatchDAG then returns, *
* and the rest of the I/O continues asynchronously. As each node *
* completes, the node execution function calls FinishNode(). FinishNode *
* scans the list of successors to the node and increments the antecedent *
* counts. Each node that becomes enabled is placed on a central node *
* queue. A dedicated dag-execution thread grabs nodes off of this *
* queue and fires them. *
* *
* NULL nodes are never fired. *
* *
* Terminator nodes are never fired, but rather cause the callback *
* associated with the DAG to be invoked. *
* *
* If a node fails, the dag either rolls forward to the completion or *
* rolls back, undoing previously-completed nodes and fails atomically. *
* The direction of recovery is determined by the location of the failed *
* node in the graph. If the failure occurred before the commit node in *
* the graph, backward recovery is used. Otherwise, forward recovery is *
* used. *
* *
****************************************************************************/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.40 2009/11/17 18:54:26 jld Exp $");
#include <sys/errno.h>
#include "rf_threadstuff.h"
#include "rf_dag.h"
#include "rf_engine.h"
#include "rf_etimer.h"
#include "rf_general.h"
#include "rf_dagutils.h"
#include "rf_shutdown.h"
#include "rf_raid.h"
#include "rf_kintf.h"
#include "rf_paritymap.h"
static void rf_ShutdownEngine(void *);
static void DAGExecutionThread(RF_ThreadArg_t arg);
static void rf_RaidIOThread(RF_ThreadArg_t arg);
/* synchronization primitives for this file. DO_WAIT should be enclosed in a while loop. */
#define DO_LOCK(_r_) \
do { \
ks = splbio(); \
RF_LOCK_MUTEX((_r_)->node_queue_mutex); \
} while (0)
#define DO_UNLOCK(_r_) \
do { \
RF_UNLOCK_MUTEX((_r_)->node_queue_mutex); \
splx(ks); \
} while (0)
#define DO_WAIT(_r_) \
RF_WAIT_COND((_r_)->node_queue, (_r_)->node_queue_mutex)
#define DO_SIGNAL(_r_) \
RF_BROADCAST_COND((_r_)->node_queue) /* XXX RF_SIGNAL_COND? */
static void
rf_ShutdownEngine(void *arg)
{
RF_Raid_t *raidPtr;
int ks;
raidPtr = (RF_Raid_t *) arg;
/* Tell the rf_RaidIOThread to shutdown */
simple_lock(&(raidPtr->iodone_lock));
raidPtr->shutdown_raidio = 1;
wakeup(&(raidPtr->iodone));
/* ...and wait for it to tell us it has finished */
while (raidPtr->shutdown_raidio)
ltsleep(&(raidPtr->shutdown_raidio), PRIBIO, "raidshutdown", 0,
&(raidPtr->iodone_lock));
simple_unlock(&(raidPtr->iodone_lock));
/* Now shut down the DAG execution engine. */
DO_LOCK(raidPtr);
raidPtr->shutdown_engine = 1;
DO_SIGNAL(raidPtr);
DO_UNLOCK(raidPtr);
}
int
rf_ConfigureEngine(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
RF_Config_t *cfgPtr)
{
rf_mutex_init(&raidPtr->node_queue_mutex);
raidPtr->node_queue = NULL;
raidPtr->dags_in_flight = 0;
/* we create the execution thread only once per system boot. no need
* to check return code b/c the kernel panics if it can't create the
* thread. */
#if RF_DEBUG_ENGINE
if (rf_engineDebug) {
printf("raid%d: Creating engine thread\n", raidPtr->raidid);
}
#endif
if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_thread,
DAGExecutionThread, raidPtr,
"raid%d", raidPtr->raidid)) {
printf("raid%d: Unable to create engine thread\n",
raidPtr->raidid);
return (ENOMEM);
}
if (RF_CREATE_ENGINE_THREAD(raidPtr->engine_helper_thread,
rf_RaidIOThread, raidPtr,
"raidio%d", raidPtr->raidid)) {
printf("raid%d: Unable to create raidio thread\n",
raidPtr->raidid);
return (ENOMEM);
}
#if RF_DEBUG_ENGINE
if (rf_engineDebug) {
printf("raid%d: Created engine thread\n", raidPtr->raidid);
}
#endif
/* engine thread is now running and waiting for work */
#if RF_DEBUG_ENGINE
if (rf_engineDebug) {
printf("raid%d: Engine thread running and waiting for events\n", raidPtr->raidid);
}
#endif
rf_ShutdownCreate(listp, rf_ShutdownEngine, raidPtr);
return (0);
}
static int
BranchDone(RF_DagNode_t *node)
{
int i;
/* return true if forward execution is completed for a node and it's
* succedents */
switch (node->status) {
case rf_wait:
/* should never be called in this state */
RF_PANIC();
break;
case rf_fired:
/* node is currently executing, so we're not done */
return (RF_FALSE);
case rf_good:
/* for each succedent recursively check branch */
for (i = 0; i < node->numSuccedents; i++)
if (!BranchDone(node->succedents[i]))
return RF_FALSE;
return RF_TRUE; /* node and all succedent branches aren't in
* fired state */
case rf_bad:
/* succedents can't fire */
return (RF_TRUE);
case rf_recover:
/* should never be called in this state */
RF_PANIC();
break;
case rf_undone:
case rf_panic:
/* XXX need to fix this case */
/* for now, assume that we're done */
return (RF_TRUE);
default:
/* illegal node status */
RF_PANIC();
break;
}
}
static int
NodeReady(RF_DagNode_t *node)
{
int ready;
switch (node->dagHdr->status) {
case rf_enable:
case rf_rollForward:
if ((node->status == rf_wait) &&
(node->numAntecedents == node->numAntDone))
ready = RF_TRUE;
else
ready = RF_FALSE;
break;
case rf_rollBackward:
RF_ASSERT(node->numSuccDone <= node->numSuccedents);
RF_ASSERT(node->numSuccFired <= node->numSuccedents);
RF_ASSERT(node->numSuccFired <= node->numSuccDone);
if ((node->status == rf_good) &&
(node->numSuccDone == node->numSuccedents))
ready = RF_TRUE;
else
ready = RF_FALSE;
break;
default:
printf("Execution engine found illegal DAG status in NodeReady\n");
RF_PANIC();
break;
}
return (ready);
}
/* user context and dag-exec-thread context: Fire a node. The node's
* status field determines which function, do or undo, to be fired.
* This routine assumes that the node's status field has alread been
* set to "fired" or "recover" to indicate the direction of execution.
*/
static void
FireNode(RF_DagNode_t *node)
{
switch (node->status) {
case rf_fired:
/* fire the do function of a node */
#if RF_DEBUG_ENGINE
if (rf_engineDebug) {
printf("raid%d: Firing node 0x%lx (%s)\n",
node->dagHdr->raidPtr->raidid,
(unsigned long) node, node->name);
}
#endif
if (node->flags & RF_DAGNODE_FLAG_YIELD) {
#if defined(__NetBSD__) && defined(_KERNEL)
/* thread_block(); */
/* printf("Need to block the thread here...\n"); */
/* XXX thread_block is actually mentioned in
* /usr/include/vm/vm_extern.h */
#else
thread_block();
#endif
}
(*(node->doFunc)) (node);
break;
case rf_recover:
/* fire the undo function of a node */
#if RF_DEBUG_ENGINE
if (rf_engineDebug) {
printf("raid%d: Firing (undo) node 0x%lx (%s)\n",
node->dagHdr->raidPtr->raidid,
(unsigned long) node, node->name);
}
#endif
if (node->flags & RF_DAGNODE_FLAG_YIELD)
#if defined(__NetBSD__) && defined(_KERNEL)
/* thread_block(); */
/* printf("Need to block the thread here...\n"); */
/* XXX thread_block is actually mentioned in
* /usr/include/vm/vm_extern.h */
#else
thread_block();
#endif
(*(node->undoFunc)) (node);
break;
default:
RF_PANIC();
break;
}
}
/* user context:
* Attempt to fire each node in a linear array.
* The entire list is fired atomically.
*/
static void
FireNodeArray(int numNodes, RF_DagNode_t **nodeList)
{
RF_DagStatus_t dstat;
RF_DagNode_t *node;
int i, j;
/* first, mark all nodes which are ready to be fired */
for (i = 0; i < numNodes; i++) {
node = nodeList[i];
dstat = node->dagHdr->status;
RF_ASSERT((node->status == rf_wait) ||
(node->status == rf_good));
if (NodeReady(node)) {
if ((dstat == rf_enable) ||
(dstat == rf_rollForward)) {
RF_ASSERT(node->status == rf_wait);
if (node->commitNode)
node->dagHdr->numCommits++;
node->status = rf_fired;
for (j = 0; j < node->numAntecedents; j++)
node->antecedents[j]->numSuccFired++;
} else {
RF_ASSERT(dstat == rf_rollBackward);
RF_ASSERT(node->status == rf_good);
/* only one commit node per graph */
RF_ASSERT(node->commitNode == RF_FALSE);
node->status = rf_recover;
}
}
}
/* now, fire the nodes */
for (i = 0; i < numNodes; i++) {
if ((nodeList[i]->status == rf_fired) ||
(nodeList[i]->status == rf_recover))
FireNode(nodeList[i]);
}
}
/* user context:
* Attempt to fire each node in a linked list.
* The entire list is fired atomically.
*/
static void
FireNodeList(RF_DagNode_t *nodeList)
{
RF_DagNode_t *node, *next;
RF_DagStatus_t dstat;
int j;
if (nodeList) {
/* first, mark all nodes which are ready to be fired */
for (node = nodeList; node; node = next) {
next = node->next;
dstat = node->dagHdr->status;
RF_ASSERT((node->status == rf_wait) ||
(node->status == rf_good));
if (NodeReady(node)) {
if ((dstat == rf_enable) ||
(dstat == rf_rollForward)) {
RF_ASSERT(node->status == rf_wait);
if (node->commitNode)
node->dagHdr->numCommits++;
node->status = rf_fired;
for (j = 0; j < node->numAntecedents; j++)
node->antecedents[j]->numSuccFired++;
} else {
RF_ASSERT(dstat == rf_rollBackward);
RF_ASSERT(node->status == rf_good);
/* only one commit node per graph */
RF_ASSERT(node->commitNode == RF_FALSE);
node->status = rf_recover;
}
}
}
/* now, fire the nodes */
for (node = nodeList; node; node = next) {
next = node->next;
if ((node->status == rf_fired) ||
(node->status == rf_recover))
FireNode(node);
}
}
}
/* interrupt context:
* for each succedent
* propagate required results from node to succedent
* increment succedent's numAntDone
* place newly-enable nodes on node queue for firing
*
* To save context switches, we don't place NIL nodes on the node queue,
* but rather just process them as if they had fired. Note that NIL nodes
* that are the direct successors of the header will actually get fired by
* DispatchDAG, which is fine because no context switches are involved.
*
* Important: when running at user level, this can be called by any
* disk thread, and so the increment and check of the antecedent count
* must be locked. I used the node queue mutex and locked down the
* entire function, but this is certainly overkill.
*/
static void
PropagateResults(RF_DagNode_t *node, int context)
{
RF_DagNode_t *s, *a;
RF_Raid_t *raidPtr;
int i, ks;
RF_DagNode_t *finishlist = NULL; /* a list of NIL nodes to be
* finished */
RF_DagNode_t *skiplist = NULL; /* list of nodes with failed truedata
* antecedents */
RF_DagNode_t *firelist = NULL; /* a list of nodes to be fired */
RF_DagNode_t *q = NULL, *qh = NULL, *next;
int j, skipNode;
raidPtr = node->dagHdr->raidPtr;
DO_LOCK(raidPtr);
/* debug - validate fire counts */
for (i = 0; i < node->numAntecedents; i++) {
a = *(node->antecedents + i);
RF_ASSERT(a->numSuccFired >= a->numSuccDone);
RF_ASSERT(a->numSuccFired <= a->numSuccedents);
a->numSuccDone++;
}
switch (node->dagHdr->status) {
case rf_enable:
case rf_rollForward:
for (i = 0; i < node->numSuccedents; i++) {
s = *(node->succedents + i);
RF_ASSERT(s->status == rf_wait);
(s->numAntDone)++;
if (s->numAntDone == s->numAntecedents) {
/* look for NIL nodes */
if (s->doFunc == rf_NullNodeFunc) {
/* don't fire NIL nodes, just process
* them */
s->next = finishlist;
finishlist = s;
} else {
/* look to see if the node is to be
* skipped */
skipNode = RF_FALSE;
for (j = 0; j < s->numAntecedents; j++)
if ((s->antType[j] == rf_trueData) && (s->antecedents[j]->status == rf_bad))
skipNode = RF_TRUE;
if (skipNode) {
/* this node has one or more
* failed true data
* dependencies, so skip it */
s->next = skiplist;
skiplist = s;
} else
/* add s to list of nodes (q)
* to execute */
if (context != RF_INTR_CONTEXT) {
/* we only have to
* enqueue if we're at
* intr context */
/* put node on
a list to
be fired
after we
unlock */
s->next = firelist;
firelist = s;
} else {
/* enqueue the
node for
the dag
exec thread
to fire */
RF_ASSERT(NodeReady(s));
if (q) {
q->next = s;
q = s;
} else {
qh = q = s;
qh->next = NULL;
}
}
}
}
}
if (q) {
/* xfer our local list of nodes to the node queue */
q->next = raidPtr->node_queue;
raidPtr->node_queue = qh;
DO_SIGNAL(raidPtr);
}
DO_UNLOCK(raidPtr);
for (; skiplist; skiplist = next) {
next = skiplist->next;
skiplist->status = rf_skipped;
for (i = 0; i < skiplist->numAntecedents; i++) {
skiplist->antecedents[i]->numSuccFired++;
}
if (skiplist->commitNode) {
skiplist->dagHdr->numCommits++;
}
rf_FinishNode(skiplist, context);
}
for (; finishlist; finishlist = next) {
/* NIL nodes: no need to fire them */
next = finishlist->next;
finishlist->status = rf_good;
for (i = 0; i < finishlist->numAntecedents; i++) {
finishlist->antecedents[i]->numSuccFired++;
}
if (finishlist->commitNode)
finishlist->dagHdr->numCommits++;
/*
* Okay, here we're calling rf_FinishNode() on
* nodes that have the null function as their
* work proc. Such a node could be the
* terminal node in a DAG. If so, it will
* cause the DAG to complete, which will in
* turn free memory used by the DAG, which
* includes the node in question. Thus, we
* must avoid referencing the node at all
* after calling rf_FinishNode() on it. */
rf_FinishNode(finishlist, context); /* recursive call */
}
/* fire all nodes in firelist */
FireNodeList(firelist);
break;
case rf_rollBackward:
for (i = 0; i < node->numAntecedents; i++) {
a = *(node->antecedents + i);
RF_ASSERT(a->status == rf_good);
RF_ASSERT(a->numSuccDone <= a->numSuccedents);
RF_ASSERT(a->numSuccDone <= a->numSuccFired);
if (a->numSuccDone == a->numSuccFired) {
if (a->undoFunc == rf_NullNodeFunc) {
/* don't fire NIL nodes, just process
* them */
a->next = finishlist;
finishlist = a;
} else {
if (context != RF_INTR_CONTEXT) {
/* we only have to enqueue if
* we're at intr context */
/* put node on a list to be
fired after we unlock */
a->next = firelist;
firelist = a;
} else {
/* enqueue the node for the
dag exec thread to fire */
RF_ASSERT(NodeReady(a));
if (q) {
q->next = a;
q = a;
} else {
qh = q = a;
qh->next = NULL;
}
}
}
}
}
if (q) {
/* xfer our local list of nodes to the node queue */
q->next = raidPtr->node_queue;
raidPtr->node_queue = qh;
DO_SIGNAL(raidPtr);
}
DO_UNLOCK(raidPtr);
for (; finishlist; finishlist = next) {
/* NIL nodes: no need to fire them */
next = finishlist->next;
finishlist->status = rf_good;
/*
* Okay, here we're calling rf_FinishNode() on
* nodes that have the null function as their
* work proc. Such a node could be the first
* node in a DAG. If so, it will cause the DAG
* to complete, which will in turn free memory
* used by the DAG, which includes the node in
* question. Thus, we must avoid referencing
* the node at all after calling
* rf_FinishNode() on it. */
rf_FinishNode(finishlist, context); /* recursive call */
}
/* fire all nodes in firelist */
FireNodeList(firelist);
break;
default:
printf("Engine found illegal DAG status in PropagateResults()\n");
RF_PANIC();
break;
}
}
/*
* Process a fired node which has completed
*/
static void
ProcessNode(RF_DagNode_t *node, int context)
{
RF_Raid_t *raidPtr;
raidPtr = node->dagHdr->raidPtr;
switch (node->status) {
case rf_good:
/* normal case, don't need to do anything */
break;
case rf_bad:
if ((node->dagHdr->numCommits > 0) ||
(node->dagHdr->numCommitNodes == 0)) {
/* crossed commit barrier */
node->dagHdr->status = rf_rollForward;
#if RF_DEBUG_ENGINE
if (rf_engineDebug) {
printf("raid%d: node (%s) returned fail, rolling forward\n", raidPtr->raidid, node->name);
}
#endif
} else {
/* never reached commit barrier */
node->dagHdr->status = rf_rollBackward;
#if RF_DEBUG_ENGINE
if (rf_engineDebug) {
printf("raid%d: node (%s) returned fail, rolling backward\n", raidPtr->raidid, node->name);
}
#endif
}
break;
case rf_undone:
/* normal rollBackward case, don't need to do anything */
break;
case rf_panic:
/* an undo node failed!!! */
printf("UNDO of a node failed!!!/n");
break;
default:
printf("node finished execution with an illegal status!!!\n");
RF_PANIC();
break;
}
/* enqueue node's succedents (antecedents if rollBackward) for
* execution */
PropagateResults(node, context);
}
/* user context or dag-exec-thread context:
* This is the first step in post-processing a newly-completed node.
* This routine is called by each node execution function to mark the node
* as complete and fire off any successors that have been enabled.
*/
int
rf_FinishNode(RF_DagNode_t *node, int context)
{
int retcode = RF_FALSE;
node->dagHdr->numNodesCompleted++;
ProcessNode(node, context);
return (retcode);
}
/* user context: submit dag for execution, return non-zero if we have
* to wait for completion. if and only if we return non-zero, we'll
* cause cbFunc to get invoked with cbArg when the DAG has completed.
*
* for now we always return 1. If the DAG does not cause any I/O,
* then the callback may get invoked before DispatchDAG returns.
* There's code in state 5 of ContinueRaidAccess to handle this.
*
* All we do here is fire the direct successors of the header node.
* The DAG execution thread does the rest of the dag processing. */
int
rf_DispatchDAG(RF_DagHeader_t *dag, void (*cbFunc) (void *),
void *cbArg)
{
RF_Raid_t *raidPtr;
raidPtr = dag->raidPtr;
#if RF_ACC_TRACE > 0
if (dag->tracerec) {
RF_ETIMER_START(dag->tracerec->timer);
}
#endif
#if DEBUG
#if RF_DEBUG_VALIDATE_DAG
if (rf_engineDebug || rf_validateDAGDebug) {
if (rf_ValidateDAG(dag))
RF_PANIC();
}
#endif
#endif
#if RF_DEBUG_ENGINE
if (rf_engineDebug) {
printf("raid%d: Entering DispatchDAG\n", raidPtr->raidid);
}
#endif
raidPtr->dags_in_flight++; /* debug only: blow off proper
* locking */
dag->cbFunc = cbFunc;
dag->cbArg = cbArg;
dag->numNodesCompleted = 0;
dag->status = rf_enable;
FireNodeArray(dag->numSuccedents, dag->succedents);
return (1);
}
/* dedicated kernel thread: the thread that handles all DAG node
* firing. To minimize locking and unlocking, we grab a copy of the
* entire node queue and then set the node queue to NULL before doing
* any firing of nodes. This way we only have to release the lock
* once. Of course, it's probably rare that there's more than one
* node in the queue at any one time, but it sometimes happens.
*/
static void
DAGExecutionThread(RF_ThreadArg_t arg)
{
RF_DagNode_t *nd, *local_nq, *term_nq, *fire_nq;
RF_Raid_t *raidPtr;
int ks;
int s;
raidPtr = (RF_Raid_t *) arg;
#if RF_DEBUG_ENGINE
if (rf_engineDebug) {
printf("raid%d: Engine thread is running\n", raidPtr->raidid);
}
#endif
s = splbio();
DO_LOCK(raidPtr);
while (!raidPtr->shutdown_engine) {
while (raidPtr->node_queue != NULL) {
local_nq = raidPtr->node_queue;
fire_nq = NULL;
term_nq = NULL;
raidPtr->node_queue = NULL;
DO_UNLOCK(raidPtr);
/* first, strip out the terminal nodes */
while (local_nq) {
nd = local_nq;
local_nq = local_nq->next;
switch (nd->dagHdr->status) {
case rf_enable:
case rf_rollForward:
if (nd->numSuccedents == 0) {
/* end of the dag, add to
* callback list */
nd->next = term_nq;
term_nq = nd;
} else {
/* not the end, add to the
* fire queue */
nd->next = fire_nq;
fire_nq = nd;
}
break;
case rf_rollBackward:
if (nd->numAntecedents == 0) {
/* end of the dag, add to the
* callback list */
nd->next = term_nq;
term_nq = nd;
} else {
/* not the end, add to the
* fire queue */
nd->next = fire_nq;
fire_nq = nd;
}
break;
default:
RF_PANIC();
break;
}
}
/* execute callback of dags which have reached the
* terminal node */
while (term_nq) {
nd = term_nq;
term_nq = term_nq->next;
nd->next = NULL;
(nd->dagHdr->cbFunc) (nd->dagHdr->cbArg);
raidPtr->dags_in_flight--; /* debug only */
}
/* fire remaining nodes */
FireNodeList(fire_nq);
DO_LOCK(raidPtr);
}
while (!raidPtr->shutdown_engine &&
raidPtr->node_queue == NULL) {
DO_WAIT(raidPtr);
}
}
DO_UNLOCK(raidPtr);
splx(s);
kthread_exit(0);
}
/*
* rf_RaidIOThread() -- When I/O to a component begins, raidstrategy()
* puts the I/O on a buf_queue, and then signals raidPtr->iodone. If
* necessary, this function calls raidstart() to initiate the I/O.
* When I/O to a component completes, KernelWakeupFunc() puts the
* completed request onto raidPtr->iodone TAILQ. This function looks
* after requests on that queue by calling rf_DiskIOComplete() for the
* request, and by calling any required CompleteFunc for the request.
*/
static void
rf_RaidIOThread(RF_ThreadArg_t arg)
{
RF_Raid_t *raidPtr;
RF_DiskQueueData_t *req;
int s;
raidPtr = (RF_Raid_t *) arg;
s = splbio();
simple_lock(&(raidPtr->iodone_lock));
while (!raidPtr->shutdown_raidio) {
/* if there is nothing to do, then snooze. */
if (TAILQ_EMPTY(&(raidPtr->iodone)) &&
rf_buf_queue_check(raidPtr->raidid)) {
ltsleep(&(raidPtr->iodone), PRIBIO, "raidiow", 0,
&(raidPtr->iodone_lock));
}
/* Check for deferred parity-map-related work. */
if (raidPtr->parity_map != NULL) {
simple_unlock(&(raidPtr->iodone_lock));
rf_paritymap_checkwork(raidPtr->parity_map);
simple_lock(&(raidPtr->iodone_lock));
}
/* See what I/Os, if any, have arrived */
while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);
simple_unlock(&(raidPtr->iodone_lock));
rf_DiskIOComplete(req->queue, req, req->error);
(req->CompleteFunc) (req->argument, req->error);
simple_lock(&(raidPtr->iodone_lock));
}
/* process any pending outgoing IO */
simple_unlock(&(raidPtr->iodone_lock));
raidstart(raidPtr);
simple_lock(&(raidPtr->iodone_lock));
}
/* Let rf_ShutdownEngine know that we're done... */
raidPtr->shutdown_raidio = 0;
wakeup(&(raidPtr->shutdown_raidio));
simple_unlock(&(raidPtr->iodone_lock));
splx(s);
kthread_exit(0);
}