Finally commit the RAIDframe parity map Summer Of Code project.

Drastically reduces the amount of time spent rewriting parity after an
unclean shutdown by keeping better track of which regions might have had
outstanding writes.  Enabled by default; can be disabled on a per-set
basis, or tuned, with the new raidctl(8) commands.

Discussed on tech-kern@ to a general air of approval; exhortations to
commit from mrg@, christos@, and others.

Thanks to Google for their sponsorship, oster@ for mentoring the
project, assorted developers for trying very hard to break it, and
probably more I'm forgetting.
This commit is contained in:
jld 2009-11-17 18:54:26 +00:00
parent 77fd7698f3
commit f1a1ad338d
18 changed files with 1443 additions and 230 deletions

View File

@ -1,4 +1,4 @@
.\" $NetBSD: raidctl.8,v 1.56 2008/08/28 21:24:30 wiz Exp $
.\" $NetBSD: raidctl.8,v 1.57 2009/11/17 18:54:26 jld Exp $
.\"
.\" Copyright (c) 1998, 2002 The NetBSD Foundation, Inc.
.\" All rights reserved.
@ -96,6 +96,16 @@
.Fl I Ar serial_number Ar dev
.Nm
.Op Fl v
.Fl m Ar dev
.Nm
.Op Fl v
.Fl M
.Oo yes | no | set
.Ar params
.Oc
.Ar dev
.Nm
.Op Fl v
.Fl p Ar dev
.Nm
.Op Fl v
@ -222,6 +232,44 @@ different RAID sets.
This step
.Em MUST
be performed when a new RAID set is created.
.It Fl m Ar dev
Display status information about the parity map on the RAID set, if any.
If used with
.Fl v
then the current contents of the parity map will be output (in
hexadecimal format) as well.
.It Fl M Ic yes Ar dev
.\"XXX should there be a section with more info on the parity map feature?
Enable the use of a parity map on the RAID set; this is the default,
and greatly reduces the time taken to check parity after unclean
shutdowns at the cost of some very slight overhead during normal
operation.
Changes to this setting will take effect the next time the set is
configured.
Note that RAID-0 sets, having no parity, will not use a parity map in
any case.
.It Fl M Ic no Ar dev
Disable the use of a parity map on the RAID set; doing this is not
recommended.
This will take effect the next time the set is configured.
.It Fl M Ic set Ar cooldown Ar tickms Ar regions Ar dev
Alter the parameters of the parity map; parameters to leave unchanged
can be given as 0, and trailing zeroes may be omitted.
.\"XXX should this explanation be deferred to another section as well?
The RAID set is divided into
.Ar regions
regions; each region is marked dirty for at most
.Ar cooldown
intervals of
.Ar tickms
milliseconds each after a write to it, and at least
.Ar cooldown
\- 1 such intervals.
Changes to
.Ar regions
take effect the next time is configured, while changes to the other
parameters are applied immediately.
The default parameters are expected to be reasonable for most workloads.
.It Fl p Ar dev
Check the status of the parity on the RAID set.
Displays a status message,

View File

@ -1,4 +1,4 @@
/* $NetBSD: raidctl.c,v 1.41 2009/10/11 12:14:05 pooka Exp $ */
/* $NetBSD: raidctl.c,v 1.42 2009/11/17 18:54:26 jld Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
@ -39,7 +39,7 @@
#include <sys/cdefs.h>
#ifndef lint
__RCSID("$NetBSD: raidctl.c,v 1.41 2009/10/11 12:14:05 pooka Exp $");
__RCSID("$NetBSD: raidctl.c,v 1.42 2009/11/17 18:54:26 jld Exp $");
#endif
@ -85,13 +85,15 @@ static void check_parity(int,int, char *);
static void do_meter(int, u_long);
static void get_bar(char *, double, int);
static void get_time_string(char *, int);
static void rf_output_pmstat(int, int);
static void rf_pm_configure(int, int, char *, int[]);
int verbose;
int
main(int argc,char *argv[])
{
int ch;
int ch, i;
int num_options;
unsigned long action;
char config_filename[PATH_MAX];
@ -99,6 +101,8 @@ main(int argc,char *argv[])
char name[PATH_MAX];
char component[PATH_MAX];
char autoconf[10];
char *parityconf = NULL;
int parityparams[3];
int do_output;
int do_recon;
int do_rewrite;
@ -124,7 +128,7 @@ main(int argc,char *argv[])
rump_init();
#endif
while ((ch = getopt(argc, argv, "a:A:Bc:C:f:F:g:GiI:l:r:R:sSpPuv"))
while ((ch = getopt(argc, argv, "a:A:Bc:C:f:F:g:GiI:l:mM:r:R:sSpPuv"))
!= -1)
switch(ch) {
case 'a':
@ -188,6 +192,23 @@ main(int argc,char *argv[])
serial_number = atoi(optarg);
num_options++;
break;
case 'm':
action = RAIDFRAME_PARITYMAP_STATUS;
openmode = O_RDONLY;
num_options++;
break;
case 'M':
action = RAIDFRAME_PARITYMAP_SET_DISABLE;
parityconf = strdup(optarg);
num_options++;
/* XXXjld: should rf_pm_configure do the atoi()s? */
i = 0;
while (i < 3 && optind < argc &&
isdigit((int)argv[optind][0]))
parityparams[i++] = atoi(argv[optind++]);
while (i < 3)
parityparams[i++] = 0;
break;
case 'l':
action = RAIDFRAME_SET_COMPONENT_LABEL;
strlcpy(component, optarg, sizeof(component));
@ -320,6 +341,12 @@ main(int argc,char *argv[])
else
rf_get_device_status(fd);
break;
case RAIDFRAME_PARITYMAP_STATUS:
rf_output_pmstat(fd, raidID);
break;
case RAIDFRAME_PARITYMAP_SET_DISABLE:
rf_pm_configure(fd, raidID, parityconf, parityparams);
break;
case RAIDFRAME_REBUILD_IN_PLACE:
rebuild_in_place(fd, component);
break;
@ -466,6 +493,105 @@ rf_get_device_status(int fd)
check_status(fd,0);
}
static void
rf_output_pmstat(int fd, int raidID)
{
char srs[7];
int i, j, dr;
int dis;
struct rf_pmstat st;
do_ioctl(fd, RAIDFRAME_PARITYMAP_STATUS, &st,
"RAIDFRAME_PARITYMAP_STATUS");
if (st.enabled) {
if (0 > humanize_number(srs, 7, st.region_size * DEV_BSIZE,
"B", HN_AUTOSCALE, HN_NOSPACE))
strlcpy(srs, "???", 7);
printf("raid%d: parity map enabled with %u regions of %s\n",
raidID, st.params.regions, srs);
printf("raid%d: parity cleaned after %d intervals of"
" %d.%03ds\n", raidID, st.params.cooldown,
st.params.tickms / 1000, st.params.tickms % 1000);
printf("raid%d: write/sync/clean counters "
"%"PRIu64"/%"PRIu64"/%"PRIu64"\n", raidID,
st.ctrs.nwrite, st.ctrs.ncachesync, st.ctrs.nclearing);
dr = 0;
for (i = 0; i < RF_PARITYMAP_NREG; i++)
if (isset(st.dirty, i))
dr++;
printf("raid%d: %d dirty region%s\n", raidID, dr,
dr == 1 ? "" : "s");
if (verbose > 0) {
for (i = 0; i < RF_PARITYMAP_NBYTE; i += 32) {
printf(" ");
for (j = i; j < RF_PARITYMAP_NBYTE
&& j < i + 32; j++)
printf("%x%x", st.dirty[j] & 15,
(st.dirty[j] >> 4) & 15);
printf("\n");
}
}
} else {
printf("raid%d: parity map disabled\n", raidID);
}
do_ioctl(fd, RAIDFRAME_PARITYMAP_GET_DISABLE, &dis,
"RAIDFRAME_PARITYMAP_GET_DISABLE");
printf("raid%d: parity map will %s %sabled on next configure\n",
raidID, dis == st.enabled ? "be" : "remain", dis ? "dis" : "en");
}
static void
rf_pm_configure(int fd, int raidID, char *parityconf, int parityparams[])
{
int dis;
struct rf_pmparams params;
if (strcasecmp(parityconf, "yes") == 0)
dis = 0;
else if (strcasecmp(parityconf, "no") == 0)
dis = 1;
else if (strcasecmp(parityconf, "set") == 0) {
params.cooldown = parityparams[0];
params.tickms = parityparams[1];
params.regions = parityparams[2];
do_ioctl(fd, RAIDFRAME_PARITYMAP_SET_PARAMS, &params,
"RAIDFRAME_PARITYMAP_SET_PARAMS");
if (params.cooldown != 0 || params.tickms != 0) {
printf("raid%d: parity cleaned after", raidID);
if (params.cooldown != 0)
printf(" %d", params.cooldown);
printf(" intervals");
if (params.tickms != 0) {
printf(" of %d.%03ds", params.tickms / 1000,
params.tickms % 1000);
}
printf("\n");
}
if (params.regions != 0)
printf("raid%d: will use %d regions on next"
" configuration\n", raidID, params.regions);
return;
/* XXX the control flow here could be prettier. */
} else {
fprintf(stderr, "%s: \"%s\" is not a valid parity map command"
"\n", getprogname(), parityconf);
exit(1);
}
do_ioctl(fd, RAIDFRAME_PARITYMAP_SET_DISABLE, &dis,
"RAIDFRAME_PARITYMAP_SET_DISABLE");
printf("raid%d: parity map will be %sabled on next configure\n",
raidID, dis ? "dis" : "en");
}
static void
rf_output_configuration(int fd, const char *name)
{
@ -1034,7 +1160,7 @@ usage(void)
const char *progname = getprogname();
fprintf(stderr, "usage: %s [-v] -a component dev\n", progname);
fprintf(stderr, " %s [-v] -A yes | no | root dev\n", progname);
fprintf(stderr, " %s [-v] -A [yes | no | root] dev\n", progname);
fprintf(stderr, " %s [-v] -B dev\n", progname);
fprintf(stderr, " %s [-v] -c config_file dev\n", progname);
fprintf(stderr, " %s [-v] -C config_file dev\n", progname);
@ -1044,6 +1170,9 @@ usage(void)
fprintf(stderr, " %s [-v] -G dev\n", progname);
fprintf(stderr, " %s [-v] -i dev\n", progname);
fprintf(stderr, " %s [-v] -I serial_number dev\n", progname);
fprintf(stderr, " %s [-v] -m dev\n", progname);
fprintf(stderr, " %s [-v] -M [yes | no | set params] dev\n",
progname);
fprintf(stderr, " %s [-v] -p dev\n", progname);
fprintf(stderr, " %s [-v] -P dev\n", progname);
fprintf(stderr, " %s [-v] -r component dev\n", progname);

View File

@ -1,4 +1,4 @@
# $NetBSD: files.raidframe,v 1.7 2009/01/18 16:37:19 christos Exp $
# $NetBSD: files.raidframe,v 1.8 2009/11/17 18:54:26 jld Exp $
defflag RAID_AUTOCONFIG
defflag RAID_DIAGNOSTIC
@ -42,6 +42,7 @@ file dev/raidframe/rf_paritylog.c raid
file dev/raidframe/rf_paritylogDiskMgr.c raid
file dev/raidframe/rf_paritylogging.c raid
file dev/raidframe/rf_parityloggingdags.c raid
file dev/raidframe/rf_paritymap.c raid
file dev/raidframe/rf_parityscan.c raid
file dev/raidframe/rf_pq.c raid
file dev/raidframe/rf_pqdeg.c raid

View File

@ -1,4 +1,4 @@
/* $NetBSD: raidframeio.h,v 1.5 2009/01/18 16:37:19 christos Exp $ */
/* $NetBSD: raidframeio.h,v 1.6 2009/11/17 18:54:26 jld Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
@ -127,4 +127,9 @@
#define RAIDFRAME_CONFIGURE _IOW ('r', 35, void *) /* configure the driver */
#define RAIDFRAME_GET_INFO _IOWR('r', 36, RF_DeviceConfig_t *) /* get configuration */
#define RAIDFRAME_PARITYMAP_STATUS _IOR('r', 37, struct rf_pmstat)
#define RAIDFRAME_PARITYMAP_GET_DISABLE _IOR('r', 38, int)
#define RAIDFRAME_PARITYMAP_SET_DISABLE _IOW('r', 39, int)
#define RAIDFRAME_PARITYMAP_SET_PARAMS _IOW('r', 40, struct rf_pmparams)
#endif /* !_RF_RAIDFRAMEIO_H_ */

View File

@ -1,4 +1,4 @@
/* $NetBSD: raidframevar.h,v 1.12 2008/04/28 20:23:56 martin Exp $ */
/* $NetBSD: raidframevar.h,v 1.13 2009/11/17 18:54:26 jld Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998 The NetBSD Foundation, Inc.
* All rights reserved.
@ -265,6 +265,9 @@ typedef struct RF_StripeLockDesc_s RF_StripeLockDesc_t;
typedef struct RF_ThreadGroup_s RF_ThreadGroup_t;
typedef struct RF_ThroughputStats_s RF_ThroughputStats_t;
struct rf_paritymap;
struct rf_paritymap_ondisk;
/*
* Important assumptions regarding ordering of the states in this list
* have been made!!! Before disturbing this ordering, look at code in
@ -446,7 +449,16 @@ typedef struct RF_ComponentLabel_s {
u_int partitionSize; /* number of blocks on this *partition*.
Must exactly match the partition size
from the disklabel. */
int future_use[33]; /* Future expansion */
/* Parity map stuff. */
int parity_map_modcount; /* If equal to mod_counter, then the last
kernel to touch this label was
parity-map-enabled. */
u_int parity_map_flags; /* See top of rf_paritymap.h */
int parity_map_tickms; /* Length of parity map cooldown ticks. */
int parity_map_ntick; /* Number of parity map cooldown ticks. */
u_int parity_map_regions; /* Number of parity map regions. */
int future_use[28]; /* Future expansion */
int autoconfigure; /* automatically configure this RAID set.
0 == no, 1 == yes */
int root_partition; /* Use this set as /
@ -569,4 +581,28 @@ typedef struct RF_LayoutSW_s {
} RF_LayoutSW_t;
#endif
/* Parity map declarations. */
#define RF_PARITYMAP_NREG 4096
#define RF_PARITYMAP_NBYTE howmany(RF_PARITYMAP_NREG, NBBY)
struct rf_pmctrs {
uint64_t nwrite, ncachesync, nclearing;
};
struct rf_pmparams {
int cooldown, tickms;
u_int regions;
};
struct rf_pmstat {
int enabled; /* if not set, rest of struct is zeroed */
struct rf_pmparams params;
daddr_t region_size;
char dirty[RF_PARITYMAP_NBYTE];
struct rf_pmctrs ctrs;
};
#endif /* !_RF_RAIDFRAMEVAR_H_ */

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_copyback.c,v 1.41 2008/01/26 20:44:37 oster Exp $ */
/* $NetBSD: rf_copyback.c,v 1.42 2009/11/17 18:54:26 jld Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
@ -38,7 +38,7 @@
****************************************************************************/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_copyback.c,v 1.41 2008/01/26 20:44:37 oster Exp $");
__KERNEL_RCSID(0, "$NetBSD: rf_copyback.c,v 1.42 2009/11/17 18:54:26 jld Exp $");
#include <dev/raidframe/raidframevar.h>
@ -86,7 +86,7 @@ rf_ConfigureCopyback(RF_ShutdownList_t **listp)
void
rf_CopybackReconstructedData(RF_Raid_t *raidPtr)
{
RF_ComponentLabel_t c_label;
RF_ComponentLabel_t *c_label;
int found, retcode;
RF_CopybackDesc_t *desc;
RF_RowCol_t fcol;
@ -206,19 +206,17 @@ rf_CopybackReconstructedData(RF_Raid_t *raidPtr)
/* Data has been restored. Fix up the component label. */
/* Don't actually need the read here.. */
raidread_component_label( raidPtr->raid_cinfo[fcol].ci_dev,
raidPtr->raid_cinfo[fcol].ci_vp,
&c_label);
c_label = raidget_component_label(raidPtr, fcol);
raid_init_component_label(raidPtr, c_label);
raid_init_component_label( raidPtr, &c_label );
c_label->row = 0;
c_label->column = fcol;
c_label->partitionSize = raidPtr->Disks[fcol].partitionSize;
c_label.row = 0;
c_label.column = fcol;
c_label.partitionSize = raidPtr->Disks[fcol].partitionSize;
raidflush_component_label(raidPtr, fcol);
raidwrite_component_label( raidPtr->raid_cinfo[fcol].ci_dev,
raidPtr->raid_cinfo[fcol].ci_vp,
&c_label);
/* XXXjld why is this here? */
rf_update_component_labels(raidPtr, RF_NORMAL_COMPONENT_UPDATE);
}

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_disks.c,v 1.71 2009/04/03 16:23:41 sborrill Exp $ */
/* $NetBSD: rf_disks.c,v 1.72 2009/11/17 18:54:26 jld Exp $ */
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
@ -60,7 +60,7 @@
***************************************************************/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_disks.c,v 1.71 2009/04/03 16:23:41 sborrill Exp $");
__KERNEL_RCSID(0, "$NetBSD: rf_disks.c,v 1.72 2009/11/17 18:54:26 jld Exp $");
#include <dev/raidframe/raidframevar.h>
@ -132,10 +132,7 @@ rf_ConfigureDisks(RF_ShutdownList_t **listp, RF_Raid_t *raidPtr,
goto fail;
if (disks[c].status == rf_ds_optimal) {
raidread_component_label(
raidPtr->raid_cinfo[c].ci_dev,
raidPtr->raid_cinfo[c].ci_vp,
&raidPtr->raid_cinfo[c].ci_label);
raidfetch_component_label(raidPtr, c);
}
if (disks[c].status != rf_ds_optimal) {
@ -461,7 +458,7 @@ rf_AutoConfigureDisks(RF_Raid_t *raidPtr, RF_Config_t *cfgPtr,
raidPtr->raid_cinfo[c].ci_vp = ac->vp;
raidPtr->raid_cinfo[c].ci_dev = ac->dev;
memcpy(&raidPtr->raid_cinfo[c].ci_label,
memcpy(raidget_component_label(raidPtr, c),
ac->clabel, sizeof(*ac->clabel));
snprintf(diskPtr->devname, sizeof(diskPtr->devname),
"/dev/%s", ac->devname);
@ -731,7 +728,7 @@ rf_CheckLabels(RF_Raid_t *raidPtr, RF_Config_t *cfgPtr)
num_mod = 0;
for (c = 0; c < raidPtr->numCol; c++) {
ci_label = &raidPtr->raid_cinfo[c].ci_label;
ci_label = raidget_component_label(raidPtr, c);
found=0;
for(i=0;i<num_ser;i++) {
if (ser_values[i] == ci_label->serial_number) {
@ -786,7 +783,7 @@ rf_CheckLabels(RF_Raid_t *raidPtr, RF_Config_t *cfgPtr)
}
for (c = 0; c < raidPtr->numCol; c++) {
ci_label = &raidPtr->raid_cinfo[c].ci_label;
ci_label = raidget_component_label(raidPtr, c);
if (serial_number != ci_label->serial_number) {
hosed_column = c;
break;
@ -841,7 +838,7 @@ rf_CheckLabels(RF_Raid_t *raidPtr, RF_Config_t *cfgPtr)
}
for (c = 0; c < raidPtr->numCol; c++) {
ci_label = &raidPtr->raid_cinfo[c].ci_label;
ci_label = raidget_component_label(raidPtr, c);
if (mod_number != ci_label->mod_counter) {
if (hosed_column == c) {
/* same one. Can
@ -908,7 +905,7 @@ rf_CheckLabels(RF_Raid_t *raidPtr, RF_Config_t *cfgPtr)
for (c = 0; c < raidPtr->numCol; c++) {
dev_name = &cfgPtr->devnames[0][c][0];
ci_label = &raidPtr->raid_cinfo[c].ci_label;
ci_label = raidget_component_label(raidPtr, c);
if (c == hosed_column) {
printf("raid%d: Ignoring %s\n",

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_driver.c,v 1.121 2009/03/15 17:17:23 cegger Exp $ */
/* $NetBSD: rf_driver.c,v 1.122 2009/11/17 18:54:26 jld Exp $ */
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
@ -66,7 +66,7 @@
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_driver.c,v 1.121 2009/03/15 17:17:23 cegger Exp $");
__KERNEL_RCSID(0, "$NetBSD: rf_driver.c,v 1.122 2009/11/17 18:54:26 jld Exp $");
#ifdef _KERNEL_OPT
#include "opt_raid_diagnostic.h"
@ -109,6 +109,7 @@ __KERNEL_RCSID(0, "$NetBSD: rf_driver.c,v 1.121 2009/03/15 17:17:23 cegger Exp $
#include "rf_options.h"
#include "rf_shutdown.h"
#include "rf_kintf.h"
#include "rf_paritymap.h"
#include <sys/buf.h>
@ -241,6 +242,9 @@ rf_Shutdown(RF_Raid_t *raidPtr)
raidPtr->valid = 0;
if (raidPtr->parity_map != NULL)
rf_paritymap_detach(raidPtr);
rf_update_component_labels(raidPtr, RF_FINAL_COMPONENT_UPDATE);
rf_UnconfigureVnodes(raidPtr);
@ -416,6 +420,11 @@ rf_Configure(RF_Raid_t *raidPtr, RF_Config_t *cfgPtr, RF_AutoConfig_t *ac)
return(rc);
}
/* Set up parity map stuff, if applicable. */
#ifndef RF_NO_PARITY_MAP
rf_paritymap_attach(raidPtr, cfgPtr->force);
#endif
raidPtr->valid = 1;
printf("raid%d: %s\n", raidPtr->raidid,
@ -676,6 +685,11 @@ rf_DoAccess(RF_Raid_t * raidPtr, RF_IoType_t type, int async_flag,
#endif
desc->async_flag = async_flag;
if (raidPtr->parity_map != NULL &&
type == RF_IO_TYPE_WRITE)
rf_paritymap_begin(raidPtr->parity_map, raidAddress,
numBlocks);
rf_ContinueRaidAccess(desc);
return (0);

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_engine.c,v 1.39 2006/11/16 01:33:23 christos Exp $ */
/* $NetBSD: rf_engine.c,v 1.40 2009/11/17 18:54:26 jld Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
@ -55,7 +55,7 @@
****************************************************************************/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.39 2006/11/16 01:33:23 christos Exp $");
__KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.40 2009/11/17 18:54:26 jld Exp $");
#include <sys/errno.h>
@ -68,6 +68,7 @@ __KERNEL_RCSID(0, "$NetBSD: rf_engine.c,v 1.39 2006/11/16 01:33:23 christos Exp
#include "rf_shutdown.h"
#include "rf_raid.h"
#include "rf_kintf.h"
#include "rf_paritymap.h"
static void rf_ShutdownEngine(void *);
static void DAGExecutionThread(RF_ThreadArg_t arg);
@ -855,6 +856,13 @@ rf_RaidIOThread(RF_ThreadArg_t arg)
&(raidPtr->iodone_lock));
}
/* Check for deferred parity-map-related work. */
if (raidPtr->parity_map != NULL) {
simple_unlock(&(raidPtr->iodone_lock));
rf_paritymap_checkwork(raidPtr->parity_map);
simple_lock(&(raidPtr->iodone_lock));
}
/* See what I/Os, if any, have arrived */
while ((req = TAILQ_FIRST(&(raidPtr->iodone))) != NULL) {
TAILQ_REMOVE(&(raidPtr->iodone), req, iodone_entries);

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_kintf.h,v 1.20 2006/08/27 05:07:12 christos Exp $ */
/* $NetBSD: rf_kintf.h,v 1.21 2009/11/17 18:54:26 jld Exp $ */
/*
* rf_kintf.h
*
@ -41,18 +41,24 @@ int rf_GetSpareTableFromDaemon(RF_SparetWait_t * req);
void raidstart(RF_Raid_t * raidPtr);
int rf_DispatchKernelIO(RF_DiskQueue_t * queue, RF_DiskQueueData_t * req);
int raidwrite_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
int raidread_component_label(dev_t, struct vnode *, RF_ComponentLabel_t *);
int raidfetch_component_label(RF_Raid_t *, RF_RowCol_t);
RF_ComponentLabel_t *raidget_component_label(RF_Raid_t *, RF_RowCol_t);
int raidflush_component_label(RF_Raid_t *, RF_RowCol_t);
void rf_paritymap_kern_write(RF_Raid_t *, struct rf_paritymap_ondisk *);
void rf_paritymap_kern_read(RF_Raid_t *, struct rf_paritymap_ondisk *);
#define RF_NORMAL_COMPONENT_UPDATE 0
#define RF_FINAL_COMPONENT_UPDATE 1
void rf_update_component_labels(RF_Raid_t *, int);
int raidmarkclean(dev_t dev, struct vnode *b_vp, int);
int raidmarkdirty(dev_t dev, struct vnode *b_vp, int);
int raidmarkclean(RF_Raid_t *, RF_RowCol_t);
int raidmarkdirty(RF_Raid_t *, RF_RowCol_t);
void raid_init_component_label(RF_Raid_t *, RF_ComponentLabel_t *);
void rf_print_component_label(RF_ComponentLabel_t *);
void rf_UnconfigureVnodes( RF_Raid_t * );
void rf_close_component( RF_Raid_t *, struct vnode *, int);
void rf_disk_unbusy(RF_RaidAccessDesc_t *);
int rf_getdisksize(struct vnode *, struct lwp *, RF_RaidDisk_t *);
int rf_sync_component_caches(RF_Raid_t *raidPtr);
#endif /* _RF__RF_KINTF_H_ */

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_netbsdkintf.c,v 1.268 2009/11/05 17:52:32 dyoung Exp $ */
/* $NetBSD: rf_netbsdkintf.c,v 1.269 2009/11/17 18:54:26 jld Exp $ */
/*-
* Copyright (c) 1996, 1997, 1998, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
@ -139,7 +139,7 @@
***********************************************************/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.268 2009/11/05 17:52:32 dyoung Exp $");
__KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.269 2009/11/17 18:54:26 jld Exp $");
#ifdef _KERNEL_OPT
#include "opt_compat_netbsd.h"
@ -170,6 +170,7 @@ __KERNEL_RCSID(0, "$NetBSD: rf_netbsdkintf.c,v 1.268 2009/11/05 17:52:32 dyoung
#include <dev/raidframe/raidframevar.h>
#include <dev/raidframe/raidframeio.h>
#include <dev/raidframe/rf_paritymap.h>
#include "rf_raid.h"
#include "rf_copyback.h"
@ -221,6 +222,17 @@ static int raid_match(device_t, cfdata_t, void *);
static void raid_attach(device_t, device_t, void *);
static int raid_detach(device_t, int);
static int raidread_component_area(dev_t, struct vnode *, void *, size_t,
daddr_t, daddr_t);
static int raidwrite_component_area(dev_t, struct vnode *, void *, size_t,
daddr_t, daddr_t, int);
static int raidwrite_component_label(dev_t, struct vnode *,
RF_ComponentLabel_t *);
static int raidread_component_label(dev_t, struct vnode *,
RF_ComponentLabel_t *);
dev_type_open(raidopen);
dev_type_close(raidclose);
dev_type_read(raidread);
@ -329,7 +341,6 @@ void rf_release_all_vps(RF_ConfigSet_t *);
void rf_cleanup_config_set(RF_ConfigSet_t *);
int rf_have_enough_components(RF_ConfigSet_t *);
int rf_auto_config_set(RF_ConfigSet_t *, int *);
static int rf_sync_component_caches(RF_Raid_t *raidPtr);
static int raidautoconfig = 0; /* Debugging, mostly. Set to 0 to not
allow autoconfig to take place.
@ -1003,7 +1014,7 @@ raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
u_char *specific_buf;
int retcode = 0;
int column;
int raidid;
/* int raidid; */
struct rf_recon_req *rrcopy, *rr;
RF_ComponentLabel_t *clabel;
RF_ComponentLabel_t *ci_label;
@ -1093,6 +1104,10 @@ raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
case RAIDFRAME_SET_ROOT:
case RAIDFRAME_DELETE_COMPONENT:
case RAIDFRAME_INCORPORATE_HOT_SPARE:
case RAIDFRAME_PARITYMAP_STATUS:
case RAIDFRAME_PARITYMAP_GET_DISABLE:
case RAIDFRAME_PARITYMAP_SET_DISABLE:
case RAIDFRAME_PARITYMAP_SET_PARAMS:
if ((rs->sc_flags & RAIDF_INITED) == 0)
return (ENXIO);
}
@ -1231,18 +1246,16 @@ raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
/* need to read the component label for the disk indicated
by row,column in clabel */
/* For practice, let's get it directly fromdisk, rather
than from the in-core copy */
RF_Malloc( clabel, sizeof( RF_ComponentLabel_t ),
(RF_ComponentLabel_t *));
if (clabel == NULL)
return (ENOMEM);
/*
* Perhaps there should be an option to skip the in-core
* copy and hit the disk, as with disklabel(8).
*/
RF_Malloc(clabel, sizeof(*clabel), (RF_ComponentLabel_t *));
retcode = copyin( *clabel_ptr, clabel,
sizeof(RF_ComponentLabel_t));
if (retcode) {
RF_Free( clabel, sizeof(RF_ComponentLabel_t));
return(retcode);
}
@ -1252,21 +1265,20 @@ raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
if ((column < 0) || (column >= raidPtr->numCol +
raidPtr->numSpare)) {
RF_Free( clabel, sizeof(RF_ComponentLabel_t));
return(EINVAL);
}
retcode = raidread_component_label(raidPtr->Disks[column].dev,
raidPtr->raid_cinfo[column].ci_vp,
clabel );
RF_Free(clabel, sizeof(*clabel));
clabel = raidget_component_label(raidPtr, column);
if (retcode == 0) {
retcode = copyout(clabel, *clabel_ptr,
sizeof(RF_ComponentLabel_t));
}
RF_Free(clabel, sizeof(RF_ComponentLabel_t));
return (retcode);
#if 0
case RAIDFRAME_SET_COMPONENT_LABEL:
clabel = (RF_ComponentLabel_t *) data;
@ -1298,13 +1310,11 @@ raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
/* XXX and before it is, we need to fill in the rest
of the fields!?!?!?! */
#if 0
raidwrite_component_label(
raidPtr->Disks[column].dev,
raidPtr->raid_cinfo[column].ci_vp,
clabel );
#endif
memcpy(raidget_component_label(raidPtr, column),
clabel, sizeof(*clabel));
raidflush_component_label(raidPtr, column);
return (0);
#endif
case RAIDFRAME_INIT_LABELS:
clabel = (RF_ComponentLabel_t *) data;
@ -1317,27 +1327,24 @@ raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
raidPtr->serial_number = clabel->serial_number;
RF_Malloc(ci_label, sizeof(RF_ComponentLabel_t),
(RF_ComponentLabel_t *));
if (ci_label == NULL)
return (ENOMEM);
raid_init_component_label(raidPtr, ci_label);
ci_label->serial_number = clabel->serial_number;
ci_label->row = 0; /* we dont' pretend to support more */
for(column=0;column<raidPtr->numCol;column++) {
diskPtr = &raidPtr->Disks[column];
if (!RF_DEAD_DISK(diskPtr->status)) {
ci_label->partitionSize = diskPtr->partitionSize;
ci_label = raidget_component_label(raidPtr,
column);
/* Zeroing this is important. */
memset(ci_label, 0, sizeof(*ci_label));
raid_init_component_label(raidPtr, ci_label);
ci_label->serial_number =
raidPtr->serial_number;
ci_label->row = 0; /* we dont' pretend to support more */
ci_label->partitionSize =
diskPtr->partitionSize;
ci_label->column = column;
raidwrite_component_label(
raidPtr->Disks[column].dev,
raidPtr->raid_cinfo[column].ci_vp,
ci_label );
raidflush_component_label(raidPtr, column);
}
/* XXXjld what about the spares? */
}
RF_Free(ci_label, sizeof(RF_ComponentLabel_t));
return (retcode);
case RAIDFRAME_SET_AUTOCONFIG:
@ -1498,6 +1505,28 @@ raidioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
*(int *) data = raidPtr->parity_good;
return (0);
case RAIDFRAME_PARITYMAP_STATUS:
rf_paritymap_status(raidPtr->parity_map,
(struct rf_pmstat *)data);
return 0;
case RAIDFRAME_PARITYMAP_SET_PARAMS:
if (raidPtr->parity_map == NULL)
return ENOENT; /* ??? */
if (0 != rf_paritymap_set_params(raidPtr->parity_map,
(struct rf_pmparams *)data, 1))
return EINVAL;
return 0;
case RAIDFRAME_PARITYMAP_GET_DISABLE:
*(int *) data = rf_paritymap_get_disable(raidPtr);
return 0;
case RAIDFRAME_PARITYMAP_SET_DISABLE:
rf_paritymap_set_disable(raidPtr, *(int *)data);
/* XXX should errors be passed up? */
return 0;
case RAIDFRAME_RESET_ACCTOTALS:
memset(&raidPtr->acc_totals, 0, sizeof(raidPtr->acc_totals));
return (0);
@ -2403,34 +2432,75 @@ raidunlock(struct raid_softc *rs)
#define RF_COMPONENT_INFO_OFFSET 16384 /* bytes */
#define RF_COMPONENT_INFO_SIZE 1024 /* bytes */
#define RF_PARITY_MAP_OFFSET \
(RF_COMPONENT_INFO_OFFSET + RF_COMPONENT_INFO_SIZE)
#define RF_PARITY_MAP_SIZE RF_PARITYMAP_NBYTE
int
raidmarkclean(dev_t dev, struct vnode *b_vp, int mod_counter)
raidmarkclean(RF_Raid_t *raidPtr, RF_RowCol_t col)
{
RF_ComponentLabel_t clabel;
raidread_component_label(dev, b_vp, &clabel);
clabel.mod_counter = mod_counter;
clabel.clean = RF_RAID_CLEAN;
raidwrite_component_label(dev, b_vp, &clabel);
RF_ComponentLabel_t *clabel;
clabel = raidget_component_label(raidPtr, col);
clabel->clean = RF_RAID_CLEAN;
raidflush_component_label(raidPtr, col);
return(0);
}
int
raidmarkdirty(dev_t dev, struct vnode *b_vp, int mod_counter)
raidmarkdirty(RF_Raid_t *raidPtr, RF_RowCol_t col)
{
RF_ComponentLabel_t clabel;
raidread_component_label(dev, b_vp, &clabel);
clabel.mod_counter = mod_counter;
clabel.clean = RF_RAID_DIRTY;
raidwrite_component_label(dev, b_vp, &clabel);
RF_ComponentLabel_t *clabel;
clabel = raidget_component_label(raidPtr, col);
clabel->clean = RF_RAID_DIRTY;
raidflush_component_label(raidPtr, col);
return(0);
}
int
raidfetch_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
{
return raidread_component_label(raidPtr->Disks[col].dev,
raidPtr->raid_cinfo[col].ci_vp,
&raidPtr->raid_cinfo[col].ci_label);
}
RF_ComponentLabel_t *
raidget_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
{
return &raidPtr->raid_cinfo[col].ci_label;
}
int
raidflush_component_label(RF_Raid_t *raidPtr, RF_RowCol_t col)
{
RF_ComponentLabel_t *label;
label = &raidPtr->raid_cinfo[col].ci_label;
label->mod_counter = raidPtr->mod_counter;
#ifndef RF_NO_PARITY_MAP
label->parity_map_modcount = label->mod_counter;
#endif
return raidwrite_component_label(raidPtr->Disks[col].dev,
raidPtr->raid_cinfo[col].ci_vp, label);
}
static int
raidread_component_label(dev_t dev, struct vnode *b_vp,
RF_ComponentLabel_t *clabel)
{
return raidread_component_area(dev, b_vp, clabel,
sizeof(RF_ComponentLabel_t),
RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE);
}
/* ARGSUSED */
int
raidread_component_label(dev_t dev, struct vnode *b_vp,
RF_ComponentLabel_t *clabel)
static int
raidread_component_area(dev_t dev, struct vnode *b_vp, void *data,
size_t msize, daddr_t offset, daddr_t dsize)
{
struct buf *bp;
const struct bdevsw *bdev;
@ -2446,14 +2516,14 @@ raidread_component_label(dev_t dev, struct vnode *b_vp,
}
/* get a block of the appropriate size... */
bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
bp = geteblk((int)dsize);
bp->b_dev = dev;
/* get our ducks in a row for the read */
bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
bp->b_bcount = RF_COMPONENT_INFO_SIZE;
bp->b_blkno = offset / DEV_BSIZE;
bp->b_bcount = dsize;
bp->b_flags |= B_READ;
bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
bp->b_resid = dsize;
bdev = bdevsw_lookup(bp->b_dev);
if (bdev == NULL)
@ -2463,40 +2533,51 @@ raidread_component_label(dev_t dev, struct vnode *b_vp,
error = biowait(bp);
if (!error) {
memcpy(clabel, bp->b_data,
sizeof(RF_ComponentLabel_t));
memcpy(data, bp->b_data, msize);
}
brelse(bp, 0);
return(error);
}
/* ARGSUSED */
int
static int
raidwrite_component_label(dev_t dev, struct vnode *b_vp,
RF_ComponentLabel_t *clabel)
RF_ComponentLabel_t *clabel)
{
return raidwrite_component_area(dev, b_vp, clabel,
sizeof(RF_ComponentLabel_t),
RF_COMPONENT_INFO_OFFSET, RF_COMPONENT_INFO_SIZE, 0);
}
/* ARGSUSED */
static int
raidwrite_component_area(dev_t dev, struct vnode *b_vp, void *data,
size_t msize, daddr_t offset, daddr_t dsize, int asyncp)
{
struct buf *bp;
const struct bdevsw *bdev;
int error;
/* get a block of the appropriate size... */
bp = geteblk((int)RF_COMPONENT_INFO_SIZE);
bp = geteblk((int)dsize);
bp->b_dev = dev;
/* get our ducks in a row for the write */
bp->b_blkno = RF_COMPONENT_INFO_OFFSET / DEV_BSIZE;
bp->b_bcount = RF_COMPONENT_INFO_SIZE;
bp->b_flags |= B_WRITE;
bp->b_resid = RF_COMPONENT_INFO_SIZE / DEV_BSIZE;
bp->b_blkno = offset / DEV_BSIZE;
bp->b_bcount = dsize;
bp->b_flags |= B_WRITE | (asyncp ? B_ASYNC : 0);
bp->b_resid = dsize;
memset(bp->b_data, 0, RF_COMPONENT_INFO_SIZE );
memcpy(bp->b_data, clabel, sizeof(RF_ComponentLabel_t));
memset(bp->b_data, 0, dsize);
memcpy(bp->b_data, data, msize);
bdev = bdevsw_lookup(bp->b_dev);
if (bdev == NULL)
return (ENXIO);
(*bdev->d_strategy)(bp);
if (asyncp)
return 0;
error = biowait(bp);
brelse(bp, 0);
if (error) {
@ -2508,10 +2589,49 @@ raidwrite_component_label(dev_t dev, struct vnode *b_vp,
return(error);
}
void
rf_paritymap_kern_write(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
{
int c;
for (c = 0; c < raidPtr->numCol; c++) {
/* Skip dead disks. */
if (RF_DEAD_DISK(raidPtr->Disks[c].status))
continue;
/* XXXjld: what if an error occurs here? */
raidwrite_component_area(raidPtr->Disks[c].dev,
raidPtr->raid_cinfo[c].ci_vp, map,
RF_PARITYMAP_NBYTE,
RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE, 0);
}
}
void
rf_paritymap_kern_read(RF_Raid_t *raidPtr, struct rf_paritymap_ondisk *map)
{
struct rf_paritymap_ondisk tmp;
int c;
for (c = 0; c < raidPtr->numCol; c++) {
/* Skip dead disks. */
if (RF_DEAD_DISK(raidPtr->Disks[c].status))
continue;
raidread_component_area(raidPtr->Disks[c].dev,
raidPtr->raid_cinfo[c].ci_vp, &tmp,
RF_PARITYMAP_NBYTE,
RF_PARITY_MAP_OFFSET, RF_PARITY_MAP_SIZE);
if (c == 0) {
memcpy(map, &tmp, sizeof(*map));
} else {
rf_paritymap_merge(map, &tmp);
}
}
}
void
rf_markalldirty(RF_Raid_t *raidPtr)
{
RF_ComponentLabel_t clabel;
RF_ComponentLabel_t *clabel;
int sparecol;
int c;
int j;
@ -2522,19 +2642,13 @@ rf_markalldirty(RF_Raid_t *raidPtr)
/* we don't want to touch (at all) a disk that has
failed */
if (!RF_DEAD_DISK(raidPtr->Disks[c].status)) {
raidread_component_label(
raidPtr->Disks[c].dev,
raidPtr->raid_cinfo[c].ci_vp,
&clabel);
if (clabel.status == rf_ds_spared) {
clabel = raidget_component_label(raidPtr, c);
if (clabel->status == rf_ds_spared) {
/* XXX do something special...
but whatever you do, don't
try to access it!! */
} else {
raidmarkdirty(
raidPtr->Disks[c].dev,
raidPtr->raid_cinfo[c].ci_vp,
raidPtr->mod_counter);
raidmarkdirty(raidPtr, c);
}
}
}
@ -2558,23 +2672,18 @@ rf_markalldirty(RF_Raid_t *raidPtr)
}
}
raidread_component_label(
raidPtr->Disks[sparecol].dev,
raidPtr->raid_cinfo[sparecol].ci_vp,
&clabel);
clabel = raidget_component_label(raidPtr, sparecol);
/* make sure status is noted */
raid_init_component_label(raidPtr, &clabel);
raid_init_component_label(raidPtr, clabel);
clabel.row = 0;
clabel.column = scol;
clabel->row = 0;
clabel->column = scol;
/* Note: we *don't* change status from rf_ds_used_spare
to rf_ds_optimal */
/* clabel.status = rf_ds_optimal; */
raidmarkdirty(raidPtr->Disks[sparecol].dev,
raidPtr->raid_cinfo[sparecol].ci_vp,
raidPtr->mod_counter);
raidmarkdirty(raidPtr, sparecol);
}
}
}
@ -2583,7 +2692,7 @@ rf_markalldirty(RF_Raid_t *raidPtr)
void
rf_update_component_labels(RF_Raid_t *raidPtr, int final)
{
RF_ComponentLabel_t clabel;
RF_ComponentLabel_t *clabel;
int sparecol;
int c;
int j;
@ -2598,29 +2707,17 @@ rf_update_component_labels(RF_Raid_t *raidPtr, int final)
for (c = 0; c < raidPtr->numCol; c++) {
if (raidPtr->Disks[c].status == rf_ds_optimal) {
raidread_component_label(
raidPtr->Disks[c].dev,
raidPtr->raid_cinfo[c].ci_vp,
&clabel);
clabel = raidget_component_label(raidPtr, c);
/* make sure status is noted */
clabel.status = rf_ds_optimal;
/* bump the counter */
clabel.mod_counter = raidPtr->mod_counter;
clabel->status = rf_ds_optimal;
/* note what unit we are configured as */
clabel.last_unit = raidPtr->raidid;
clabel->last_unit = raidPtr->raidid;
raidwrite_component_label(
raidPtr->Disks[c].dev,
raidPtr->raid_cinfo[c].ci_vp,
&clabel);
raidflush_component_label(raidPtr, c);
if (final == RF_FINAL_COMPONENT_UPDATE) {
if (raidPtr->parity_good == RF_RAID_CLEAN) {
raidmarkclean(
raidPtr->Disks[c].dev,
raidPtr->raid_cinfo[c].ci_vp,
raidPtr->mod_counter);
raidmarkclean(raidPtr, c);
}
}
}
@ -2648,28 +2745,19 @@ rf_update_component_labels(RF_Raid_t *raidPtr, int final)
}
/* XXX shouldn't *really* need this... */
raidread_component_label(
raidPtr->Disks[sparecol].dev,
raidPtr->raid_cinfo[sparecol].ci_vp,
&clabel);
clabel = raidget_component_label(raidPtr, sparecol);
/* make sure status is noted */
raid_init_component_label(raidPtr, &clabel);
raid_init_component_label(raidPtr, clabel);
clabel.mod_counter = raidPtr->mod_counter;
clabel.column = scol;
clabel.status = rf_ds_optimal;
clabel.last_unit = raidPtr->raidid;
clabel->column = scol;
clabel->status = rf_ds_optimal;
clabel->last_unit = raidPtr->raidid;
raidwrite_component_label(
raidPtr->Disks[sparecol].dev,
raidPtr->raid_cinfo[sparecol].ci_vp,
&clabel);
raidflush_component_label(raidPtr, sparecol);
if (final == RF_FINAL_COMPONENT_UPDATE) {
if (raidPtr->parity_good == RF_RAID_CLEAN) {
raidmarkclean( raidPtr->Disks[sparecol].dev,
raidPtr->raid_cinfo[sparecol].ci_vp,
raidPtr->mod_counter);
raidmarkclean(raidPtr, sparecol);
}
}
}
@ -3326,9 +3414,7 @@ rf_create_configuration(RF_AutoConfig_t *ac, RF_Config_t *config,
int
rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
{
RF_ComponentLabel_t clabel;
struct vnode *vp;
dev_t dev;
RF_ComponentLabel_t *clabel;
int column;
int sparecol;
@ -3336,21 +3422,17 @@ rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
for(column=0; column<raidPtr->numCol; column++) {
if (raidPtr->Disks[column].status == rf_ds_optimal) {
dev = raidPtr->Disks[column].dev;
vp = raidPtr->raid_cinfo[column].ci_vp;
raidread_component_label(dev, vp, &clabel);
clabel.autoconfigure = new_value;
raidwrite_component_label(dev, vp, &clabel);
clabel = raidget_component_label(raidPtr, column);
clabel->autoconfigure = new_value;
raidflush_component_label(raidPtr, column);
}
}
for(column = 0; column < raidPtr->numSpare ; column++) {
sparecol = raidPtr->numCol + column;
if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
dev = raidPtr->Disks[sparecol].dev;
vp = raidPtr->raid_cinfo[sparecol].ci_vp;
raidread_component_label(dev, vp, &clabel);
clabel.autoconfigure = new_value;
raidwrite_component_label(dev, vp, &clabel);
clabel = raidget_component_label(raidPtr, sparecol);
clabel->autoconfigure = new_value;
raidflush_component_label(raidPtr, sparecol);
}
}
return(new_value);
@ -3359,30 +3441,24 @@ rf_set_autoconfig(RF_Raid_t *raidPtr, int new_value)
int
rf_set_rootpartition(RF_Raid_t *raidPtr, int new_value)
{
RF_ComponentLabel_t clabel;
struct vnode *vp;
dev_t dev;
RF_ComponentLabel_t *clabel;
int column;
int sparecol;
raidPtr->root_partition = new_value;
for(column=0; column<raidPtr->numCol; column++) {
if (raidPtr->Disks[column].status == rf_ds_optimal) {
dev = raidPtr->Disks[column].dev;
vp = raidPtr->raid_cinfo[column].ci_vp;
raidread_component_label(dev, vp, &clabel);
clabel.root_partition = new_value;
raidwrite_component_label(dev, vp, &clabel);
clabel = raidget_component_label(raidPtr, column);
clabel->root_partition = new_value;
raidflush_component_label(raidPtr, column);
}
}
for(column = 0; column < raidPtr->numSpare ; column++) {
sparecol = raidPtr->numCol + column;
if (raidPtr->Disks[sparecol].status == rf_ds_used_spare) {
dev = raidPtr->Disks[sparecol].dev;
vp = raidPtr->raid_cinfo[sparecol].ci_vp;
raidread_component_label(dev, vp, &clabel);
clabel.root_partition = new_value;
raidwrite_component_label(dev, vp, &clabel);
clabel = raidget_component_label(raidPtr, sparecol);
clabel->root_partition = new_value;
raidflush_component_label(raidPtr, sparecol);
}
}
return(new_value);
@ -3435,6 +3511,7 @@ raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
clabel->version = RF_COMPONENT_LABEL_VERSION;
clabel->serial_number = raidPtr->serial_number;
clabel->mod_counter = raidPtr->mod_counter;
clabel->num_rows = 1;
clabel->num_columns = raidPtr->numCol;
clabel->clean = RF_RAID_DIRTY; /* not clean */
@ -3454,6 +3531,10 @@ raid_init_component_label(RF_Raid_t *raidPtr, RF_ComponentLabel_t *clabel)
clabel->root_partition = raidPtr->root_partition;
clabel->last_unit = raidPtr->raidid;
clabel->config_order = raidPtr->config_order;
#ifndef RF_NO_PARITY_MAP
rf_paritymap_init_label(raidPtr->parity_map, clabel);
#endif
}
int
@ -3687,7 +3768,7 @@ rf_set_properties(struct raid_softc *rs, RF_Raid_t *raidPtr)
* that fails.
*/
static int
int
rf_sync_component_caches(RF_Raid_t *raidPtr)
{
int c, sparecol;

View File

@ -0,0 +1,750 @@
/* $NetBSD: rf_paritymap.c,v 1.1 2009/11/17 18:54:26 jld Exp $ */
/*-
* Copyright (c) 2009 Jed Davis.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_paritymap.c,v 1.1 2009/11/17 18:54:26 jld Exp $");
#include <sys/callout.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/param.h>
#include <sys/rwlock.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <dev/raidframe/rf_paritymap.h>
#include <dev/raidframe/rf_stripelocks.h>
#include <dev/raidframe/rf_layout.h>
#include <dev/raidframe/rf_raid.h>
#include <dev/raidframe/rf_parityscan.h>
#include <dev/raidframe/rf_kintf.h>
/* Important parameters: */
#define REGION_MINSIZE (25ULL << 20)
#define DFL_TICKMS 40000
#define DFL_COOLDOWN 8 /* 7-8 intervals of 40s = 5min +/- 20s */
/* Internal-use flag bits. */
#define TICKING 1
#define TICKED 2
/* Prototypes! */
static void rf_paritymap_write_locked(struct rf_paritymap *);
static void rf_paritymap_tick(void *);
static u_int rf_paritymap_nreg(RF_Raid_t *);
/* Extract the current status of the parity map. */
void
rf_paritymap_status(struct rf_paritymap *pm, struct rf_pmstat *ps)
{
memset(ps, 0, sizeof(*ps));
if (pm == NULL)
ps->enabled = 0;
else {
ps->enabled = 1;
ps->region_size = pm->region_size;
mutex_enter(&pm->lock);
memcpy(&ps->params, &pm->params, sizeof(ps->params));
memcpy(ps->dirty, pm->disk_now, sizeof(ps->dirty));
memcpy(&ps->ctrs, &pm->ctrs, sizeof(ps->ctrs));
mutex_exit(&pm->lock);
}
}
/*
* Test whether parity in a given sector is suspected of being inconsistent
* on disk (assuming that any pending I/O to it is allowed to complete).
* This may be of interest to future work on parity scrubbing.
*/
int
rf_paritymap_test(struct rf_paritymap *pm, daddr_t sector)
{
unsigned region = sector / pm->region_size;
int retval;
mutex_enter(&pm->lock);
retval = isset(pm->disk_boot->bits, region) ? 1 : 0;
mutex_exit(&pm->lock);
return retval;
}
/* To be called before a write to the RAID is submitted. */
void
rf_paritymap_begin(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
{
unsigned i, b, e;
b = offset / pm->region_size;
e = (offset + size - 1) / pm->region_size;
for (i = b; i <= e; i++)
rf_paritymap_begin_region(pm, i);
}
/* To be called after a write to the RAID completes. */
void
rf_paritymap_end(struct rf_paritymap *pm, daddr_t offset, daddr_t size)
{
unsigned i, b, e;
b = offset / pm->region_size;
e = (offset + size - 1) / pm->region_size;
for (i = b; i <= e; i++)
rf_paritymap_end_region(pm, i);
}
void
rf_paritymap_begin_region(struct rf_paritymap *pm, unsigned region)
{
int needs_write;
KASSERT(region < RF_PARITYMAP_NREG);
pm->ctrs.nwrite++;
/* If it was being kept warm, deal with that. */
mutex_enter(&pm->lock);
if (pm->current->state[region] < 0)
pm->current->state[region] = 0;
/* This shouldn't happen unless RAIDOUTSTANDING is set too high. */
KASSERT(pm->current->state[region] < 127);
pm->current->state[region]++;
needs_write = isclr(pm->disk_now->bits, region);
if (needs_write) {
KASSERT(pm->current->state[region] == 1);
rf_paritymap_write_locked(pm);
}
mutex_exit(&pm->lock);
}
void
rf_paritymap_end_region(struct rf_paritymap *pm, unsigned region)
{
KASSERT(region < RF_PARITYMAP_NREG);
mutex_enter(&pm->lock);
KASSERT(pm->current->state[region] > 0);
--pm->current->state[region];
if (pm->current->state[region] <= 0) {
pm->current->state[region] = -pm->params.cooldown;
KASSERT(pm->current->state[region] <= 0);
mutex_enter(&pm->lk_flags);
if (!(pm->flags & TICKING)) {
pm->flags |= TICKING;
mutex_exit(&pm->lk_flags);
callout_schedule(&pm->ticker,
mstohz(pm->params.tickms));
} else
mutex_exit(&pm->lk_flags);
}
mutex_exit(&pm->lock);
}
/*
* Updates the parity map to account for any changes in current activity
* and/or an ongoing parity scan, then writes it to disk with appropriate
* synchronization.
*/
void
rf_paritymap_write(struct rf_paritymap *pm)
{
mutex_enter(&pm->lock);
rf_paritymap_write_locked(pm);
mutex_exit(&pm->lock);
}
/* As above, but to be used when pm->lock is already held. */
static void
rf_paritymap_write_locked(struct rf_paritymap *pm)
{
char w, w0;
int i, j, setting, clearing;
setting = clearing = 0;
for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
w0 = pm->disk_now->bits[i];
w = pm->disk_boot->bits[i];
for (j = 0; j < NBBY; j++)
if (pm->current->state[i * NBBY + j] != 0)
w |= 1 << j;
if (w & ~w0)
setting = 1;
if (w0 & ~w)
clearing = 1;
pm->disk_now->bits[i] = w;
}
pm->ctrs.ncachesync += setting + clearing;
pm->ctrs.nclearing += clearing;
/*
* If bits are being set in the parity map, then a sync is
* required afterwards, so that the regions are marked dirty
* on disk before any writes to them take place. If bits are
* being cleared, then a sync is required before the write, so
* that any writes to those regions are processed before the
* region is marked clean. (Synchronization is somewhat
* overkill; a write ordering barrier would suffice, but we
* currently have no way to express that directly.)
*/
if (clearing)
rf_sync_component_caches(pm->raid);
rf_paritymap_kern_write(pm->raid, pm->disk_now);
if (setting)
rf_sync_component_caches(pm->raid);
}
/* Mark all parity as being in need of rewrite. */
void
rf_paritymap_invalidate(struct rf_paritymap *pm)
{
mutex_enter(&pm->lock);
memset(pm->disk_boot, ~(unsigned char)0,
sizeof(struct rf_paritymap_ondisk));
mutex_exit(&pm->lock);
}
/* Mark all parity as being correct. */
void
rf_paritymap_forceclean(struct rf_paritymap *pm)
{
mutex_enter(&pm->lock);
memset(pm->disk_boot, (unsigned char)0,
sizeof(struct rf_paritymap_ondisk));
mutex_exit(&pm->lock);
}
/*
* The cooldown callout routine just defers its work to a thread; it can't do
* the parity map write itself as it would block, and although mutex-induced
* blocking is permitted it seems wise to avoid tying up the softint.
*/
static void
rf_paritymap_tick(void *arg)
{
struct rf_paritymap *pm = arg;
mutex_enter(&pm->lk_flags);
pm->flags |= TICKED;
mutex_exit(&pm->lk_flags);
wakeup(&(pm->raid->iodone)); /* XXX */
}
/*
* This is where the parity cooling work (and rearming the callout if needed)
* is done; the raidio thread calls it when woken up, as by the above.
*/
void
rf_paritymap_checkwork(struct rf_paritymap *pm)
{
int i, zerop, progressp;
mutex_enter(&pm->lk_flags);
if (pm->flags & TICKED) {
zerop = progressp = 0;
pm->flags &= ~TICKED;
mutex_exit(&pm->lk_flags);
mutex_enter(&pm->lock);
for (i = 0; i < RF_PARITYMAP_NREG; i++) {
if (pm->current->state[i] < 0) {
progressp = 1;
pm->current->state[i]++;
if (pm->current->state[i] == 0)
zerop = 1;
}
}
if (progressp)
callout_schedule(&pm->ticker,
mstohz(pm->params.tickms));
else {
mutex_enter(&pm->lk_flags);
pm->flags &= ~TICKING;
mutex_exit(&pm->lk_flags);
}
if (zerop)
rf_paritymap_write_locked(pm);
mutex_exit(&pm->lock);
} else
mutex_exit(&pm->lk_flags);
}
/*
* Set parity map parameters; used both to alter parameters on the fly and to
* establish their initial values. Note that setting a parameter to 0 means
* to leave the previous setting unchanged, and that if this is done for the
* initial setting of "regions", then a default value will be computed based
* on the RAID component size.
*/
int
rf_paritymap_set_params(struct rf_paritymap *pm,
const struct rf_pmparams *params, int todisk)
{
int cooldown, tickms;
u_int regions;
RF_RowCol_t col;
RF_ComponentLabel_t *clabel;
RF_Raid_t *raidPtr;
cooldown = params->cooldown != 0
? params->cooldown : pm->params.cooldown;
tickms = params->tickms != 0
? params->tickms : pm->params.tickms;
regions = params->regions != 0
? params->regions : pm->params.regions;
if (cooldown < 1 || cooldown > 128) {
printf("raid%d: cooldown %d out of range\n", pm->raid->raidid,
cooldown);
return (-1);
}
if (tickms < 10) {
printf("raid%d: tick time %dms out of range\n",
pm->raid->raidid, tickms);
return (-1);
}
if (regions == 0) {
regions = rf_paritymap_nreg(pm->raid);
} else if (regions > RF_PARITYMAP_NREG) {
printf("raid%d: region count %u too large (more than %u)\n",
pm->raid->raidid, regions, RF_PARITYMAP_NREG);
return (-1);
}
/* XXX any currently warm parity will be used with the new tickms! */
pm->params.cooldown = cooldown;
pm->params.tickms = tickms;
/* Apply the initial region count, but do not change it after that. */
if (pm->params.regions == 0)
pm->params.regions = regions;
/* So that the newly set parameters can be tested: */
pm->ctrs.nwrite = pm->ctrs.ncachesync = pm->ctrs.nclearing = 0;
if (todisk) {
raidPtr = pm->raid;
for (col = 0; col < raidPtr->numCol; col++) {
clabel = raidget_component_label(raidPtr, col);
clabel->parity_map_ntick = cooldown;
clabel->parity_map_tickms = tickms;
clabel->parity_map_regions = regions;
raidflush_component_label(raidPtr, col);
}
}
return 0;
}
/*
* The number of regions may not be as many as can fit into the map, because
* when regions are too small, the overhead of setting parity map bits
* becomes significant in comparison to the actual I/O, while the
* corresponding gains in parity verification time become negligible. Thus,
* a minimum region size (defined above) is imposed.
*
* Note that, if the number of regions is less than the maximum, then some of
* the regions will be "fictional", corresponding to no actual disk; some
* parts of the code may process them as normal, but they can not ever be
* written to.
*/
static u_int
rf_paritymap_nreg(RF_Raid_t *raid)
{
daddr_t bytes_per_disk, nreg;
bytes_per_disk = raid->sectorsPerDisk << raid->logBytesPerSector;
nreg = bytes_per_disk / REGION_MINSIZE;
if (nreg > RF_PARITYMAP_NREG)
nreg = RF_PARITYMAP_NREG;
return (u_int)nreg;
}
/*
* Initialize a parity map given specific parameters. This neither reads nor
* writes the parity map config in the component labels; for that, see below.
*/
int
rf_paritymap_init(struct rf_paritymap *pm, RF_Raid_t *raid,
const struct rf_pmparams *params)
{
daddr_t rstripes;
struct rf_pmparams safe;
pm->raid = raid;
pm->params.regions = 0;
if (0 != rf_paritymap_set_params(pm, params, 0)) {
/*
* If the parameters are out-of-range, then bring the
* parity map up with something reasonable, so that
* the admin can at least go and fix it (or ignore it
* entirely).
*/
safe.cooldown = DFL_COOLDOWN;
safe.tickms = DFL_TICKMS;
safe.regions = 0;
if (0 != rf_paritymap_set_params(pm, &safe, 0))
return (-1);
}
rstripes = howmany(raid->Layout.numStripe, pm->params.regions);
pm->region_size = rstripes * raid->Layout.dataSectorsPerStripe;
callout_init(&pm->ticker, CALLOUT_MPSAFE);
callout_setfunc(&pm->ticker, rf_paritymap_tick, pm);
pm->flags = 0;
pm->disk_boot = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
KM_SLEEP);
pm->disk_now = kmem_alloc(sizeof(struct rf_paritymap_ondisk),
KM_SLEEP);
pm->current = kmem_zalloc(sizeof(struct rf_paritymap_current),
KM_SLEEP);
rf_paritymap_kern_read(pm->raid, pm->disk_boot);
memcpy(pm->disk_now, pm->disk_boot, sizeof(*pm->disk_now));
mutex_init(&pm->lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&pm->lk_flags, MUTEX_DEFAULT, IPL_SOFTCLOCK);
return 0;
}
/*
* Destroys a parity map; unless "force" is set, also cleans parity for any
* regions which were still in cooldown (but are not dirty on disk).
*/
void
rf_paritymap_destroy(struct rf_paritymap *pm, int force)
{
int i;
callout_halt(&pm->ticker, NULL); /* XXX stop? halt? */
callout_destroy(&pm->ticker);
if (!force) {
for (i = 0; i < RF_PARITYMAP_NREG; i++) {
/* XXX check for > 0 ? */
if (pm->current->state[i] < 0)
pm->current->state[i] = 0;
}
rf_paritymap_write_locked(pm);
}
mutex_destroy(&pm->lock);
mutex_destroy(&pm->lk_flags);
kmem_free(pm->disk_boot, sizeof(struct rf_paritymap_ondisk));
kmem_free(pm->disk_now, sizeof(struct rf_paritymap_ondisk));
kmem_free(pm->current, sizeof(struct rf_paritymap_current));
}
/*
* Rewrite parity, taking parity map into account; this is the equivalent of
* the old rf_RewriteParity, and is likewise to be called from a suitable
* thread and shouldn't have multiple copies running in parallel and so on.
*
* Note that the fictional regions are "cleaned" in one shot, so that very
* small RAIDs (useful for testing) will not experience potentially severe
* regressions in rewrite time.
*/
int
rf_paritymap_rewrite(struct rf_paritymap *pm)
{
int i, ret_val = 0;
daddr_t reg_b, reg_e;
/* Process only the actual regions. */
for (i = 0; i < pm->params.regions; i++) {
mutex_enter(&pm->lock);
if (isset(pm->disk_boot->bits, i)) {
mutex_exit(&pm->lock);
reg_b = i * pm->region_size;
reg_e = reg_b + pm->region_size;
if (reg_e > pm->raid->totalSectors)
reg_e = pm->raid->totalSectors;
if (rf_RewriteParityRange(pm->raid, reg_b,
reg_e - reg_b)) {
ret_val = 1;
if (pm->raid->waitShutdown)
return ret_val;
} else {
mutex_enter(&pm->lock);
clrbit(pm->disk_boot->bits, i);
rf_paritymap_write_locked(pm);
mutex_exit(&pm->lock);
}
} else {
mutex_exit(&pm->lock);
}
}
/* Now, clear the fictional regions, if any. */
rf_paritymap_forceclean(pm);
rf_paritymap_write(pm);
return ret_val;
}
/*
* How to merge the on-disk parity maps when reading them in from the
* various components; returns whether they differ. In the case that
* they do differ, sets *dst to the union of *dst and *src.
*
* In theory, it should be safe to take the intersection (or just pick
* a single component arbitrarily), but the paranoid approach costs
* little.
*
* Appropriate locking, if any, is the responsibility of the caller.
*/
int
rf_paritymap_merge(struct rf_paritymap_ondisk *dst,
struct rf_paritymap_ondisk *src)
{
int i, discrep = 0;
for (i = 0; i < RF_PARITYMAP_NBYTE; i++) {
if (dst->bits[i] != src->bits[i])
discrep = 1;
dst->bits[i] |= src->bits[i];
}
return discrep;
}
/*
* Detach a parity map from its RAID. This is not meant to be applied except
* when unconfiguring the RAID after all I/O has been resolved, as otherwise
* an out-of-date parity map could be treated as current.
*/
void
rf_paritymap_detach(RF_Raid_t *raidPtr)
{
if (raidPtr->parity_map == NULL)
return;
simple_lock(&(raidPtr->iodone_lock));
struct rf_paritymap *pm = raidPtr->parity_map;
raidPtr->parity_map = NULL;
simple_unlock(&(raidPtr->iodone_lock));
/* XXXjld is that enough locking? Or too much? */
rf_paritymap_destroy(pm, 0);
kmem_free(pm, sizeof(*pm));
}
/*
* Attach a parity map to a RAID set if appropriate. Includes
* configure-time processing of parity-map fields of component label.
*/
void
rf_paritymap_attach(RF_Raid_t *raidPtr, int force)
{
RF_RowCol_t col;
int pm_use, pm_zap;
int g_tickms, g_ntick, g_regions;
int good;
RF_ComponentLabel_t *clabel;
u_int flags, regions;
struct rf_pmparams params;
if (raidPtr->Layout.map->faultsTolerated == 0) {
/* There isn't any parity. */
return;
}
pm_use = 1;
pm_zap = 0;
g_tickms = DFL_TICKMS;
g_ntick = DFL_COOLDOWN;
g_regions = 0;
/*
* Collect opinions on the set config. If this is the initial
* config (raidctl -C), treat all labels as invalid, since
* there may be random data present.
*/
if (!force) {
for (col = 0; col < raidPtr->numCol; col++) {
clabel = raidget_component_label(raidPtr, col);
flags = clabel->parity_map_flags;
/* Check for use by non-parity-map kernel. */
if (clabel->parity_map_modcount
!= clabel->mod_counter) {
flags &= ~RF_PMLABEL_WASUSED;
}
if (flags & RF_PMLABEL_VALID) {
g_tickms = clabel->parity_map_tickms;
g_ntick = clabel->parity_map_ntick;
regions = clabel->parity_map_regions;
if (g_regions == 0)
g_regions = regions;
else if (g_regions != regions) {
pm_zap = 1; /* important! */
}
if (flags & RF_PMLABEL_DISABLE) {
pm_use = 0;
}
if (!(flags & RF_PMLABEL_WASUSED)) {
pm_zap = 1;
}
} else {
pm_zap = 1;
}
}
} else {
pm_zap = 1;
}
/* Finally, create and attach the parity map. */
if (pm_use) {
params.cooldown = g_ntick;
params.tickms = g_tickms;
params.regions = g_regions;
raidPtr->parity_map = kmem_alloc(sizeof(struct rf_paritymap),
KM_SLEEP);
if (0 != rf_paritymap_init(raidPtr->parity_map, raidPtr,
&params)) {
/* It failed; do without. */
kmem_free(raidPtr->parity_map,
sizeof(struct rf_paritymap));
raidPtr->parity_map = NULL;
return;
}
if (g_regions == 0)
/* Pick up the autoconfigured region count. */
g_regions = raidPtr->parity_map->params.regions;
if (pm_zap) {
good = raidPtr->parity_good && !force;
if (good)
rf_paritymap_forceclean(raidPtr->parity_map);
else
rf_paritymap_invalidate(raidPtr->parity_map);
/* This needs to be on disk before WASUSED is set. */
rf_paritymap_write(raidPtr->parity_map);
}
}
/* Alter labels in-core to reflect the current view of things. */
for (col = 0; col < raidPtr->numCol; col++) {
clabel = raidget_component_label(raidPtr, col);
if (pm_use)
flags = RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
else
flags = RF_PMLABEL_VALID | RF_PMLABEL_DISABLE;
clabel->parity_map_flags = flags;
clabel->parity_map_tickms = g_tickms;
clabel->parity_map_ntick = g_ntick;
clabel->parity_map_regions = g_regions;
raidflush_component_label(raidPtr, col);
}
}
/*
* For initializing the parity-map fields of a component label, both on
* initial creation and on reconstruct/copyback/etc.
*/
void
rf_paritymap_init_label(struct rf_paritymap *pm, RF_ComponentLabel_t *clabel)
{
if (pm != NULL) {
clabel->parity_map_flags =
RF_PMLABEL_VALID | RF_PMLABEL_WASUSED;
clabel->parity_map_tickms = pm->params.tickms;
clabel->parity_map_ntick = pm->params.cooldown;
/*
* XXXjld: If the number of regions is changed on disk, and
* then a new component is labeled before the next configure,
* then it will get the old value and they will conflict on
* the next boot (and the default will be used instead).
*/
clabel->parity_map_regions = pm->params.regions;
} else {
/*
* XXXjld: if the map is disabled, and all the components are
* replaced without an intervening unconfigure/reconfigure,
* then it will become enabled on the next unconfig/reconfig.
*/
}
}
/* Will the parity map be disabled next time? */
int
rf_paritymap_get_disable(RF_Raid_t *raidPtr)
{
RF_ComponentLabel_t *clabel;
RF_RowCol_t col;
int dis;
dis = 0;
for (col = 0; col < raidPtr->numCol; col++) {
clabel = raidget_component_label(raidPtr, col);
if (clabel->parity_map_flags & RF_PMLABEL_DISABLE)
dis = 1;
}
return dis;
}
/* Set whether the parity map will be disabled next time. */
void
rf_paritymap_set_disable(RF_Raid_t *raidPtr, int dis)
{
RF_ComponentLabel_t *clabel;
RF_RowCol_t col;
for (col = 0; col < raidPtr->numCol; col++) {
clabel = raidget_component_label(raidPtr, col);
if (dis)
clabel->parity_map_flags |= RF_PMLABEL_DISABLE;
else
clabel->parity_map_flags &= ~RF_PMLABEL_DISABLE;
raidflush_component_label(raidPtr, col);
}
}

View File

@ -0,0 +1,125 @@
/* $NetBSD: rf_paritymap.h,v 1.1 2009/11/17 18:54:26 jld Exp $ */
/*-
* Copyright (c) 2009 Jed Davis.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/mutex.h>
#include <sys/param.h>
#include <sys/rwlock.h>
#include <sys/types.h>
#include <dev/raidframe/raidframevar.h>
/* RF_PARITYMAP_N* in raidframevar.h */
#define RF_PMLABEL_VALID 1
#define RF_PMLABEL_WASUSED 2
#define RF_PMLABEL_DISABLE 4
/*
* On-disk format: a single bit for each region; if the bit is clear,
* then the parity is clean.
*/
struct rf_paritymap_ondisk
{
/* XXX Do these really need to be volatile? */
volatile char bits[RF_PARITYMAP_NBYTE];
};
/* In-core per-region state: a byte for each, encoded as follows. */
struct rf_paritymap_current
{
volatile int8_t state[RF_PARITYMAP_NREG];
/*
* Values:
* if x == 0, the region may be written out as clean
* if x > 0, then x outstanding IOs to that region
* if x < 0, then there was recently IO; periodically increment x
*/
};
/* The entire state. */
struct rf_paritymap
{
struct rf_paritymap_ondisk *disk_boot, *disk_now;
struct rf_paritymap_current *current;
/*
* This lock will be held while component disks' caches are
* flushed, which could take many milliseconds, so it should
* not be taken where that kind of delay is unacceptable.
* Contention on this lock is not, however, expected to be a
* performance bottleneck.
*/
kmutex_t lock;
/*
* The flags field, below, has its own lock so that
* inter-thread communication can occur without taking the
* overall lock. Ordering is lock -> lk_flags.
*/
kmutex_t lk_flags;
RF_Raid_t *raid;
daddr_t region_size;
callout_t ticker;
struct rf_pmparams params;
volatile int flags;
struct rf_pmctrs ctrs;
};
void rf_paritymap_status(struct rf_paritymap *, struct rf_pmstat *);
int rf_paritymap_test(struct rf_paritymap *, daddr_t);
void rf_paritymap_begin_region(struct rf_paritymap *, unsigned);
void rf_paritymap_begin(struct rf_paritymap *, daddr_t, daddr_t);
void rf_paritymap_end_region(struct rf_paritymap *, unsigned);
void rf_paritymap_end(struct rf_paritymap *, daddr_t, daddr_t);
void rf_paritymap_checkwork(struct rf_paritymap *);
void rf_paritymap_invalidate(struct rf_paritymap *);
void rf_paritymap_forceclean(struct rf_paritymap *);
void rf_paritymap_write(struct rf_paritymap *);
int rf_paritymap_init(struct rf_paritymap *, RF_Raid_t *,
const struct rf_pmparams *);
void rf_paritymap_destroy(struct rf_paritymap *, int);
int rf_paritymap_rewrite(struct rf_paritymap *);
int rf_paritymap_merge(struct rf_paritymap_ondisk *,
struct rf_paritymap_ondisk *);
void rf_paritymap_attach(RF_Raid_t *, int);
void rf_paritymap_detach(RF_Raid_t *); /* Not while the RAID is live! */
int rf_paritymap_get_disable(RF_Raid_t *);
void rf_paritymap_set_disable(RF_Raid_t *, int);
int rf_paritymap_set_params(struct rf_paritymap *,
const struct rf_pmparams *, int);
void rf_paritymap_init_label(struct rf_paritymap *,
RF_ComponentLabel_t *);

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_parityscan.c,v 1.32 2006/11/16 01:33:23 christos Exp $ */
/* $NetBSD: rf_parityscan.c,v 1.33 2009/11/17 18:54:26 jld Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
@ -33,7 +33,7 @@
****************************************************************************/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.32 2006/11/16 01:33:23 christos Exp $");
__KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.33 2009/11/17 18:54:26 jld Exp $");
#include <dev/raidframe/raidframevar.h>
@ -46,6 +46,7 @@ __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.32 2006/11/16 01:33:23 christos
#include "rf_engine.h"
#include "rf_parityscan.h"
#include "rf_map.h"
#include "rf_paritymap.h"
/*****************************************************************************
*
@ -63,6 +64,20 @@ __KERNEL_RCSID(0, "$NetBSD: rf_parityscan.c,v 1.32 2006/11/16 01:33:23 christos
int
rf_RewriteParity(RF_Raid_t *raidPtr)
{
if (raidPtr->parity_map != NULL)
return rf_paritymap_rewrite(raidPtr->parity_map);
else
return rf_RewriteParityRange(raidPtr, 0, raidPtr->totalSectors);
}
int
rf_RewriteParityRange(RF_Raid_t *raidPtr, RF_SectorNum_t sec_begin,
RF_SectorNum_t sec_len)
{
/*
* Note: It is the caller's responsibility to ensure that
* sec_begin and sec_len are stripe-aligned.
*/
RF_RaidLayout_t *layoutPtr = &raidPtr->Layout;
RF_AccessStripeMapHeader_t *asm_h;
int ret_val;
@ -86,7 +101,7 @@ rf_RewriteParity(RF_Raid_t *raidPtr)
rc = RF_PARITY_OKAY;
for (i = 0; i < raidPtr->totalSectors &&
for (i = sec_begin; i < sec_begin + sec_len &&
rc <= RF_PARITY_CORRECTED;
i += layoutPtr->dataSectorsPerStripe) {
if (raidPtr->waitShutdown) {

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_parityscan.h,v 1.7 2005/12/11 12:23:37 christos Exp $ */
/* $NetBSD: rf_parityscan.h,v 1.8 2009/11/17 18:54:26 jld Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
@ -34,6 +34,7 @@
#include "rf_alloclist.h"
int rf_RewriteParity(RF_Raid_t *);
int rf_RewriteParityRange(RF_Raid_t *, RF_SectorNum_t, RF_SectorNum_t);
int rf_VerifyParityBasic(RF_Raid_t *, RF_RaidAddr_t, RF_PhysDiskAddr_t *,
int, RF_RaidAccessFlags_t);
int rf_VerifyParity(RF_Raid_t *, RF_AccessStripeMap_t *, int,

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_raid.h,v 1.37 2007/09/16 02:13:35 oster Exp $ */
/* $NetBSD: rf_raid.h,v 1.38 2009/11/17 18:54:26 jld Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
@ -137,7 +137,7 @@ struct RF_Raid_s {
int parity_good; /* !0 if parity is known to be correct */
int serial_number; /* a "serial number" for this set */
int mod_counter; /* modification counter for component labels */
int clean; /* the clean bit for this array. */
int clean; /* completely unused and should be removed */
int openings; /* Number of IO's which can be scheduled
simultaneously (high-level - not a
@ -295,5 +295,6 @@ struct RF_Raid_s {
RF_Thread_t pLogDiskThreadHandle;
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
struct rf_paritymap *parity_map;
};
#endif /* !_RF__RF_RAID_H_ */

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_reconstruct.c,v 1.107 2009/02/11 23:54:10 oster Exp $ */
/* $NetBSD: rf_reconstruct.c,v 1.108 2009/11/17 18:54:26 jld Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
@ -33,7 +33,7 @@
************************************************************/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.107 2009/02/11 23:54:10 oster Exp $");
__KERNEL_RCSID(0, "$NetBSD: rf_reconstruct.c,v 1.108 2009/11/17 18:54:26 jld Exp $");
#include <sys/param.h>
#include <sys/time.h>
@ -234,7 +234,7 @@ rf_ReconstructFailedDisk(RF_Raid_t *raidPtr, RF_RowCol_t col)
int
rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
{
RF_ComponentLabel_t c_label;
RF_ComponentLabel_t *c_label;
RF_RaidDisk_t *spareDiskPtr = NULL;
RF_RaidReconDesc_t *reconDesc;
RF_RowCol_t scol;
@ -289,17 +289,14 @@ rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
if (!rc) {
/* fix up the component label */
/* Don't actually need the read here.. */
raidread_component_label(
raidPtr->raid_cinfo[scol].ci_dev,
raidPtr->raid_cinfo[scol].ci_vp,
&c_label);
c_label = raidget_component_label(raidPtr, scol);
raid_init_component_label( raidPtr, &c_label);
c_label.row = 0;
c_label.column = col;
c_label.clean = RF_RAID_DIRTY;
c_label.status = rf_ds_optimal;
c_label.partitionSize = raidPtr->Disks[scol].partitionSize;
raid_init_component_label(raidPtr, c_label);
c_label->row = 0;
c_label->column = col;
c_label->clean = RF_RAID_DIRTY;
c_label->status = rf_ds_optimal;
c_label->partitionSize = raidPtr->Disks[scol].partitionSize;
/* We've just done a rebuild based on all the other
disks, so at this point the parity is known to be
@ -313,11 +310,7 @@ rf_ReconstructFailedDiskBasic(RF_Raid_t *raidPtr, RF_RowCol_t col)
/* XXXX MORE NEEDED HERE */
raidwrite_component_label(
raidPtr->raid_cinfo[scol].ci_dev,
raidPtr->raid_cinfo[scol].ci_vp,
&c_label);
raidflush_component_label(raidPtr, scol);
} else {
/* Reconstruct failed. */
@ -350,7 +343,7 @@ rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
RF_RaidDisk_t *spareDiskPtr = NULL;
RF_RaidReconDesc_t *reconDesc;
const RF_LayoutSW_t *lp;
RF_ComponentLabel_t c_label;
RF_ComponentLabel_t *c_label;
int numDisksDone = 0, rc;
struct partinfo dpart;
struct vnode *vp;
@ -515,15 +508,13 @@ rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
/* fix up the component label */
/* Don't actually need the read here.. */
raidread_component_label(raidPtr->raid_cinfo[col].ci_dev,
raidPtr->raid_cinfo[col].ci_vp,
&c_label);
c_label = raidget_component_label(raidPtr, col);
RF_LOCK_MUTEX(raidPtr->mutex);
raid_init_component_label(raidPtr, &c_label);
raid_init_component_label(raidPtr, c_label);
c_label.row = 0;
c_label.column = col;
c_label->row = 0;
c_label->column = col;
/* We've just done a rebuild based on all the other
disks, so at this point the parity is known to be
@ -534,10 +525,7 @@ rf_ReconstructInPlace(RF_Raid_t *raidPtr, RF_RowCol_t col)
raidPtr->parity_good = RF_RAID_CLEAN;
RF_UNLOCK_MUTEX(raidPtr->mutex);
raidwrite_component_label(raidPtr->raid_cinfo[col].ci_dev,
raidPtr->raid_cinfo[col].ci_vp,
&c_label);
raidflush_component_label(raidPtr, col);
} else {
/* Reconstruct-in-place failed. Disk goes back to
"failed" status, regardless of what it was before. */

View File

@ -1,4 +1,4 @@
/* $NetBSD: rf_states.c,v 1.43 2008/05/20 00:29:54 oster Exp $ */
/* $NetBSD: rf_states.c,v 1.44 2009/11/17 18:54:26 jld Exp $ */
/*
* Copyright (c) 1995 Carnegie-Mellon University.
* All rights reserved.
@ -27,7 +27,7 @@
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.43 2008/05/20 00:29:54 oster Exp $");
__KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.44 2009/11/17 18:54:26 jld Exp $");
#include <sys/errno.h>
@ -45,6 +45,7 @@ __KERNEL_RCSID(0, "$NetBSD: rf_states.c,v 1.43 2008/05/20 00:29:54 oster Exp $")
#include "rf_map.h"
#include "rf_etimer.h"
#include "rf_kintf.h"
#include "rf_paritymap.h"
#ifndef RF_DEBUG_STATES
#define RF_DEBUG_STATES 0
@ -237,6 +238,15 @@ rf_State_LastState(RF_RaidAccessDesc_t *desc)
wakeup(&(desc->raidPtr->iodone));
/*
* The parity_map hook has to go here, because the iodone
* callback goes straight into the kintf layer.
*/
if (desc->raidPtr->parity_map != NULL &&
desc->type == RF_IO_TYPE_WRITE)
rf_paritymap_end(desc->raidPtr->parity_map,
desc->raidAddress, desc->numBlocks);
/* printf("Calling biodone on 0x%x\n",desc->bp); */
biodone(desc->bp); /* access came through ioctl */