ab834bda32
This will make it easier for some hardware crypto support.
1814 lines
45 KiB
C
1814 lines
45 KiB
C
/* $NetBSD: cgd.c,v 1.137 2020/06/29 23:36:06 riastradh Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2002 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Roland C. Dowdeswell.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: cgd.c,v 1.137 2020/06/29 23:36:06 riastradh Exp $");
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/bufq.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/device.h>
|
|
#include <sys/disk.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/module.h>
|
|
#include <sys/namei.h> /* for pathbuf */
|
|
#include <sys/pool.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/workqueue.h>
|
|
|
|
#include <dev/cgd_crypto.h>
|
|
#include <dev/cgdvar.h>
|
|
#include <dev/dkvar.h>
|
|
|
|
#include <miscfs/specfs/specdev.h> /* for v_rdev */
|
|
|
|
#include "ioconf.h"
|
|
|
|
struct selftest_params {
|
|
const char *alg;
|
|
int encblkno8;
|
|
int blocksize; /* number of bytes */
|
|
int secsize;
|
|
daddr_t blkno;
|
|
int keylen; /* number of bits */
|
|
int txtlen; /* number of bytes */
|
|
const uint8_t *key;
|
|
const uint8_t *ptxt;
|
|
const uint8_t *ctxt;
|
|
};
|
|
|
|
/* Entry Point Functions */
|
|
|
|
static dev_type_open(cgdopen);
|
|
static dev_type_close(cgdclose);
|
|
static dev_type_read(cgdread);
|
|
static dev_type_write(cgdwrite);
|
|
static dev_type_ioctl(cgdioctl);
|
|
static dev_type_strategy(cgdstrategy);
|
|
static dev_type_dump(cgddump);
|
|
static dev_type_size(cgdsize);
|
|
|
|
const struct bdevsw cgd_bdevsw = {
|
|
.d_open = cgdopen,
|
|
.d_close = cgdclose,
|
|
.d_strategy = cgdstrategy,
|
|
.d_ioctl = cgdioctl,
|
|
.d_dump = cgddump,
|
|
.d_psize = cgdsize,
|
|
.d_discard = nodiscard,
|
|
.d_flag = D_DISK | D_MPSAFE
|
|
};
|
|
|
|
const struct cdevsw cgd_cdevsw = {
|
|
.d_open = cgdopen,
|
|
.d_close = cgdclose,
|
|
.d_read = cgdread,
|
|
.d_write = cgdwrite,
|
|
.d_ioctl = cgdioctl,
|
|
.d_stop = nostop,
|
|
.d_tty = notty,
|
|
.d_poll = nopoll,
|
|
.d_mmap = nommap,
|
|
.d_kqfilter = nokqfilter,
|
|
.d_discard = nodiscard,
|
|
.d_flag = D_DISK | D_MPSAFE
|
|
};
|
|
|
|
/*
|
|
* Vector 5 from IEEE 1619/D16 truncated to 64 bytes, blkno 1.
|
|
*/
|
|
static const uint8_t selftest_aes_xts_256_ptxt[64] = {
|
|
0x27, 0xa7, 0x47, 0x9b, 0xef, 0xa1, 0xd4, 0x76,
|
|
0x48, 0x9f, 0x30, 0x8c, 0xd4, 0xcf, 0xa6, 0xe2,
|
|
0xa9, 0x6e, 0x4b, 0xbe, 0x32, 0x08, 0xff, 0x25,
|
|
0x28, 0x7d, 0xd3, 0x81, 0x96, 0x16, 0xe8, 0x9c,
|
|
0xc7, 0x8c, 0xf7, 0xf5, 0xe5, 0x43, 0x44, 0x5f,
|
|
0x83, 0x33, 0xd8, 0xfa, 0x7f, 0x56, 0x00, 0x00,
|
|
0x05, 0x27, 0x9f, 0xa5, 0xd8, 0xb5, 0xe4, 0xad,
|
|
0x40, 0xe7, 0x36, 0xdd, 0xb4, 0xd3, 0x54, 0x12,
|
|
};
|
|
|
|
static const uint8_t selftest_aes_xts_256_ctxt[512] = {
|
|
0x26, 0x4d, 0x3c, 0xa8, 0x51, 0x21, 0x94, 0xfe,
|
|
0xc3, 0x12, 0xc8, 0xc9, 0x89, 0x1f, 0x27, 0x9f,
|
|
0xef, 0xdd, 0x60, 0x8d, 0x0c, 0x02, 0x7b, 0x60,
|
|
0x48, 0x3a, 0x3f, 0xa8, 0x11, 0xd6, 0x5e, 0xe5,
|
|
0x9d, 0x52, 0xd9, 0xe4, 0x0e, 0xc5, 0x67, 0x2d,
|
|
0x81, 0x53, 0x2b, 0x38, 0xb6, 0xb0, 0x89, 0xce,
|
|
0x95, 0x1f, 0x0f, 0x9c, 0x35, 0x59, 0x0b, 0x8b,
|
|
0x97, 0x8d, 0x17, 0x52, 0x13, 0xf3, 0x29, 0xbb,
|
|
};
|
|
|
|
static const uint8_t selftest_aes_xts_256_key[33] = {
|
|
0x27, 0x18, 0x28, 0x18, 0x28, 0x45, 0x90, 0x45,
|
|
0x23, 0x53, 0x60, 0x28, 0x74, 0x71, 0x35, 0x26,
|
|
0x31, 0x41, 0x59, 0x26, 0x53, 0x58, 0x97, 0x93,
|
|
0x23, 0x84, 0x62, 0x64, 0x33, 0x83, 0x27, 0x95,
|
|
0
|
|
};
|
|
|
|
/*
|
|
* Vector 11 from IEEE 1619/D16 truncated to 64 bytes, blkno 0xffff.
|
|
*/
|
|
static const uint8_t selftest_aes_xts_512_ptxt[64] = {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
|
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
|
|
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
|
|
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
|
|
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
|
|
};
|
|
|
|
static const uint8_t selftest_aes_xts_512_ctxt[64] = {
|
|
0x77, 0xa3, 0x12, 0x51, 0x61, 0x8a, 0x15, 0xe6,
|
|
0xb9, 0x2d, 0x1d, 0x66, 0xdf, 0xfe, 0x7b, 0x50,
|
|
0xb5, 0x0b, 0xad, 0x55, 0x23, 0x05, 0xba, 0x02,
|
|
0x17, 0xa6, 0x10, 0x68, 0x8e, 0xff, 0x7e, 0x11,
|
|
0xe1, 0xd0, 0x22, 0x54, 0x38, 0xe0, 0x93, 0x24,
|
|
0x2d, 0x6d, 0xb2, 0x74, 0xfd, 0xe8, 0x01, 0xd4,
|
|
0xca, 0xe0, 0x6f, 0x20, 0x92, 0xc7, 0x28, 0xb2,
|
|
0x47, 0x85, 0x59, 0xdf, 0x58, 0xe8, 0x37, 0xc2,
|
|
};
|
|
|
|
static const uint8_t selftest_aes_xts_512_key[65] = {
|
|
0x27, 0x18, 0x28, 0x18, 0x28, 0x45, 0x90, 0x45,
|
|
0x23, 0x53, 0x60, 0x28, 0x74, 0x71, 0x35, 0x26,
|
|
0x62, 0x49, 0x77, 0x57, 0x24, 0x70, 0x93, 0x69,
|
|
0x99, 0x59, 0x57, 0x49, 0x66, 0x96, 0x76, 0x27,
|
|
0x31, 0x41, 0x59, 0x26, 0x53, 0x58, 0x97, 0x93,
|
|
0x23, 0x84, 0x62, 0x64, 0x33, 0x83, 0x27, 0x95,
|
|
0x02, 0x88, 0x41, 0x97, 0x16, 0x93, 0x99, 0x37,
|
|
0x51, 0x05, 0x82, 0x09, 0x74, 0x94, 0x45, 0x92,
|
|
0
|
|
};
|
|
|
|
static const uint8_t selftest_aes_cbc_key[32] = {
|
|
0x27, 0x18, 0x28, 0x18, 0x28, 0x45, 0x90, 0x45,
|
|
0x23, 0x53, 0x60, 0x28, 0x74, 0x71, 0x35, 0x26,
|
|
0x62, 0x49, 0x77, 0x57, 0x24, 0x70, 0x93, 0x69,
|
|
0x99, 0x59, 0x57, 0x49, 0x66, 0x96, 0x76, 0x27,
|
|
};
|
|
|
|
static const uint8_t selftest_aes_cbc_128_ptxt[64] = {
|
|
0x27, 0xa7, 0x47, 0x9b, 0xef, 0xa1, 0xd4, 0x76,
|
|
0x48, 0x9f, 0x30, 0x8c, 0xd4, 0xcf, 0xa6, 0xe2,
|
|
0xa9, 0x6e, 0x4b, 0xbe, 0x32, 0x08, 0xff, 0x25,
|
|
0x28, 0x7d, 0xd3, 0x81, 0x96, 0x16, 0xe8, 0x9c,
|
|
0xc7, 0x8c, 0xf7, 0xf5, 0xe5, 0x43, 0x44, 0x5f,
|
|
0x83, 0x33, 0xd8, 0xfa, 0x7f, 0x56, 0x00, 0x00,
|
|
0x05, 0x27, 0x9f, 0xa5, 0xd8, 0xb5, 0xe4, 0xad,
|
|
0x40, 0xe7, 0x36, 0xdd, 0xb4, 0xd3, 0x54, 0x12,
|
|
};
|
|
|
|
static const uint8_t selftest_aes_cbc_128_ctxt[64] = { /* blkno=1 */
|
|
0x93, 0x94, 0x56, 0x36, 0x83, 0xbc, 0xff, 0xa4,
|
|
0xe0, 0x24, 0x34, 0x12, 0xbe, 0xfa, 0xb0, 0x7d,
|
|
0x88, 0x1e, 0xc5, 0x57, 0x55, 0x23, 0x05, 0x0c,
|
|
0x69, 0xa5, 0xc1, 0xda, 0x64, 0xee, 0x74, 0x10,
|
|
0xc2, 0xc5, 0xe6, 0x66, 0xd6, 0xa7, 0x49, 0x1c,
|
|
0x9d, 0x40, 0xb5, 0x0c, 0x9b, 0x6e, 0x1c, 0xe6,
|
|
0xb1, 0x7a, 0x1c, 0xe7, 0x5a, 0xfe, 0xf9, 0x2a,
|
|
0x78, 0xfa, 0xb7, 0x7b, 0x08, 0xdf, 0x8e, 0x51,
|
|
};
|
|
|
|
static const uint8_t selftest_aes_cbc_256_ptxt[64] = {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
|
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
|
|
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
|
|
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
|
|
0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
|
|
};
|
|
|
|
static const uint8_t selftest_aes_cbc_256_ctxt[64] = { /* blkno=0xffff */
|
|
0x6c, 0xa3, 0x15, 0x17, 0x51, 0x90, 0xe9, 0x69,
|
|
0x08, 0x36, 0x7b, 0xa6, 0xbb, 0xd1, 0x0b, 0x9e,
|
|
0xcd, 0x6b, 0x1e, 0xaf, 0xb6, 0x2e, 0x62, 0x7d,
|
|
0x8e, 0xde, 0xf0, 0xed, 0x0d, 0x44, 0xe7, 0x31,
|
|
0x26, 0xcf, 0xd5, 0x0b, 0x3e, 0x95, 0x59, 0x89,
|
|
0xdf, 0x5d, 0xd6, 0x9a, 0x00, 0x66, 0xcc, 0x7f,
|
|
0x45, 0xd3, 0x06, 0x58, 0xed, 0xef, 0x49, 0x47,
|
|
0x87, 0x89, 0x17, 0x7d, 0x08, 0x56, 0x50, 0xe1,
|
|
};
|
|
|
|
static const uint8_t selftest_3des_cbc_key[24] = {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
};
|
|
|
|
static const uint8_t selftest_3des_cbc_ptxt[64] = {
|
|
0x27, 0xa7, 0x47, 0x9b, 0xef, 0xa1, 0xd4, 0x76,
|
|
0x48, 0x9f, 0x30, 0x8c, 0xd4, 0xcf, 0xa6, 0xe2,
|
|
0xa9, 0x6e, 0x4b, 0xbe, 0x32, 0x08, 0xff, 0x25,
|
|
0x28, 0x7d, 0xd3, 0x81, 0x96, 0x16, 0xe8, 0x9c,
|
|
0xc7, 0x8c, 0xf7, 0xf5, 0xe5, 0x43, 0x44, 0x5f,
|
|
0x83, 0x33, 0xd8, 0xfa, 0x7f, 0x56, 0x00, 0x00,
|
|
0x05, 0x27, 0x9f, 0xa5, 0xd8, 0xb5, 0xe4, 0xad,
|
|
0x40, 0xe7, 0x36, 0xdd, 0xb4, 0xd3, 0x54, 0x12,
|
|
};
|
|
|
|
static const uint8_t selftest_3des_cbc_ctxt[64] = {
|
|
0xa2, 0xfe, 0x81, 0xaa, 0x10, 0x6c, 0xea, 0xb9,
|
|
0x11, 0x58, 0x1f, 0x29, 0xb5, 0x86, 0x71, 0x56,
|
|
0xe9, 0x25, 0x1d, 0x07, 0xb1, 0x69, 0x59, 0x6c,
|
|
0x96, 0x80, 0xf7, 0x54, 0x38, 0xaa, 0xa7, 0xe4,
|
|
0xe8, 0x81, 0xf5, 0x00, 0xbb, 0x1c, 0x00, 0x3c,
|
|
0xba, 0x38, 0x45, 0x97, 0x4c, 0xcf, 0x84, 0x14,
|
|
0x46, 0x86, 0xd9, 0xf4, 0xc5, 0xe2, 0xf0, 0x54,
|
|
0xde, 0x41, 0xf6, 0xa1, 0xef, 0x1b, 0x0a, 0xea,
|
|
};
|
|
|
|
static const uint8_t selftest_bf_cbc_key[56] = {
|
|
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
|
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
|
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
|
0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
|
0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
|
|
0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
|
|
0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
|
|
};
|
|
|
|
static const uint8_t selftest_bf_cbc_ptxt[64] = {
|
|
0x27, 0xa7, 0x47, 0x9b, 0xef, 0xa1, 0xd4, 0x76,
|
|
0x48, 0x9f, 0x30, 0x8c, 0xd4, 0xcf, 0xa6, 0xe2,
|
|
0xa9, 0x6e, 0x4b, 0xbe, 0x32, 0x08, 0xff, 0x25,
|
|
0x28, 0x7d, 0xd3, 0x81, 0x96, 0x16, 0xe8, 0x9c,
|
|
0xc7, 0x8c, 0xf7, 0xf5, 0xe5, 0x43, 0x44, 0x5f,
|
|
0x83, 0x33, 0xd8, 0xfa, 0x7f, 0x56, 0x00, 0x00,
|
|
0x05, 0x27, 0x9f, 0xa5, 0xd8, 0xb5, 0xe4, 0xad,
|
|
0x40, 0xe7, 0x36, 0xdd, 0xb4, 0xd3, 0x54, 0x12,
|
|
};
|
|
|
|
static const uint8_t selftest_bf_cbc_ctxt[64] = {
|
|
0xec, 0xa2, 0xc0, 0x0e, 0xa9, 0x7f, 0x04, 0x1e,
|
|
0x2e, 0x4f, 0x64, 0x07, 0x67, 0x3e, 0xf4, 0x58,
|
|
0x61, 0x5f, 0xd3, 0x50, 0x5e, 0xd3, 0x4d, 0x34,
|
|
0xa0, 0x53, 0xbe, 0x47, 0x75, 0x69, 0x3b, 0x1f,
|
|
0x86, 0xf2, 0xae, 0x8b, 0xb7, 0x91, 0xda, 0xd4,
|
|
0x2b, 0xa5, 0x47, 0x9b, 0x7d, 0x13, 0x30, 0xdd,
|
|
0x7b, 0xad, 0x86, 0x57, 0x51, 0x11, 0x74, 0x42,
|
|
0xb8, 0xbf, 0x69, 0x17, 0x20, 0x0a, 0xf7, 0xda,
|
|
};
|
|
|
|
static const uint8_t selftest_aes_cbc_encblkno8_zero64[64];
|
|
static const uint8_t selftest_aes_cbc_encblkno8_ctxt[64] = {
|
|
0xa2, 0x06, 0x26, 0x26, 0xac, 0xdc, 0xe7, 0xcf,
|
|
0x47, 0x68, 0x24, 0x0e, 0xfa, 0x40, 0x44, 0x83,
|
|
0x07, 0xe1, 0xf4, 0x5d, 0x53, 0x47, 0xa0, 0xfe,
|
|
0xc0, 0x6e, 0x4e, 0xf8, 0x9d, 0x98, 0x63, 0xb8,
|
|
0x2c, 0x27, 0xfa, 0x3a, 0xd5, 0x40, 0xda, 0xdb,
|
|
0xe6, 0xc3, 0xe4, 0xfb, 0x85, 0x53, 0xfb, 0x78,
|
|
0x5d, 0xbd, 0x8f, 0x4c, 0x1a, 0x04, 0x9c, 0x88,
|
|
0x85, 0xec, 0x3c, 0x56, 0x46, 0x1a, 0x6e, 0xf5,
|
|
};
|
|
|
|
const struct selftest_params selftests[] = {
|
|
{
|
|
.alg = "aes-xts",
|
|
.blocksize = 16,
|
|
.secsize = 512,
|
|
.blkno = 1,
|
|
.keylen = 256,
|
|
.txtlen = sizeof(selftest_aes_xts_256_ptxt),
|
|
.key = selftest_aes_xts_256_key,
|
|
.ptxt = selftest_aes_xts_256_ptxt,
|
|
.ctxt = selftest_aes_xts_256_ctxt
|
|
},
|
|
{
|
|
.alg = "aes-xts",
|
|
.blocksize = 16,
|
|
.secsize = 512,
|
|
.blkno = 0xffff,
|
|
.keylen = 512,
|
|
.txtlen = sizeof(selftest_aes_xts_512_ptxt),
|
|
.key = selftest_aes_xts_512_key,
|
|
.ptxt = selftest_aes_xts_512_ptxt,
|
|
.ctxt = selftest_aes_xts_512_ctxt
|
|
},
|
|
{
|
|
.alg = "aes-cbc",
|
|
.blocksize = 16,
|
|
.secsize = 512,
|
|
.blkno = 1,
|
|
.keylen = 128,
|
|
.txtlen = sizeof(selftest_aes_cbc_128_ptxt),
|
|
.key = selftest_aes_cbc_key,
|
|
.ptxt = selftest_aes_cbc_128_ptxt,
|
|
.ctxt = selftest_aes_cbc_128_ctxt,
|
|
},
|
|
{
|
|
.alg = "aes-cbc",
|
|
.blocksize = 16,
|
|
.secsize = 512,
|
|
.blkno = 0xffff,
|
|
.keylen = 256,
|
|
.txtlen = sizeof(selftest_aes_cbc_256_ptxt),
|
|
.key = selftest_aes_cbc_key,
|
|
.ptxt = selftest_aes_cbc_256_ptxt,
|
|
.ctxt = selftest_aes_cbc_256_ctxt,
|
|
},
|
|
{
|
|
.alg = "3des-cbc",
|
|
.blocksize = 8,
|
|
.secsize = 512,
|
|
.blkno = 1,
|
|
.keylen = 192, /* 168 + 3*8 parity bits */
|
|
.txtlen = sizeof(selftest_3des_cbc_ptxt),
|
|
.key = selftest_3des_cbc_key,
|
|
.ptxt = selftest_3des_cbc_ptxt,
|
|
.ctxt = selftest_3des_cbc_ctxt,
|
|
},
|
|
{
|
|
.alg = "blowfish-cbc",
|
|
.blocksize = 8,
|
|
.secsize = 512,
|
|
.blkno = 1,
|
|
.keylen = 448,
|
|
.txtlen = sizeof(selftest_bf_cbc_ptxt),
|
|
.key = selftest_bf_cbc_key,
|
|
.ptxt = selftest_bf_cbc_ptxt,
|
|
.ctxt = selftest_bf_cbc_ctxt,
|
|
},
|
|
{
|
|
.alg = "aes-cbc",
|
|
.encblkno8 = 1,
|
|
.blocksize = 16,
|
|
.secsize = 512,
|
|
.blkno = 0,
|
|
.keylen = 128,
|
|
.txtlen = sizeof(selftest_aes_cbc_encblkno8_zero64),
|
|
.key = selftest_aes_cbc_encblkno8_zero64,
|
|
.ptxt = selftest_aes_cbc_encblkno8_zero64,
|
|
.ctxt = selftest_aes_cbc_encblkno8_ctxt,
|
|
},
|
|
};
|
|
|
|
static int cgd_match(device_t, cfdata_t, void *);
|
|
static void cgd_attach(device_t, device_t, void *);
|
|
static int cgd_detach(device_t, int);
|
|
static struct cgd_softc *cgd_spawn(int);
|
|
static struct cgd_worker *cgd_create_one_worker(void);
|
|
static void cgd_destroy_one_worker(struct cgd_worker *);
|
|
static struct cgd_worker *cgd_create_worker(void);
|
|
static void cgd_destroy_worker(struct cgd_worker *);
|
|
static int cgd_destroy(device_t);
|
|
|
|
/* Internal Functions */
|
|
|
|
static int cgd_diskstart(device_t, struct buf *);
|
|
static void cgd_diskstart2(struct cgd_softc *, struct cgd_xfer *);
|
|
static void cgdiodone(struct buf *);
|
|
static void cgd_iodone2(struct cgd_softc *, struct cgd_xfer *);
|
|
static void cgd_enqueue(struct cgd_softc *, struct cgd_xfer *);
|
|
static void cgd_process(struct work *, void *);
|
|
static int cgd_dumpblocks(device_t, void *, daddr_t, int);
|
|
|
|
static int cgd_ioctl_set(struct cgd_softc *, void *, struct lwp *);
|
|
static int cgd_ioctl_clr(struct cgd_softc *, struct lwp *);
|
|
static int cgd_ioctl_get(dev_t, void *, struct lwp *);
|
|
static int cgdinit(struct cgd_softc *, const char *, struct vnode *,
|
|
struct lwp *);
|
|
static void cgd_cipher(struct cgd_softc *, void *, const void *,
|
|
size_t, daddr_t, size_t, int);
|
|
|
|
static void cgd_selftest(void);
|
|
|
|
static const struct dkdriver cgddkdriver = {
|
|
.d_minphys = minphys,
|
|
.d_open = cgdopen,
|
|
.d_close = cgdclose,
|
|
.d_strategy = cgdstrategy,
|
|
.d_iosize = NULL,
|
|
.d_diskstart = cgd_diskstart,
|
|
.d_dumpblocks = cgd_dumpblocks,
|
|
.d_lastclose = NULL
|
|
};
|
|
|
|
CFATTACH_DECL3_NEW(cgd, sizeof(struct cgd_softc),
|
|
cgd_match, cgd_attach, cgd_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
|
|
|
|
/* DIAGNOSTIC and DEBUG definitions */
|
|
|
|
#if defined(CGDDEBUG) && !defined(DEBUG)
|
|
#define DEBUG
|
|
#endif
|
|
|
|
#ifdef DEBUG
|
|
int cgddebug = 0;
|
|
|
|
#define CGDB_FOLLOW 0x1
|
|
#define CGDB_IO 0x2
|
|
#define CGDB_CRYPTO 0x4
|
|
|
|
#define IFDEBUG(x,y) if (cgddebug & (x)) y
|
|
#define DPRINTF(x,y) IFDEBUG(x, printf y)
|
|
#define DPRINTF_FOLLOW(y) DPRINTF(CGDB_FOLLOW, y)
|
|
|
|
static void hexprint(const char *, void *, int);
|
|
|
|
#else
|
|
#define IFDEBUG(x,y)
|
|
#define DPRINTF(x,y)
|
|
#define DPRINTF_FOLLOW(y)
|
|
#endif
|
|
|
|
/* Global variables */
|
|
|
|
static kmutex_t cgd_spawning_mtx;
|
|
static kcondvar_t cgd_spawning_cv;
|
|
static bool cgd_spawning;
|
|
static struct cgd_worker *cgd_worker;
|
|
static u_int cgd_refcnt; /* number of users of cgd_worker */
|
|
|
|
/* Utility Functions */
|
|
|
|
#define CGDUNIT(x) DISKUNIT(x)
|
|
|
|
/* The code */
|
|
|
|
static int
|
|
cgd_lock(bool intr)
|
|
{
|
|
int error = 0;
|
|
|
|
mutex_enter(&cgd_spawning_mtx);
|
|
while (cgd_spawning) {
|
|
if (intr)
|
|
error = cv_wait_sig(&cgd_spawning_cv, &cgd_spawning_mtx);
|
|
else
|
|
cv_wait(&cgd_spawning_cv, &cgd_spawning_mtx);
|
|
}
|
|
if (error == 0)
|
|
cgd_spawning = true;
|
|
mutex_exit(&cgd_spawning_mtx);
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
cgd_unlock(void)
|
|
{
|
|
mutex_enter(&cgd_spawning_mtx);
|
|
cgd_spawning = false;
|
|
cv_broadcast(&cgd_spawning_cv);
|
|
mutex_exit(&cgd_spawning_mtx);
|
|
}
|
|
|
|
static struct cgd_softc *
|
|
getcgd_softc(dev_t dev)
|
|
{
|
|
return device_lookup_private(&cgd_cd, CGDUNIT(dev));
|
|
}
|
|
|
|
static int
|
|
cgd_match(device_t self, cfdata_t cfdata, void *aux)
|
|
{
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void
|
|
cgd_attach(device_t parent, device_t self, void *aux)
|
|
{
|
|
struct cgd_softc *sc = device_private(self);
|
|
|
|
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_BIO);
|
|
cv_init(&sc->sc_cv, "cgdcv");
|
|
dk_init(&sc->sc_dksc, self, DKTYPE_CGD);
|
|
disk_init(&sc->sc_dksc.sc_dkdev, sc->sc_dksc.sc_xname, &cgddkdriver);
|
|
|
|
if (!pmf_device_register(self, NULL, NULL))
|
|
aprint_error_dev(self,
|
|
"unable to register power management hooks\n");
|
|
}
|
|
|
|
|
|
static int
|
|
cgd_detach(device_t self, int flags)
|
|
{
|
|
int ret;
|
|
const int pmask = 1 << RAW_PART;
|
|
struct cgd_softc *sc = device_private(self);
|
|
struct dk_softc *dksc = &sc->sc_dksc;
|
|
|
|
if (DK_BUSY(dksc, pmask))
|
|
return EBUSY;
|
|
|
|
if (DK_ATTACHED(dksc) &&
|
|
(ret = cgd_ioctl_clr(sc, curlwp)) != 0)
|
|
return ret;
|
|
|
|
disk_destroy(&dksc->sc_dkdev);
|
|
cv_destroy(&sc->sc_cv);
|
|
mutex_destroy(&sc->sc_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
cgdattach(int num)
|
|
{
|
|
#ifndef _MODULE
|
|
int error;
|
|
|
|
mutex_init(&cgd_spawning_mtx, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&cgd_spawning_cv, "cgspwn");
|
|
|
|
error = config_cfattach_attach(cgd_cd.cd_name, &cgd_ca);
|
|
if (error != 0)
|
|
aprint_error("%s: unable to register cfattach\n",
|
|
cgd_cd.cd_name);
|
|
#endif
|
|
|
|
cgd_selftest();
|
|
}
|
|
|
|
static struct cgd_softc *
|
|
cgd_spawn(int unit)
|
|
{
|
|
cfdata_t cf;
|
|
struct cgd_worker *cw;
|
|
struct cgd_softc *sc;
|
|
|
|
cf = kmem_alloc(sizeof(*cf), KM_SLEEP);
|
|
cf->cf_name = cgd_cd.cd_name;
|
|
cf->cf_atname = cgd_cd.cd_name;
|
|
cf->cf_unit = unit;
|
|
cf->cf_fstate = FSTATE_STAR;
|
|
|
|
cw = cgd_create_one_worker();
|
|
if (cw == NULL) {
|
|
kmem_free(cf, sizeof(*cf));
|
|
return NULL;
|
|
}
|
|
|
|
sc = device_private(config_attach_pseudo(cf));
|
|
if (sc == NULL) {
|
|
cgd_destroy_one_worker(cw);
|
|
return NULL;
|
|
}
|
|
|
|
sc->sc_worker = cw;
|
|
|
|
return sc;
|
|
}
|
|
|
|
static int
|
|
cgd_destroy(device_t dev)
|
|
{
|
|
struct cgd_softc *sc = device_private(dev);
|
|
struct cgd_worker *cw = sc->sc_worker;
|
|
cfdata_t cf;
|
|
int error;
|
|
|
|
cf = device_cfdata(dev);
|
|
error = config_detach(dev, DETACH_QUIET);
|
|
if (error)
|
|
return error;
|
|
|
|
cgd_destroy_one_worker(cw);
|
|
|
|
kmem_free(cf, sizeof(*cf));
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cgd_busy(struct cgd_softc *sc)
|
|
{
|
|
|
|
mutex_enter(&sc->sc_lock);
|
|
while (sc->sc_busy)
|
|
cv_wait(&sc->sc_cv, &sc->sc_lock);
|
|
sc->sc_busy = true;
|
|
mutex_exit(&sc->sc_lock);
|
|
}
|
|
|
|
static void
|
|
cgd_unbusy(struct cgd_softc *sc)
|
|
{
|
|
|
|
mutex_enter(&sc->sc_lock);
|
|
sc->sc_busy = false;
|
|
cv_broadcast(&sc->sc_cv);
|
|
mutex_exit(&sc->sc_lock);
|
|
}
|
|
|
|
static struct cgd_worker *
|
|
cgd_create_one_worker(void)
|
|
{
|
|
KASSERT(cgd_spawning);
|
|
|
|
if (cgd_refcnt++ == 0) {
|
|
KASSERT(cgd_worker == NULL);
|
|
cgd_worker = cgd_create_worker();
|
|
}
|
|
|
|
KASSERT(cgd_worker != NULL);
|
|
return cgd_worker;
|
|
}
|
|
|
|
static void
|
|
cgd_destroy_one_worker(struct cgd_worker *cw)
|
|
{
|
|
KASSERT(cgd_spawning);
|
|
KASSERT(cw == cgd_worker);
|
|
|
|
if (--cgd_refcnt == 0) {
|
|
cgd_destroy_worker(cgd_worker);
|
|
cgd_worker = NULL;
|
|
}
|
|
}
|
|
|
|
static struct cgd_worker *
|
|
cgd_create_worker(void)
|
|
{
|
|
struct cgd_worker *cw;
|
|
struct workqueue *wq;
|
|
struct pool *cp;
|
|
int error;
|
|
|
|
cw = kmem_alloc(sizeof(struct cgd_worker), KM_SLEEP);
|
|
cp = kmem_alloc(sizeof(struct pool), KM_SLEEP);
|
|
|
|
error = workqueue_create(&wq, "cgd", cgd_process, NULL,
|
|
PRI_BIO, IPL_BIO, WQ_MPSAFE | WQ_PERCPU);
|
|
if (error) {
|
|
kmem_free(cp, sizeof(struct pool));
|
|
kmem_free(cw, sizeof(struct cgd_worker));
|
|
return NULL;
|
|
}
|
|
|
|
cw->cw_cpool = cp;
|
|
cw->cw_wq = wq;
|
|
pool_init(cw->cw_cpool, sizeof(struct cgd_xfer), 0,
|
|
0, 0, "cgdcpl", NULL, IPL_BIO);
|
|
|
|
mutex_init(&cw->cw_lock, MUTEX_DEFAULT, IPL_BIO);
|
|
|
|
return cw;
|
|
}
|
|
|
|
static void
|
|
cgd_destroy_worker(struct cgd_worker *cw)
|
|
{
|
|
mutex_destroy(&cw->cw_lock);
|
|
|
|
if (cw->cw_cpool) {
|
|
pool_destroy(cw->cw_cpool);
|
|
kmem_free(cw->cw_cpool, sizeof(struct pool));
|
|
}
|
|
if (cw->cw_wq)
|
|
workqueue_destroy(cw->cw_wq);
|
|
|
|
kmem_free(cw, sizeof(struct cgd_worker));
|
|
}
|
|
|
|
static int
|
|
cgdopen(dev_t dev, int flags, int fmt, struct lwp *l)
|
|
{
|
|
struct cgd_softc *sc;
|
|
int error;
|
|
|
|
DPRINTF_FOLLOW(("cgdopen(0x%"PRIx64", %d)\n", dev, flags));
|
|
|
|
error = cgd_lock(true);
|
|
if (error)
|
|
return error;
|
|
sc = getcgd_softc(dev);
|
|
if (sc == NULL)
|
|
sc = cgd_spawn(CGDUNIT(dev));
|
|
cgd_unlock();
|
|
if (sc == NULL)
|
|
return ENXIO;
|
|
|
|
return dk_open(&sc->sc_dksc, dev, flags, fmt, l);
|
|
}
|
|
|
|
static int
|
|
cgdclose(dev_t dev, int flags, int fmt, struct lwp *l)
|
|
{
|
|
struct cgd_softc *sc;
|
|
struct dk_softc *dksc;
|
|
int error;
|
|
|
|
DPRINTF_FOLLOW(("cgdclose(0x%"PRIx64", %d)\n", dev, flags));
|
|
|
|
error = cgd_lock(false);
|
|
if (error)
|
|
return error;
|
|
sc = getcgd_softc(dev);
|
|
if (sc == NULL) {
|
|
error = ENXIO;
|
|
goto done;
|
|
}
|
|
|
|
dksc = &sc->sc_dksc;
|
|
if ((error = dk_close(dksc, dev, flags, fmt, l)) != 0)
|
|
goto done;
|
|
|
|
if (!DK_ATTACHED(dksc)) {
|
|
if ((error = cgd_destroy(sc->sc_dksc.sc_dev)) != 0) {
|
|
device_printf(dksc->sc_dev,
|
|
"unable to detach instance\n");
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
done:
|
|
cgd_unlock();
|
|
|
|
return error;
|
|
}
|
|
|
|
static void
|
|
cgdstrategy(struct buf *bp)
|
|
{
|
|
struct cgd_softc *sc = getcgd_softc(bp->b_dev);
|
|
|
|
DPRINTF_FOLLOW(("cgdstrategy(%p): b_bcount = %ld\n", bp,
|
|
(long)bp->b_bcount));
|
|
|
|
/*
|
|
* Reject unaligned writes.
|
|
*/
|
|
if (((uintptr_t)bp->b_data & 3) != 0) {
|
|
bp->b_error = EINVAL;
|
|
goto bail;
|
|
}
|
|
|
|
dk_strategy(&sc->sc_dksc, bp);
|
|
return;
|
|
|
|
bail:
|
|
bp->b_resid = bp->b_bcount;
|
|
biodone(bp);
|
|
return;
|
|
}
|
|
|
|
static int
|
|
cgdsize(dev_t dev)
|
|
{
|
|
struct cgd_softc *sc = getcgd_softc(dev);
|
|
|
|
DPRINTF_FOLLOW(("cgdsize(0x%"PRIx64")\n", dev));
|
|
if (!sc)
|
|
return -1;
|
|
return dk_size(&sc->sc_dksc, dev);
|
|
}
|
|
|
|
/*
|
|
* cgd_{get,put}data are functions that deal with getting a buffer
|
|
* for the new encrypted data.
|
|
* We can no longer have a buffer per device, we need a buffer per
|
|
* work queue...
|
|
*/
|
|
|
|
static void *
|
|
cgd_getdata(struct cgd_softc *sc, unsigned long size)
|
|
{
|
|
void *data = NULL;
|
|
|
|
mutex_enter(&sc->sc_lock);
|
|
if (!sc->sc_data_used) {
|
|
sc->sc_data_used = true;
|
|
data = sc->sc_data;
|
|
}
|
|
mutex_exit(&sc->sc_lock);
|
|
|
|
if (data)
|
|
return data;
|
|
|
|
return kmem_intr_alloc(size, KM_NOSLEEP);
|
|
}
|
|
|
|
static void
|
|
cgd_putdata(struct cgd_softc *sc, void *data, unsigned long size)
|
|
{
|
|
|
|
if (data == sc->sc_data) {
|
|
mutex_enter(&sc->sc_lock);
|
|
sc->sc_data_used = false;
|
|
mutex_exit(&sc->sc_lock);
|
|
} else
|
|
kmem_intr_free(data, size);
|
|
}
|
|
|
|
static int
|
|
cgd_diskstart(device_t dev, struct buf *bp)
|
|
{
|
|
struct cgd_softc *sc = device_private(dev);
|
|
struct cgd_worker *cw = sc->sc_worker;
|
|
struct dk_softc *dksc = &sc->sc_dksc;
|
|
struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
|
|
struct cgd_xfer *cx;
|
|
struct buf *nbp;
|
|
void * newaddr;
|
|
daddr_t bn;
|
|
|
|
DPRINTF_FOLLOW(("cgd_diskstart(%p, %p)\n", dksc, bp));
|
|
|
|
bn = bp->b_rawblkno;
|
|
|
|
/*
|
|
* We attempt to allocate all of our resources up front, so that
|
|
* we can fail quickly if they are unavailable.
|
|
*/
|
|
nbp = getiobuf(sc->sc_tvn, false);
|
|
if (nbp == NULL)
|
|
return EAGAIN;
|
|
|
|
cx = pool_get(cw->cw_cpool, PR_NOWAIT);
|
|
if (cx == NULL) {
|
|
putiobuf(nbp);
|
|
return EAGAIN;
|
|
}
|
|
|
|
cx->cx_sc = sc;
|
|
cx->cx_obp = bp;
|
|
cx->cx_nbp = nbp;
|
|
cx->cx_srcv = cx->cx_dstv = bp->b_data;
|
|
cx->cx_blkno = bn;
|
|
cx->cx_secsize = dg->dg_secsize;
|
|
|
|
/*
|
|
* If we are writing, then we need to encrypt the outgoing
|
|
* block into a new block of memory.
|
|
*/
|
|
if ((bp->b_flags & B_READ) == 0) {
|
|
newaddr = cgd_getdata(sc, bp->b_bcount);
|
|
if (!newaddr) {
|
|
pool_put(cw->cw_cpool, cx);
|
|
putiobuf(nbp);
|
|
return EAGAIN;
|
|
}
|
|
|
|
cx->cx_dstv = newaddr;
|
|
cx->cx_len = bp->b_bcount;
|
|
cx->cx_dir = CGD_CIPHER_ENCRYPT;
|
|
|
|
cgd_enqueue(sc, cx);
|
|
return 0;
|
|
}
|
|
|
|
cgd_diskstart2(sc, cx);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
cgd_diskstart2(struct cgd_softc *sc, struct cgd_xfer *cx)
|
|
{
|
|
struct vnode *vp;
|
|
struct buf *bp;
|
|
struct buf *nbp;
|
|
|
|
bp = cx->cx_obp;
|
|
nbp = cx->cx_nbp;
|
|
|
|
nbp->b_data = cx->cx_dstv;
|
|
nbp->b_flags = bp->b_flags;
|
|
nbp->b_oflags = bp->b_oflags;
|
|
nbp->b_cflags = bp->b_cflags;
|
|
nbp->b_iodone = cgdiodone;
|
|
nbp->b_proc = bp->b_proc;
|
|
nbp->b_blkno = btodb(cx->cx_blkno * cx->cx_secsize);
|
|
nbp->b_bcount = bp->b_bcount;
|
|
nbp->b_private = cx;
|
|
|
|
BIO_COPYPRIO(nbp, bp);
|
|
|
|
if ((nbp->b_flags & B_READ) == 0) {
|
|
vp = nbp->b_vp;
|
|
mutex_enter(vp->v_interlock);
|
|
vp->v_numoutput++;
|
|
mutex_exit(vp->v_interlock);
|
|
}
|
|
VOP_STRATEGY(sc->sc_tvn, nbp);
|
|
}
|
|
|
|
static void
|
|
cgdiodone(struct buf *nbp)
|
|
{
|
|
struct cgd_xfer *cx = nbp->b_private;
|
|
struct buf *obp = cx->cx_obp;
|
|
struct cgd_softc *sc = getcgd_softc(obp->b_dev);
|
|
struct dk_softc *dksc = &sc->sc_dksc;
|
|
struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
|
|
daddr_t bn;
|
|
|
|
KDASSERT(sc);
|
|
|
|
DPRINTF_FOLLOW(("cgdiodone(%p)\n", nbp));
|
|
DPRINTF(CGDB_IO, ("cgdiodone: bp %p bcount %d resid %d\n",
|
|
obp, obp->b_bcount, obp->b_resid));
|
|
DPRINTF(CGDB_IO, (" dev 0x%"PRIx64", nbp %p bn %" PRId64
|
|
" addr %p bcnt %d\n", nbp->b_dev, nbp, nbp->b_blkno, nbp->b_data,
|
|
nbp->b_bcount));
|
|
if (nbp->b_error != 0) {
|
|
obp->b_error = nbp->b_error;
|
|
DPRINTF(CGDB_IO, ("%s: error %d\n", dksc->sc_xname,
|
|
obp->b_error));
|
|
}
|
|
|
|
/* Perform the decryption if we are reading.
|
|
*
|
|
* Note: use the blocknumber from nbp, since it is what
|
|
* we used to encrypt the blocks.
|
|
*/
|
|
|
|
if (nbp->b_flags & B_READ) {
|
|
bn = dbtob(nbp->b_blkno) / dg->dg_secsize;
|
|
|
|
cx->cx_obp = obp;
|
|
cx->cx_nbp = nbp;
|
|
cx->cx_dstv = obp->b_data;
|
|
cx->cx_srcv = obp->b_data;
|
|
cx->cx_len = obp->b_bcount;
|
|
cx->cx_blkno = bn;
|
|
cx->cx_secsize = dg->dg_secsize;
|
|
cx->cx_dir = CGD_CIPHER_DECRYPT;
|
|
|
|
cgd_enqueue(sc, cx);
|
|
return;
|
|
}
|
|
|
|
cgd_iodone2(sc, cx);
|
|
}
|
|
|
|
static void
|
|
cgd_iodone2(struct cgd_softc *sc, struct cgd_xfer *cx)
|
|
{
|
|
struct cgd_worker *cw = sc->sc_worker;
|
|
struct buf *obp = cx->cx_obp;
|
|
struct buf *nbp = cx->cx_nbp;
|
|
struct dk_softc *dksc = &sc->sc_dksc;
|
|
|
|
pool_put(cw->cw_cpool, cx);
|
|
|
|
/* If we allocated memory, free it now... */
|
|
if (nbp->b_data != obp->b_data)
|
|
cgd_putdata(sc, nbp->b_data, nbp->b_bcount);
|
|
|
|
putiobuf(nbp);
|
|
|
|
/* Request is complete for whatever reason */
|
|
obp->b_resid = 0;
|
|
if (obp->b_error != 0)
|
|
obp->b_resid = obp->b_bcount;
|
|
|
|
dk_done(dksc, obp);
|
|
dk_start(dksc, NULL);
|
|
}
|
|
|
|
static int
|
|
cgd_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk)
|
|
{
|
|
struct cgd_softc *sc = device_private(dev);
|
|
struct dk_softc *dksc = &sc->sc_dksc;
|
|
struct disk_geom *dg = &dksc->sc_dkdev.dk_geom;
|
|
size_t nbytes, blksize;
|
|
void *buf;
|
|
int error;
|
|
|
|
/*
|
|
* dk_dump gives us units of disklabel sectors. Everything
|
|
* else in cgd uses units of diskgeom sectors. These had
|
|
* better agree; otherwise we need to figure out how to convert
|
|
* between them.
|
|
*/
|
|
KASSERTMSG((dg->dg_secsize == dksc->sc_dkdev.dk_label->d_secsize),
|
|
"diskgeom secsize %"PRIu32" != disklabel secsize %"PRIu32,
|
|
dg->dg_secsize, dksc->sc_dkdev.dk_label->d_secsize);
|
|
blksize = dg->dg_secsize;
|
|
|
|
/*
|
|
* Compute the number of bytes in this request, which dk_dump
|
|
* has `helpfully' converted to a number of blocks for us.
|
|
*/
|
|
nbytes = nblk*blksize;
|
|
|
|
/* Try to acquire a buffer to store the ciphertext. */
|
|
buf = cgd_getdata(sc, nbytes);
|
|
if (buf == NULL)
|
|
/* Out of memory: give up. */
|
|
return ENOMEM;
|
|
|
|
/* Encrypt the caller's data into the temporary buffer. */
|
|
cgd_cipher(sc, buf, va, nbytes, blkno, blksize, CGD_CIPHER_ENCRYPT);
|
|
|
|
/* Pass it on to the underlying disk device. */
|
|
error = bdev_dump(sc->sc_tdev, blkno, buf, nbytes);
|
|
|
|
/* Release the buffer. */
|
|
cgd_putdata(sc, buf, nbytes);
|
|
|
|
/* Return any error from the underlying disk device. */
|
|
return error;
|
|
}
|
|
|
|
/* XXX: we should probably put these into dksubr.c, mostly */
|
|
static int
|
|
cgdread(dev_t dev, struct uio *uio, int flags)
|
|
{
|
|
struct cgd_softc *sc;
|
|
struct dk_softc *dksc;
|
|
|
|
DPRINTF_FOLLOW(("cgdread(0x%llx, %p, %d)\n",
|
|
(unsigned long long)dev, uio, flags));
|
|
sc = getcgd_softc(dev);
|
|
if (sc == NULL)
|
|
return ENXIO;
|
|
dksc = &sc->sc_dksc;
|
|
if (!DK_ATTACHED(dksc))
|
|
return ENXIO;
|
|
return physio(cgdstrategy, NULL, dev, B_READ, minphys, uio);
|
|
}
|
|
|
|
/* XXX: we should probably put these into dksubr.c, mostly */
|
|
static int
|
|
cgdwrite(dev_t dev, struct uio *uio, int flags)
|
|
{
|
|
struct cgd_softc *sc;
|
|
struct dk_softc *dksc;
|
|
|
|
DPRINTF_FOLLOW(("cgdwrite(0x%"PRIx64", %p, %d)\n", dev, uio, flags));
|
|
sc = getcgd_softc(dev);
|
|
if (sc == NULL)
|
|
return ENXIO;
|
|
dksc = &sc->sc_dksc;
|
|
if (!DK_ATTACHED(dksc))
|
|
return ENXIO;
|
|
return physio(cgdstrategy, NULL, dev, B_WRITE, minphys, uio);
|
|
}
|
|
|
|
static int
|
|
cgdioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
|
|
{
|
|
struct cgd_softc *sc;
|
|
struct dk_softc *dksc;
|
|
int part = DISKPART(dev);
|
|
int pmask = 1 << part;
|
|
int error;
|
|
|
|
DPRINTF_FOLLOW(("cgdioctl(0x%"PRIx64", %ld, %p, %d, %p)\n",
|
|
dev, cmd, data, flag, l));
|
|
|
|
switch (cmd) {
|
|
case CGDIOCGET:
|
|
return cgd_ioctl_get(dev, data, l);
|
|
case CGDIOCSET:
|
|
case CGDIOCCLR:
|
|
if ((flag & FWRITE) == 0)
|
|
return EBADF;
|
|
/* FALLTHROUGH */
|
|
default:
|
|
sc = getcgd_softc(dev);
|
|
if (sc == NULL)
|
|
return ENXIO;
|
|
dksc = &sc->sc_dksc;
|
|
break;
|
|
}
|
|
|
|
switch (cmd) {
|
|
case CGDIOCSET:
|
|
cgd_busy(sc);
|
|
if (DK_ATTACHED(dksc))
|
|
error = EBUSY;
|
|
else
|
|
error = cgd_ioctl_set(sc, data, l);
|
|
cgd_unbusy(sc);
|
|
break;
|
|
case CGDIOCCLR:
|
|
cgd_busy(sc);
|
|
if (DK_BUSY(&sc->sc_dksc, pmask))
|
|
error = EBUSY;
|
|
else
|
|
error = cgd_ioctl_clr(sc, l);
|
|
cgd_unbusy(sc);
|
|
break;
|
|
case DIOCGCACHE:
|
|
case DIOCCACHESYNC:
|
|
cgd_busy(sc);
|
|
if (!DK_ATTACHED(dksc)) {
|
|
cgd_unbusy(sc);
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
/*
|
|
* We pass this call down to the underlying disk.
|
|
*/
|
|
error = VOP_IOCTL(sc->sc_tvn, cmd, data, flag, l->l_cred);
|
|
cgd_unbusy(sc);
|
|
break;
|
|
case DIOCGSECTORALIGN: {
|
|
struct disk_sectoralign *dsa = data;
|
|
|
|
cgd_busy(sc);
|
|
if (!DK_ATTACHED(dksc)) {
|
|
cgd_unbusy(sc);
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
|
|
/* Get the underlying disk's sector alignment. */
|
|
error = VOP_IOCTL(sc->sc_tvn, cmd, data, flag, l->l_cred);
|
|
if (error) {
|
|
cgd_unbusy(sc);
|
|
break;
|
|
}
|
|
|
|
/* Adjust for the disklabel partition if necessary. */
|
|
if (part != RAW_PART) {
|
|
struct disklabel *lp = dksc->sc_dkdev.dk_label;
|
|
daddr_t offset = lp->d_partitions[part].p_offset;
|
|
uint32_t r = offset % dsa->dsa_alignment;
|
|
|
|
if (r < dsa->dsa_firstaligned)
|
|
dsa->dsa_firstaligned = dsa->dsa_firstaligned
|
|
- r;
|
|
else
|
|
dsa->dsa_firstaligned = (dsa->dsa_firstaligned
|
|
+ dsa->dsa_alignment) - r;
|
|
}
|
|
cgd_unbusy(sc);
|
|
break;
|
|
}
|
|
case DIOCGSTRATEGY:
|
|
case DIOCSSTRATEGY:
|
|
if (!DK_ATTACHED(dksc)) {
|
|
error = ENOENT;
|
|
break;
|
|
}
|
|
/*FALLTHROUGH*/
|
|
default:
|
|
error = dk_ioctl(dksc, dev, cmd, data, flag, l);
|
|
break;
|
|
case CGDIOCGET:
|
|
KASSERT(0);
|
|
error = EINVAL;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
static int
|
|
cgddump(dev_t dev, daddr_t blkno, void *va, size_t size)
|
|
{
|
|
struct cgd_softc *sc;
|
|
|
|
DPRINTF_FOLLOW(("cgddump(0x%"PRIx64", %" PRId64 ", %p, %lu)\n",
|
|
dev, blkno, va, (unsigned long)size));
|
|
sc = getcgd_softc(dev);
|
|
if (sc == NULL)
|
|
return ENXIO;
|
|
return dk_dump(&sc->sc_dksc, dev, blkno, va, size, DK_DUMP_RECURSIVE);
|
|
}
|
|
|
|
/*
|
|
* XXXrcd:
|
|
* for now we hardcode the maximum key length.
|
|
*/
|
|
#define MAX_KEYSIZE 1024
|
|
|
|
static const struct {
|
|
const char *n;
|
|
int v;
|
|
int d;
|
|
} encblkno[] = {
|
|
{ "encblkno", CGD_CIPHER_CBC_ENCBLKNO8, 1 },
|
|
{ "encblkno8", CGD_CIPHER_CBC_ENCBLKNO8, 1 },
|
|
{ "encblkno1", CGD_CIPHER_CBC_ENCBLKNO1, 8 },
|
|
};
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
cgd_ioctl_set(struct cgd_softc *sc, void *data, struct lwp *l)
|
|
{
|
|
struct cgd_ioctl *ci = data;
|
|
struct vnode *vp;
|
|
int ret;
|
|
size_t i;
|
|
size_t keybytes; /* key length in bytes */
|
|
const char *cp;
|
|
struct pathbuf *pb;
|
|
char *inbuf;
|
|
struct dk_softc *dksc = &sc->sc_dksc;
|
|
|
|
cp = ci->ci_disk;
|
|
|
|
ret = pathbuf_copyin(ci->ci_disk, &pb);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
ret = vn_bdev_openpath(pb, &vp, l);
|
|
pathbuf_destroy(pb);
|
|
if (ret != 0) {
|
|
return ret;
|
|
}
|
|
|
|
inbuf = kmem_alloc(MAX_KEYSIZE, KM_SLEEP);
|
|
|
|
if ((ret = cgdinit(sc, cp, vp, l)) != 0)
|
|
goto bail;
|
|
|
|
(void)memset(inbuf, 0, MAX_KEYSIZE);
|
|
ret = copyinstr(ci->ci_alg, inbuf, 256, NULL);
|
|
if (ret)
|
|
goto bail;
|
|
sc->sc_cfuncs = cryptfuncs_find(inbuf);
|
|
if (!sc->sc_cfuncs) {
|
|
ret = EINVAL;
|
|
goto bail;
|
|
}
|
|
|
|
(void)memset(inbuf, 0, MAX_KEYSIZE);
|
|
ret = copyinstr(ci->ci_ivmethod, inbuf, MAX_KEYSIZE, NULL);
|
|
if (ret)
|
|
goto bail;
|
|
|
|
for (i = 0; i < __arraycount(encblkno); i++)
|
|
if (strcmp(encblkno[i].n, inbuf) == 0)
|
|
break;
|
|
|
|
if (i == __arraycount(encblkno)) {
|
|
ret = EINVAL;
|
|
goto bail;
|
|
}
|
|
|
|
keybytes = ci->ci_keylen / 8 + 1;
|
|
if (keybytes > MAX_KEYSIZE) {
|
|
ret = EINVAL;
|
|
goto bail;
|
|
}
|
|
|
|
(void)memset(inbuf, 0, MAX_KEYSIZE);
|
|
ret = copyin(ci->ci_key, inbuf, keybytes);
|
|
if (ret)
|
|
goto bail;
|
|
|
|
sc->sc_cdata.cf_blocksize = ci->ci_blocksize;
|
|
sc->sc_cdata.cf_mode = encblkno[i].v;
|
|
|
|
/*
|
|
* Print a warning if the user selected the legacy encblkno8
|
|
* mistake, and reject it altogether for ciphers that it
|
|
* doesn't apply to.
|
|
*/
|
|
if (encblkno[i].v != CGD_CIPHER_CBC_ENCBLKNO1) {
|
|
if (strcmp(sc->sc_cfuncs->cf_name, "aes-cbc") &&
|
|
strcmp(sc->sc_cfuncs->cf_name, "3des-cbc") &&
|
|
strcmp(sc->sc_cfuncs->cf_name, "blowfish-cbc")) {
|
|
log(LOG_WARNING, "cgd: %s only makes sense for cbc,"
|
|
" not for %s; ignoring\n",
|
|
encblkno[i].n, sc->sc_cfuncs->cf_name);
|
|
sc->sc_cdata.cf_mode = CGD_CIPHER_CBC_ENCBLKNO1;
|
|
} else {
|
|
log(LOG_WARNING, "cgd: enabling legacy encblkno8\n");
|
|
}
|
|
}
|
|
|
|
sc->sc_cdata.cf_keylen = ci->ci_keylen;
|
|
sc->sc_cdata.cf_priv = sc->sc_cfuncs->cf_init(ci->ci_keylen, inbuf,
|
|
&sc->sc_cdata.cf_blocksize);
|
|
if (sc->sc_cdata.cf_blocksize > CGD_MAXBLOCKSIZE) {
|
|
log(LOG_WARNING, "cgd: Disallowed cipher with blocksize %zu > %u\n",
|
|
sc->sc_cdata.cf_blocksize, CGD_MAXBLOCKSIZE);
|
|
sc->sc_cdata.cf_priv = NULL;
|
|
}
|
|
|
|
/*
|
|
* The blocksize is supposed to be in bytes. Unfortunately originally
|
|
* it was expressed in bits. For compatibility we maintain encblkno
|
|
* and encblkno8.
|
|
*/
|
|
sc->sc_cdata.cf_blocksize /= encblkno[i].d;
|
|
(void)explicit_memset(inbuf, 0, MAX_KEYSIZE);
|
|
if (!sc->sc_cdata.cf_priv) {
|
|
ret = EINVAL; /* XXX is this the right error? */
|
|
goto bail;
|
|
}
|
|
kmem_free(inbuf, MAX_KEYSIZE);
|
|
|
|
bufq_alloc(&dksc->sc_bufq, "fcfs", 0);
|
|
|
|
sc->sc_data = kmem_alloc(MAXPHYS, KM_SLEEP);
|
|
sc->sc_data_used = false;
|
|
|
|
/* Attach the disk. */
|
|
dk_attach(dksc);
|
|
disk_attach(&dksc->sc_dkdev);
|
|
|
|
disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL);
|
|
|
|
/* Discover wedges on this disk. */
|
|
dkwedge_discover(&dksc->sc_dkdev);
|
|
|
|
return 0;
|
|
|
|
bail:
|
|
kmem_free(inbuf, MAX_KEYSIZE);
|
|
(void)vn_close(vp, FREAD|FWRITE, l->l_cred);
|
|
return ret;
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
static int
|
|
cgd_ioctl_clr(struct cgd_softc *sc, struct lwp *l)
|
|
{
|
|
struct dk_softc *dksc = &sc->sc_dksc;
|
|
|
|
if (!DK_ATTACHED(dksc))
|
|
return ENXIO;
|
|
|
|
/* Delete all of our wedges. */
|
|
dkwedge_delall(&dksc->sc_dkdev);
|
|
|
|
/* Kill off any queued buffers. */
|
|
dk_drain(dksc);
|
|
bufq_free(dksc->sc_bufq);
|
|
|
|
(void)vn_close(sc->sc_tvn, FREAD|FWRITE, l->l_cred);
|
|
sc->sc_cfuncs->cf_destroy(sc->sc_cdata.cf_priv);
|
|
kmem_free(sc->sc_tpath, sc->sc_tpathlen);
|
|
kmem_free(sc->sc_data, MAXPHYS);
|
|
sc->sc_data_used = false;
|
|
dk_detach(dksc);
|
|
disk_detach(&dksc->sc_dkdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cgd_ioctl_get(dev_t dev, void *data, struct lwp *l)
|
|
{
|
|
struct cgd_softc *sc;
|
|
struct cgd_user *cgu;
|
|
int unit, error;
|
|
|
|
unit = CGDUNIT(dev);
|
|
cgu = (struct cgd_user *)data;
|
|
|
|
DPRINTF_FOLLOW(("cgd_ioctl_get(0x%"PRIx64", %d, %p, %p)\n",
|
|
dev, unit, data, l));
|
|
|
|
/* XXX, we always return this units data, so if cgu_unit is
|
|
* not -1, that field doesn't match the rest
|
|
*/
|
|
if (cgu->cgu_unit == -1)
|
|
cgu->cgu_unit = unit;
|
|
|
|
if (cgu->cgu_unit < 0)
|
|
return EINVAL; /* XXX: should this be ENXIO? */
|
|
|
|
error = cgd_lock(false);
|
|
if (error)
|
|
return error;
|
|
|
|
sc = device_lookup_private(&cgd_cd, unit);
|
|
if (sc == NULL || !DK_ATTACHED(&sc->sc_dksc)) {
|
|
cgu->cgu_dev = 0;
|
|
cgu->cgu_alg[0] = '\0';
|
|
cgu->cgu_blocksize = 0;
|
|
cgu->cgu_mode = 0;
|
|
cgu->cgu_keylen = 0;
|
|
}
|
|
else {
|
|
mutex_enter(&sc->sc_lock);
|
|
cgu->cgu_dev = sc->sc_tdev;
|
|
strncpy(cgu->cgu_alg, sc->sc_cfuncs->cf_name,
|
|
sizeof(cgu->cgu_alg));
|
|
cgu->cgu_blocksize = sc->sc_cdata.cf_blocksize;
|
|
cgu->cgu_mode = sc->sc_cdata.cf_mode;
|
|
cgu->cgu_keylen = sc->sc_cdata.cf_keylen;
|
|
mutex_exit(&sc->sc_lock);
|
|
}
|
|
|
|
cgd_unlock();
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
cgdinit(struct cgd_softc *sc, const char *cpath, struct vnode *vp,
|
|
struct lwp *l)
|
|
{
|
|
struct disk_geom *dg;
|
|
int ret;
|
|
char *tmppath;
|
|
uint64_t psize;
|
|
unsigned secsize;
|
|
struct dk_softc *dksc = &sc->sc_dksc;
|
|
|
|
sc->sc_tvn = vp;
|
|
sc->sc_tpath = NULL;
|
|
|
|
tmppath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
|
|
ret = copyinstr(cpath, tmppath, MAXPATHLEN, &sc->sc_tpathlen);
|
|
if (ret)
|
|
goto bail;
|
|
sc->sc_tpath = kmem_alloc(sc->sc_tpathlen, KM_SLEEP);
|
|
memcpy(sc->sc_tpath, tmppath, sc->sc_tpathlen);
|
|
|
|
sc->sc_tdev = vp->v_rdev;
|
|
|
|
if ((ret = getdisksize(vp, &psize, &secsize)) != 0)
|
|
goto bail;
|
|
|
|
if (psize == 0) {
|
|
ret = ENODEV;
|
|
goto bail;
|
|
}
|
|
|
|
/*
|
|
* XXX here we should probe the underlying device. If we
|
|
* are accessing a partition of type RAW_PART, then
|
|
* we should populate our initial geometry with the
|
|
* geometry that we discover from the device.
|
|
*/
|
|
dg = &dksc->sc_dkdev.dk_geom;
|
|
memset(dg, 0, sizeof(*dg));
|
|
dg->dg_secperunit = psize;
|
|
dg->dg_secsize = secsize;
|
|
dg->dg_ntracks = 1;
|
|
dg->dg_nsectors = 1024 * 1024 / dg->dg_secsize;
|
|
dg->dg_ncylinders = dg->dg_secperunit / dg->dg_nsectors;
|
|
|
|
bail:
|
|
kmem_free(tmppath, MAXPATHLEN);
|
|
if (ret && sc->sc_tpath)
|
|
kmem_free(sc->sc_tpath, sc->sc_tpathlen);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Our generic cipher entry point. This takes care of the
|
|
* IV mode and passes off the work to the specific cipher.
|
|
* We implement here the IV method ``encrypted block
|
|
* number''.
|
|
*
|
|
* XXXrcd: for now we rely on our own crypto framework defined
|
|
* in dev/cgd_crypto.c. This will change when we
|
|
* get a generic kernel crypto framework.
|
|
*/
|
|
|
|
static void
|
|
blkno2blkno_buf(char *sbuf, daddr_t blkno)
|
|
{
|
|
int i;
|
|
|
|
/* Set up the blkno in blkno_buf, here we do not care much
|
|
* about the final layout of the information as long as we
|
|
* can guarantee that each sector will have a different IV
|
|
* and that the endianness of the machine will not affect
|
|
* the representation that we have chosen.
|
|
*
|
|
* We choose this representation, because it does not rely
|
|
* on the size of buf (which is the blocksize of the cipher),
|
|
* but allows daddr_t to grow without breaking existing
|
|
* disks.
|
|
*
|
|
* Note that blkno2blkno_buf does not take a size as input,
|
|
* and hence must be called on a pre-zeroed buffer of length
|
|
* greater than or equal to sizeof(daddr_t).
|
|
*/
|
|
for (i=0; i < sizeof(daddr_t); i++) {
|
|
*sbuf++ = blkno & 0xff;
|
|
blkno >>= 8;
|
|
}
|
|
}
|
|
|
|
static struct cpu_info *
|
|
cgd_cpu(struct cgd_softc *sc)
|
|
{
|
|
struct cgd_worker *cw = sc->sc_worker;
|
|
struct cpu_info *ci = NULL;
|
|
u_int cidx, i;
|
|
|
|
if (cw->cw_busy == 0) {
|
|
cw->cw_last = cpu_index(curcpu());
|
|
return NULL;
|
|
}
|
|
|
|
for (i=0, cidx = cw->cw_last+1; i<maxcpus; ++i, ++cidx) {
|
|
if (cidx >= maxcpus)
|
|
cidx = 0;
|
|
ci = cpu_lookup(cidx);
|
|
if (ci) {
|
|
cw->cw_last = cidx;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ci;
|
|
}
|
|
|
|
static void
|
|
cgd_enqueue(struct cgd_softc *sc, struct cgd_xfer *cx)
|
|
{
|
|
struct cgd_worker *cw = sc->sc_worker;
|
|
struct cpu_info *ci;
|
|
|
|
mutex_enter(&cw->cw_lock);
|
|
ci = cgd_cpu(sc);
|
|
cw->cw_busy++;
|
|
mutex_exit(&cw->cw_lock);
|
|
|
|
workqueue_enqueue(cw->cw_wq, &cx->cx_work, ci);
|
|
}
|
|
|
|
static void
|
|
cgd_process(struct work *wk, void *arg)
|
|
{
|
|
struct cgd_xfer *cx = (struct cgd_xfer *)wk;
|
|
struct cgd_softc *sc = cx->cx_sc;
|
|
struct cgd_worker *cw = sc->sc_worker;
|
|
|
|
cgd_cipher(sc, cx->cx_dstv, cx->cx_srcv, cx->cx_len,
|
|
cx->cx_blkno, cx->cx_secsize, cx->cx_dir);
|
|
|
|
if (cx->cx_dir == CGD_CIPHER_ENCRYPT) {
|
|
cgd_diskstart2(sc, cx);
|
|
} else {
|
|
cgd_iodone2(sc, cx);
|
|
}
|
|
|
|
mutex_enter(&cw->cw_lock);
|
|
if (cw->cw_busy > 0)
|
|
cw->cw_busy--;
|
|
mutex_exit(&cw->cw_lock);
|
|
}
|
|
|
|
static void
|
|
cgd_cipher(struct cgd_softc *sc, void *dstv, const void *srcv,
|
|
size_t len, daddr_t blkno, size_t secsize, int dir)
|
|
{
|
|
char *dst = dstv;
|
|
const char *src = srcv;
|
|
cfunc_cipher *cipher = sc->sc_cfuncs->cf_cipher;
|
|
size_t blocksize = sc->sc_cdata.cf_blocksize;
|
|
size_t todo;
|
|
char blkno_buf[CGD_MAXBLOCKSIZE] __aligned(CGD_BLOCKALIGN);
|
|
|
|
DPRINTF_FOLLOW(("cgd_cipher() dir=%d\n", dir));
|
|
|
|
if (sc->sc_cdata.cf_mode == CGD_CIPHER_CBC_ENCBLKNO8)
|
|
blocksize /= 8;
|
|
|
|
KASSERT(len % blocksize == 0);
|
|
/* ensure that sizeof(daddr_t) <= blocksize (for encblkno IVing) */
|
|
KASSERT(sizeof(daddr_t) <= blocksize);
|
|
KASSERT(blocksize <= CGD_MAXBLOCKSIZE);
|
|
|
|
for (; len > 0; len -= todo) {
|
|
todo = MIN(len, secsize);
|
|
|
|
memset(blkno_buf, 0x0, blocksize);
|
|
blkno2blkno_buf(blkno_buf, blkno);
|
|
IFDEBUG(CGDB_CRYPTO, hexprint("step 1: blkno_buf",
|
|
blkno_buf, blocksize));
|
|
|
|
/*
|
|
* Handle bollocksed up encblkno8 mistake. We used to
|
|
* compute the encryption of a zero block with blkno as
|
|
* the CBC IV -- except in an early mistake arising
|
|
* from bit/byte confusion, we actually computed the
|
|
* encryption of the last of _eight_ zero blocks under
|
|
* CBC as the CBC IV.
|
|
*
|
|
* Encrypting the block number is handled inside the
|
|
* cipher dispatch now (even though in practice, both
|
|
* CBC and XTS will do the same thing), so we have to
|
|
* simulate the block number that would yield the same
|
|
* result. So we encrypt _six_ zero blocks -- the
|
|
* first one and the last one are handled inside the
|
|
* cipher dispatch.
|
|
*/
|
|
if (sc->sc_cdata.cf_mode == CGD_CIPHER_CBC_ENCBLKNO8) {
|
|
static const uint8_t zero[CGD_MAXBLOCKSIZE];
|
|
uint8_t iv[CGD_MAXBLOCKSIZE];
|
|
|
|
memcpy(iv, blkno_buf, blocksize);
|
|
cipher(sc->sc_cdata.cf_priv, blkno_buf, zero,
|
|
6*blocksize, iv, CGD_CIPHER_ENCRYPT);
|
|
memmove(blkno_buf, blkno_buf + 5*blocksize, blocksize);
|
|
}
|
|
|
|
cipher(sc->sc_cdata.cf_priv, dst, src, todo, blkno_buf, dir);
|
|
|
|
dst += todo;
|
|
src += todo;
|
|
blkno++;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
static void
|
|
hexprint(const char *start, void *buf, int len)
|
|
{
|
|
char *c = buf;
|
|
|
|
KASSERTMSG(len >= 0, "hexprint: called with len < 0");
|
|
printf("%s: len=%06d 0x", start, len);
|
|
while (len--)
|
|
printf("%02x", (unsigned char) *c++);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
cgd_selftest(void)
|
|
{
|
|
struct cgd_softc sc;
|
|
void *buf;
|
|
|
|
for (size_t i = 0; i < __arraycount(selftests); i++) {
|
|
const char *alg = selftests[i].alg;
|
|
int encblkno8 = selftests[i].encblkno8;
|
|
const uint8_t *key = selftests[i].key;
|
|
int keylen = selftests[i].keylen;
|
|
int txtlen = selftests[i].txtlen;
|
|
|
|
aprint_verbose("cgd: self-test %s-%d%s\n", alg, keylen,
|
|
encblkno8 ? " (encblkno8)" : "");
|
|
|
|
memset(&sc, 0, sizeof(sc));
|
|
|
|
sc.sc_cfuncs = cryptfuncs_find(alg);
|
|
if (sc.sc_cfuncs == NULL)
|
|
panic("%s not implemented", alg);
|
|
|
|
sc.sc_cdata.cf_blocksize = 8 * selftests[i].blocksize;
|
|
sc.sc_cdata.cf_mode = encblkno8 ? CGD_CIPHER_CBC_ENCBLKNO8 :
|
|
CGD_CIPHER_CBC_ENCBLKNO1;
|
|
sc.sc_cdata.cf_keylen = keylen;
|
|
|
|
sc.sc_cdata.cf_priv = sc.sc_cfuncs->cf_init(keylen,
|
|
key, &sc.sc_cdata.cf_blocksize);
|
|
if (sc.sc_cdata.cf_priv == NULL)
|
|
panic("cf_priv is NULL");
|
|
if (sc.sc_cdata.cf_blocksize > CGD_MAXBLOCKSIZE)
|
|
panic("bad block size %zu", sc.sc_cdata.cf_blocksize);
|
|
|
|
if (!encblkno8)
|
|
sc.sc_cdata.cf_blocksize /= 8;
|
|
|
|
buf = kmem_alloc(txtlen, KM_SLEEP);
|
|
memcpy(buf, selftests[i].ptxt, txtlen);
|
|
|
|
cgd_cipher(&sc, buf, buf, txtlen, selftests[i].blkno,
|
|
selftests[i].secsize, CGD_CIPHER_ENCRYPT);
|
|
if (memcmp(buf, selftests[i].ctxt, txtlen) != 0) {
|
|
hexdump(printf, "was", buf, txtlen);
|
|
hexdump(printf, "exp", selftests[i].ctxt, txtlen);
|
|
panic("cgd %s-%d encryption is broken [%zu]",
|
|
selftests[i].alg, keylen, i);
|
|
}
|
|
|
|
cgd_cipher(&sc, buf, buf, txtlen, selftests[i].blkno,
|
|
selftests[i].secsize, CGD_CIPHER_DECRYPT);
|
|
if (memcmp(buf, selftests[i].ptxt, txtlen) != 0) {
|
|
hexdump(printf, "was", buf, txtlen);
|
|
hexdump(printf, "exp", selftests[i].ptxt, txtlen);
|
|
panic("cgd %s-%d decryption is broken [%zu]",
|
|
selftests[i].alg, keylen, i);
|
|
}
|
|
|
|
kmem_free(buf, txtlen);
|
|
sc.sc_cfuncs->cf_destroy(sc.sc_cdata.cf_priv);
|
|
}
|
|
|
|
aprint_verbose("cgd: self-tests passed\n");
|
|
}
|
|
|
|
MODULE(MODULE_CLASS_DRIVER, cgd, "blowfish,des,dk_subr,bufq_fcfs");
|
|
|
|
#ifdef _MODULE
|
|
CFDRIVER_DECL(cgd, DV_DISK, NULL);
|
|
|
|
devmajor_t cgd_bmajor = -1, cgd_cmajor = -1;
|
|
#endif
|
|
|
|
static int
|
|
cgd_modcmd(modcmd_t cmd, void *arg)
|
|
{
|
|
int error = 0;
|
|
|
|
switch (cmd) {
|
|
case MODULE_CMD_INIT:
|
|
#ifdef _MODULE
|
|
mutex_init(&cgd_spawning_mtx, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&cgd_spawning_cv, "cgspwn");
|
|
|
|
error = config_cfdriver_attach(&cgd_cd);
|
|
if (error)
|
|
break;
|
|
|
|
error = config_cfattach_attach(cgd_cd.cd_name, &cgd_ca);
|
|
if (error) {
|
|
config_cfdriver_detach(&cgd_cd);
|
|
aprint_error("%s: unable to register cfattach for"
|
|
"%s, error %d\n", __func__, cgd_cd.cd_name, error);
|
|
break;
|
|
}
|
|
/*
|
|
* Attach the {b,c}devsw's
|
|
*/
|
|
error = devsw_attach("cgd", &cgd_bdevsw, &cgd_bmajor,
|
|
&cgd_cdevsw, &cgd_cmajor);
|
|
|
|
/*
|
|
* If devsw_attach fails, remove from autoconf database
|
|
*/
|
|
if (error) {
|
|
config_cfattach_detach(cgd_cd.cd_name, &cgd_ca);
|
|
config_cfdriver_detach(&cgd_cd);
|
|
aprint_error("%s: unable to attach %s devsw, "
|
|
"error %d", __func__, cgd_cd.cd_name, error);
|
|
break;
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case MODULE_CMD_FINI:
|
|
#ifdef _MODULE
|
|
/*
|
|
* Remove {b,c}devsw's
|
|
*/
|
|
devsw_detach(&cgd_bdevsw, &cgd_cdevsw);
|
|
|
|
/*
|
|
* Now remove device from autoconf database
|
|
*/
|
|
error = config_cfattach_detach(cgd_cd.cd_name, &cgd_ca);
|
|
if (error) {
|
|
(void)devsw_attach("cgd", &cgd_bdevsw, &cgd_bmajor,
|
|
&cgd_cdevsw, &cgd_cmajor);
|
|
aprint_error("%s: failed to detach %s cfattach, "
|
|
"error %d\n", __func__, cgd_cd.cd_name, error);
|
|
break;
|
|
}
|
|
error = config_cfdriver_detach(&cgd_cd);
|
|
if (error) {
|
|
(void)config_cfattach_attach(cgd_cd.cd_name, &cgd_ca);
|
|
(void)devsw_attach("cgd", &cgd_bdevsw, &cgd_bmajor,
|
|
&cgd_cdevsw, &cgd_cmajor);
|
|
aprint_error("%s: failed to detach %s cfdriver, "
|
|
"error %d\n", __func__, cgd_cd.cd_name, error);
|
|
break;
|
|
}
|
|
|
|
cv_destroy(&cgd_spawning_cv);
|
|
mutex_destroy(&cgd_spawning_mtx);
|
|
#endif
|
|
break;
|
|
|
|
case MODULE_CMD_STAT:
|
|
error = ENOTTY;
|
|
break;
|
|
default:
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
|
|
return error;
|
|
}
|