/* $NetBSD: cgd.c,v 1.137 2020/06/29 23:36:06 riastradh Exp $ */ /*- * Copyright (c) 2002 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Roland C. Dowdeswell. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include __KERNEL_RCSID(0, "$NetBSD: cgd.c,v 1.137 2020/06/29 23:36:06 riastradh Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* for pathbuf */ #include #include #include #include #include #include #include #include #include #include /* for v_rdev */ #include "ioconf.h" struct selftest_params { const char *alg; int encblkno8; int blocksize; /* number of bytes */ int secsize; daddr_t blkno; int keylen; /* number of bits */ int txtlen; /* number of bytes */ const uint8_t *key; const uint8_t *ptxt; const uint8_t *ctxt; }; /* Entry Point Functions */ static dev_type_open(cgdopen); static dev_type_close(cgdclose); static dev_type_read(cgdread); static dev_type_write(cgdwrite); static dev_type_ioctl(cgdioctl); static dev_type_strategy(cgdstrategy); static dev_type_dump(cgddump); static dev_type_size(cgdsize); const struct bdevsw cgd_bdevsw = { .d_open = cgdopen, .d_close = cgdclose, .d_strategy = cgdstrategy, .d_ioctl = cgdioctl, .d_dump = cgddump, .d_psize = cgdsize, .d_discard = nodiscard, .d_flag = D_DISK | D_MPSAFE }; const struct cdevsw cgd_cdevsw = { .d_open = cgdopen, .d_close = cgdclose, .d_read = cgdread, .d_write = cgdwrite, .d_ioctl = cgdioctl, .d_stop = nostop, .d_tty = notty, .d_poll = nopoll, .d_mmap = nommap, .d_kqfilter = nokqfilter, .d_discard = nodiscard, .d_flag = D_DISK | D_MPSAFE }; /* * Vector 5 from IEEE 1619/D16 truncated to 64 bytes, blkno 1. */ static const uint8_t selftest_aes_xts_256_ptxt[64] = { 0x27, 0xa7, 0x47, 0x9b, 0xef, 0xa1, 0xd4, 0x76, 0x48, 0x9f, 0x30, 0x8c, 0xd4, 0xcf, 0xa6, 0xe2, 0xa9, 0x6e, 0x4b, 0xbe, 0x32, 0x08, 0xff, 0x25, 0x28, 0x7d, 0xd3, 0x81, 0x96, 0x16, 0xe8, 0x9c, 0xc7, 0x8c, 0xf7, 0xf5, 0xe5, 0x43, 0x44, 0x5f, 0x83, 0x33, 0xd8, 0xfa, 0x7f, 0x56, 0x00, 0x00, 0x05, 0x27, 0x9f, 0xa5, 0xd8, 0xb5, 0xe4, 0xad, 0x40, 0xe7, 0x36, 0xdd, 0xb4, 0xd3, 0x54, 0x12, }; static const uint8_t selftest_aes_xts_256_ctxt[512] = { 0x26, 0x4d, 0x3c, 0xa8, 0x51, 0x21, 0x94, 0xfe, 0xc3, 0x12, 0xc8, 0xc9, 0x89, 0x1f, 0x27, 0x9f, 0xef, 0xdd, 0x60, 0x8d, 0x0c, 0x02, 0x7b, 0x60, 0x48, 0x3a, 0x3f, 0xa8, 0x11, 0xd6, 0x5e, 0xe5, 0x9d, 0x52, 0xd9, 0xe4, 0x0e, 0xc5, 0x67, 0x2d, 0x81, 0x53, 0x2b, 0x38, 0xb6, 0xb0, 0x89, 0xce, 0x95, 0x1f, 0x0f, 0x9c, 0x35, 0x59, 0x0b, 0x8b, 0x97, 0x8d, 0x17, 0x52, 0x13, 0xf3, 0x29, 0xbb, }; static const uint8_t selftest_aes_xts_256_key[33] = { 0x27, 0x18, 0x28, 0x18, 0x28, 0x45, 0x90, 0x45, 0x23, 0x53, 0x60, 0x28, 0x74, 0x71, 0x35, 0x26, 0x31, 0x41, 0x59, 0x26, 0x53, 0x58, 0x97, 0x93, 0x23, 0x84, 0x62, 0x64, 0x33, 0x83, 0x27, 0x95, 0 }; /* * Vector 11 from IEEE 1619/D16 truncated to 64 bytes, blkno 0xffff. */ static const uint8_t selftest_aes_xts_512_ptxt[64] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, }; static const uint8_t selftest_aes_xts_512_ctxt[64] = { 0x77, 0xa3, 0x12, 0x51, 0x61, 0x8a, 0x15, 0xe6, 0xb9, 0x2d, 0x1d, 0x66, 0xdf, 0xfe, 0x7b, 0x50, 0xb5, 0x0b, 0xad, 0x55, 0x23, 0x05, 0xba, 0x02, 0x17, 0xa6, 0x10, 0x68, 0x8e, 0xff, 0x7e, 0x11, 0xe1, 0xd0, 0x22, 0x54, 0x38, 0xe0, 0x93, 0x24, 0x2d, 0x6d, 0xb2, 0x74, 0xfd, 0xe8, 0x01, 0xd4, 0xca, 0xe0, 0x6f, 0x20, 0x92, 0xc7, 0x28, 0xb2, 0x47, 0x85, 0x59, 0xdf, 0x58, 0xe8, 0x37, 0xc2, }; static const uint8_t selftest_aes_xts_512_key[65] = { 0x27, 0x18, 0x28, 0x18, 0x28, 0x45, 0x90, 0x45, 0x23, 0x53, 0x60, 0x28, 0x74, 0x71, 0x35, 0x26, 0x62, 0x49, 0x77, 0x57, 0x24, 0x70, 0x93, 0x69, 0x99, 0x59, 0x57, 0x49, 0x66, 0x96, 0x76, 0x27, 0x31, 0x41, 0x59, 0x26, 0x53, 0x58, 0x97, 0x93, 0x23, 0x84, 0x62, 0x64, 0x33, 0x83, 0x27, 0x95, 0x02, 0x88, 0x41, 0x97, 0x16, 0x93, 0x99, 0x37, 0x51, 0x05, 0x82, 0x09, 0x74, 0x94, 0x45, 0x92, 0 }; static const uint8_t selftest_aes_cbc_key[32] = { 0x27, 0x18, 0x28, 0x18, 0x28, 0x45, 0x90, 0x45, 0x23, 0x53, 0x60, 0x28, 0x74, 0x71, 0x35, 0x26, 0x62, 0x49, 0x77, 0x57, 0x24, 0x70, 0x93, 0x69, 0x99, 0x59, 0x57, 0x49, 0x66, 0x96, 0x76, 0x27, }; static const uint8_t selftest_aes_cbc_128_ptxt[64] = { 0x27, 0xa7, 0x47, 0x9b, 0xef, 0xa1, 0xd4, 0x76, 0x48, 0x9f, 0x30, 0x8c, 0xd4, 0xcf, 0xa6, 0xe2, 0xa9, 0x6e, 0x4b, 0xbe, 0x32, 0x08, 0xff, 0x25, 0x28, 0x7d, 0xd3, 0x81, 0x96, 0x16, 0xe8, 0x9c, 0xc7, 0x8c, 0xf7, 0xf5, 0xe5, 0x43, 0x44, 0x5f, 0x83, 0x33, 0xd8, 0xfa, 0x7f, 0x56, 0x00, 0x00, 0x05, 0x27, 0x9f, 0xa5, 0xd8, 0xb5, 0xe4, 0xad, 0x40, 0xe7, 0x36, 0xdd, 0xb4, 0xd3, 0x54, 0x12, }; static const uint8_t selftest_aes_cbc_128_ctxt[64] = { /* blkno=1 */ 0x93, 0x94, 0x56, 0x36, 0x83, 0xbc, 0xff, 0xa4, 0xe0, 0x24, 0x34, 0x12, 0xbe, 0xfa, 0xb0, 0x7d, 0x88, 0x1e, 0xc5, 0x57, 0x55, 0x23, 0x05, 0x0c, 0x69, 0xa5, 0xc1, 0xda, 0x64, 0xee, 0x74, 0x10, 0xc2, 0xc5, 0xe6, 0x66, 0xd6, 0xa7, 0x49, 0x1c, 0x9d, 0x40, 0xb5, 0x0c, 0x9b, 0x6e, 0x1c, 0xe6, 0xb1, 0x7a, 0x1c, 0xe7, 0x5a, 0xfe, 0xf9, 0x2a, 0x78, 0xfa, 0xb7, 0x7b, 0x08, 0xdf, 0x8e, 0x51, }; static const uint8_t selftest_aes_cbc_256_ptxt[64] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, }; static const uint8_t selftest_aes_cbc_256_ctxt[64] = { /* blkno=0xffff */ 0x6c, 0xa3, 0x15, 0x17, 0x51, 0x90, 0xe9, 0x69, 0x08, 0x36, 0x7b, 0xa6, 0xbb, 0xd1, 0x0b, 0x9e, 0xcd, 0x6b, 0x1e, 0xaf, 0xb6, 0x2e, 0x62, 0x7d, 0x8e, 0xde, 0xf0, 0xed, 0x0d, 0x44, 0xe7, 0x31, 0x26, 0xcf, 0xd5, 0x0b, 0x3e, 0x95, 0x59, 0x89, 0xdf, 0x5d, 0xd6, 0x9a, 0x00, 0x66, 0xcc, 0x7f, 0x45, 0xd3, 0x06, 0x58, 0xed, 0xef, 0x49, 0x47, 0x87, 0x89, 0x17, 0x7d, 0x08, 0x56, 0x50, 0xe1, }; static const uint8_t selftest_3des_cbc_key[24] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, }; static const uint8_t selftest_3des_cbc_ptxt[64] = { 0x27, 0xa7, 0x47, 0x9b, 0xef, 0xa1, 0xd4, 0x76, 0x48, 0x9f, 0x30, 0x8c, 0xd4, 0xcf, 0xa6, 0xe2, 0xa9, 0x6e, 0x4b, 0xbe, 0x32, 0x08, 0xff, 0x25, 0x28, 0x7d, 0xd3, 0x81, 0x96, 0x16, 0xe8, 0x9c, 0xc7, 0x8c, 0xf7, 0xf5, 0xe5, 0x43, 0x44, 0x5f, 0x83, 0x33, 0xd8, 0xfa, 0x7f, 0x56, 0x00, 0x00, 0x05, 0x27, 0x9f, 0xa5, 0xd8, 0xb5, 0xe4, 0xad, 0x40, 0xe7, 0x36, 0xdd, 0xb4, 0xd3, 0x54, 0x12, }; static const uint8_t selftest_3des_cbc_ctxt[64] = { 0xa2, 0xfe, 0x81, 0xaa, 0x10, 0x6c, 0xea, 0xb9, 0x11, 0x58, 0x1f, 0x29, 0xb5, 0x86, 0x71, 0x56, 0xe9, 0x25, 0x1d, 0x07, 0xb1, 0x69, 0x59, 0x6c, 0x96, 0x80, 0xf7, 0x54, 0x38, 0xaa, 0xa7, 0xe4, 0xe8, 0x81, 0xf5, 0x00, 0xbb, 0x1c, 0x00, 0x3c, 0xba, 0x38, 0x45, 0x97, 0x4c, 0xcf, 0x84, 0x14, 0x46, 0x86, 0xd9, 0xf4, 0xc5, 0xe2, 0xf0, 0x54, 0xde, 0x41, 0xf6, 0xa1, 0xef, 0x1b, 0x0a, 0xea, }; static const uint8_t selftest_bf_cbc_key[56] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, }; static const uint8_t selftest_bf_cbc_ptxt[64] = { 0x27, 0xa7, 0x47, 0x9b, 0xef, 0xa1, 0xd4, 0x76, 0x48, 0x9f, 0x30, 0x8c, 0xd4, 0xcf, 0xa6, 0xe2, 0xa9, 0x6e, 0x4b, 0xbe, 0x32, 0x08, 0xff, 0x25, 0x28, 0x7d, 0xd3, 0x81, 0x96, 0x16, 0xe8, 0x9c, 0xc7, 0x8c, 0xf7, 0xf5, 0xe5, 0x43, 0x44, 0x5f, 0x83, 0x33, 0xd8, 0xfa, 0x7f, 0x56, 0x00, 0x00, 0x05, 0x27, 0x9f, 0xa5, 0xd8, 0xb5, 0xe4, 0xad, 0x40, 0xe7, 0x36, 0xdd, 0xb4, 0xd3, 0x54, 0x12, }; static const uint8_t selftest_bf_cbc_ctxt[64] = { 0xec, 0xa2, 0xc0, 0x0e, 0xa9, 0x7f, 0x04, 0x1e, 0x2e, 0x4f, 0x64, 0x07, 0x67, 0x3e, 0xf4, 0x58, 0x61, 0x5f, 0xd3, 0x50, 0x5e, 0xd3, 0x4d, 0x34, 0xa0, 0x53, 0xbe, 0x47, 0x75, 0x69, 0x3b, 0x1f, 0x86, 0xf2, 0xae, 0x8b, 0xb7, 0x91, 0xda, 0xd4, 0x2b, 0xa5, 0x47, 0x9b, 0x7d, 0x13, 0x30, 0xdd, 0x7b, 0xad, 0x86, 0x57, 0x51, 0x11, 0x74, 0x42, 0xb8, 0xbf, 0x69, 0x17, 0x20, 0x0a, 0xf7, 0xda, }; static const uint8_t selftest_aes_cbc_encblkno8_zero64[64]; static const uint8_t selftest_aes_cbc_encblkno8_ctxt[64] = { 0xa2, 0x06, 0x26, 0x26, 0xac, 0xdc, 0xe7, 0xcf, 0x47, 0x68, 0x24, 0x0e, 0xfa, 0x40, 0x44, 0x83, 0x07, 0xe1, 0xf4, 0x5d, 0x53, 0x47, 0xa0, 0xfe, 0xc0, 0x6e, 0x4e, 0xf8, 0x9d, 0x98, 0x63, 0xb8, 0x2c, 0x27, 0xfa, 0x3a, 0xd5, 0x40, 0xda, 0xdb, 0xe6, 0xc3, 0xe4, 0xfb, 0x85, 0x53, 0xfb, 0x78, 0x5d, 0xbd, 0x8f, 0x4c, 0x1a, 0x04, 0x9c, 0x88, 0x85, 0xec, 0x3c, 0x56, 0x46, 0x1a, 0x6e, 0xf5, }; const struct selftest_params selftests[] = { { .alg = "aes-xts", .blocksize = 16, .secsize = 512, .blkno = 1, .keylen = 256, .txtlen = sizeof(selftest_aes_xts_256_ptxt), .key = selftest_aes_xts_256_key, .ptxt = selftest_aes_xts_256_ptxt, .ctxt = selftest_aes_xts_256_ctxt }, { .alg = "aes-xts", .blocksize = 16, .secsize = 512, .blkno = 0xffff, .keylen = 512, .txtlen = sizeof(selftest_aes_xts_512_ptxt), .key = selftest_aes_xts_512_key, .ptxt = selftest_aes_xts_512_ptxt, .ctxt = selftest_aes_xts_512_ctxt }, { .alg = "aes-cbc", .blocksize = 16, .secsize = 512, .blkno = 1, .keylen = 128, .txtlen = sizeof(selftest_aes_cbc_128_ptxt), .key = selftest_aes_cbc_key, .ptxt = selftest_aes_cbc_128_ptxt, .ctxt = selftest_aes_cbc_128_ctxt, }, { .alg = "aes-cbc", .blocksize = 16, .secsize = 512, .blkno = 0xffff, .keylen = 256, .txtlen = sizeof(selftest_aes_cbc_256_ptxt), .key = selftest_aes_cbc_key, .ptxt = selftest_aes_cbc_256_ptxt, .ctxt = selftest_aes_cbc_256_ctxt, }, { .alg = "3des-cbc", .blocksize = 8, .secsize = 512, .blkno = 1, .keylen = 192, /* 168 + 3*8 parity bits */ .txtlen = sizeof(selftest_3des_cbc_ptxt), .key = selftest_3des_cbc_key, .ptxt = selftest_3des_cbc_ptxt, .ctxt = selftest_3des_cbc_ctxt, }, { .alg = "blowfish-cbc", .blocksize = 8, .secsize = 512, .blkno = 1, .keylen = 448, .txtlen = sizeof(selftest_bf_cbc_ptxt), .key = selftest_bf_cbc_key, .ptxt = selftest_bf_cbc_ptxt, .ctxt = selftest_bf_cbc_ctxt, }, { .alg = "aes-cbc", .encblkno8 = 1, .blocksize = 16, .secsize = 512, .blkno = 0, .keylen = 128, .txtlen = sizeof(selftest_aes_cbc_encblkno8_zero64), .key = selftest_aes_cbc_encblkno8_zero64, .ptxt = selftest_aes_cbc_encblkno8_zero64, .ctxt = selftest_aes_cbc_encblkno8_ctxt, }, }; static int cgd_match(device_t, cfdata_t, void *); static void cgd_attach(device_t, device_t, void *); static int cgd_detach(device_t, int); static struct cgd_softc *cgd_spawn(int); static struct cgd_worker *cgd_create_one_worker(void); static void cgd_destroy_one_worker(struct cgd_worker *); static struct cgd_worker *cgd_create_worker(void); static void cgd_destroy_worker(struct cgd_worker *); static int cgd_destroy(device_t); /* Internal Functions */ static int cgd_diskstart(device_t, struct buf *); static void cgd_diskstart2(struct cgd_softc *, struct cgd_xfer *); static void cgdiodone(struct buf *); static void cgd_iodone2(struct cgd_softc *, struct cgd_xfer *); static void cgd_enqueue(struct cgd_softc *, struct cgd_xfer *); static void cgd_process(struct work *, void *); static int cgd_dumpblocks(device_t, void *, daddr_t, int); static int cgd_ioctl_set(struct cgd_softc *, void *, struct lwp *); static int cgd_ioctl_clr(struct cgd_softc *, struct lwp *); static int cgd_ioctl_get(dev_t, void *, struct lwp *); static int cgdinit(struct cgd_softc *, const char *, struct vnode *, struct lwp *); static void cgd_cipher(struct cgd_softc *, void *, const void *, size_t, daddr_t, size_t, int); static void cgd_selftest(void); static const struct dkdriver cgddkdriver = { .d_minphys = minphys, .d_open = cgdopen, .d_close = cgdclose, .d_strategy = cgdstrategy, .d_iosize = NULL, .d_diskstart = cgd_diskstart, .d_dumpblocks = cgd_dumpblocks, .d_lastclose = NULL }; CFATTACH_DECL3_NEW(cgd, sizeof(struct cgd_softc), cgd_match, cgd_attach, cgd_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN); /* DIAGNOSTIC and DEBUG definitions */ #if defined(CGDDEBUG) && !defined(DEBUG) #define DEBUG #endif #ifdef DEBUG int cgddebug = 0; #define CGDB_FOLLOW 0x1 #define CGDB_IO 0x2 #define CGDB_CRYPTO 0x4 #define IFDEBUG(x,y) if (cgddebug & (x)) y #define DPRINTF(x,y) IFDEBUG(x, printf y) #define DPRINTF_FOLLOW(y) DPRINTF(CGDB_FOLLOW, y) static void hexprint(const char *, void *, int); #else #define IFDEBUG(x,y) #define DPRINTF(x,y) #define DPRINTF_FOLLOW(y) #endif /* Global variables */ static kmutex_t cgd_spawning_mtx; static kcondvar_t cgd_spawning_cv; static bool cgd_spawning; static struct cgd_worker *cgd_worker; static u_int cgd_refcnt; /* number of users of cgd_worker */ /* Utility Functions */ #define CGDUNIT(x) DISKUNIT(x) /* The code */ static int cgd_lock(bool intr) { int error = 0; mutex_enter(&cgd_spawning_mtx); while (cgd_spawning) { if (intr) error = cv_wait_sig(&cgd_spawning_cv, &cgd_spawning_mtx); else cv_wait(&cgd_spawning_cv, &cgd_spawning_mtx); } if (error == 0) cgd_spawning = true; mutex_exit(&cgd_spawning_mtx); return error; } static void cgd_unlock(void) { mutex_enter(&cgd_spawning_mtx); cgd_spawning = false; cv_broadcast(&cgd_spawning_cv); mutex_exit(&cgd_spawning_mtx); } static struct cgd_softc * getcgd_softc(dev_t dev) { return device_lookup_private(&cgd_cd, CGDUNIT(dev)); } static int cgd_match(device_t self, cfdata_t cfdata, void *aux) { return 1; } static void cgd_attach(device_t parent, device_t self, void *aux) { struct cgd_softc *sc = device_private(self); mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_BIO); cv_init(&sc->sc_cv, "cgdcv"); dk_init(&sc->sc_dksc, self, DKTYPE_CGD); disk_init(&sc->sc_dksc.sc_dkdev, sc->sc_dksc.sc_xname, &cgddkdriver); if (!pmf_device_register(self, NULL, NULL)) aprint_error_dev(self, "unable to register power management hooks\n"); } static int cgd_detach(device_t self, int flags) { int ret; const int pmask = 1 << RAW_PART; struct cgd_softc *sc = device_private(self); struct dk_softc *dksc = &sc->sc_dksc; if (DK_BUSY(dksc, pmask)) return EBUSY; if (DK_ATTACHED(dksc) && (ret = cgd_ioctl_clr(sc, curlwp)) != 0) return ret; disk_destroy(&dksc->sc_dkdev); cv_destroy(&sc->sc_cv); mutex_destroy(&sc->sc_lock); return 0; } void cgdattach(int num) { #ifndef _MODULE int error; mutex_init(&cgd_spawning_mtx, MUTEX_DEFAULT, IPL_NONE); cv_init(&cgd_spawning_cv, "cgspwn"); error = config_cfattach_attach(cgd_cd.cd_name, &cgd_ca); if (error != 0) aprint_error("%s: unable to register cfattach\n", cgd_cd.cd_name); #endif cgd_selftest(); } static struct cgd_softc * cgd_spawn(int unit) { cfdata_t cf; struct cgd_worker *cw; struct cgd_softc *sc; cf = kmem_alloc(sizeof(*cf), KM_SLEEP); cf->cf_name = cgd_cd.cd_name; cf->cf_atname = cgd_cd.cd_name; cf->cf_unit = unit; cf->cf_fstate = FSTATE_STAR; cw = cgd_create_one_worker(); if (cw == NULL) { kmem_free(cf, sizeof(*cf)); return NULL; } sc = device_private(config_attach_pseudo(cf)); if (sc == NULL) { cgd_destroy_one_worker(cw); return NULL; } sc->sc_worker = cw; return sc; } static int cgd_destroy(device_t dev) { struct cgd_softc *sc = device_private(dev); struct cgd_worker *cw = sc->sc_worker; cfdata_t cf; int error; cf = device_cfdata(dev); error = config_detach(dev, DETACH_QUIET); if (error) return error; cgd_destroy_one_worker(cw); kmem_free(cf, sizeof(*cf)); return 0; } static void cgd_busy(struct cgd_softc *sc) { mutex_enter(&sc->sc_lock); while (sc->sc_busy) cv_wait(&sc->sc_cv, &sc->sc_lock); sc->sc_busy = true; mutex_exit(&sc->sc_lock); } static void cgd_unbusy(struct cgd_softc *sc) { mutex_enter(&sc->sc_lock); sc->sc_busy = false; cv_broadcast(&sc->sc_cv); mutex_exit(&sc->sc_lock); } static struct cgd_worker * cgd_create_one_worker(void) { KASSERT(cgd_spawning); if (cgd_refcnt++ == 0) { KASSERT(cgd_worker == NULL); cgd_worker = cgd_create_worker(); } KASSERT(cgd_worker != NULL); return cgd_worker; } static void cgd_destroy_one_worker(struct cgd_worker *cw) { KASSERT(cgd_spawning); KASSERT(cw == cgd_worker); if (--cgd_refcnt == 0) { cgd_destroy_worker(cgd_worker); cgd_worker = NULL; } } static struct cgd_worker * cgd_create_worker(void) { struct cgd_worker *cw; struct workqueue *wq; struct pool *cp; int error; cw = kmem_alloc(sizeof(struct cgd_worker), KM_SLEEP); cp = kmem_alloc(sizeof(struct pool), KM_SLEEP); error = workqueue_create(&wq, "cgd", cgd_process, NULL, PRI_BIO, IPL_BIO, WQ_MPSAFE | WQ_PERCPU); if (error) { kmem_free(cp, sizeof(struct pool)); kmem_free(cw, sizeof(struct cgd_worker)); return NULL; } cw->cw_cpool = cp; cw->cw_wq = wq; pool_init(cw->cw_cpool, sizeof(struct cgd_xfer), 0, 0, 0, "cgdcpl", NULL, IPL_BIO); mutex_init(&cw->cw_lock, MUTEX_DEFAULT, IPL_BIO); return cw; } static void cgd_destroy_worker(struct cgd_worker *cw) { mutex_destroy(&cw->cw_lock); if (cw->cw_cpool) { pool_destroy(cw->cw_cpool); kmem_free(cw->cw_cpool, sizeof(struct pool)); } if (cw->cw_wq) workqueue_destroy(cw->cw_wq); kmem_free(cw, sizeof(struct cgd_worker)); } static int cgdopen(dev_t dev, int flags, int fmt, struct lwp *l) { struct cgd_softc *sc; int error; DPRINTF_FOLLOW(("cgdopen(0x%"PRIx64", %d)\n", dev, flags)); error = cgd_lock(true); if (error) return error; sc = getcgd_softc(dev); if (sc == NULL) sc = cgd_spawn(CGDUNIT(dev)); cgd_unlock(); if (sc == NULL) return ENXIO; return dk_open(&sc->sc_dksc, dev, flags, fmt, l); } static int cgdclose(dev_t dev, int flags, int fmt, struct lwp *l) { struct cgd_softc *sc; struct dk_softc *dksc; int error; DPRINTF_FOLLOW(("cgdclose(0x%"PRIx64", %d)\n", dev, flags)); error = cgd_lock(false); if (error) return error; sc = getcgd_softc(dev); if (sc == NULL) { error = ENXIO; goto done; } dksc = &sc->sc_dksc; if ((error = dk_close(dksc, dev, flags, fmt, l)) != 0) goto done; if (!DK_ATTACHED(dksc)) { if ((error = cgd_destroy(sc->sc_dksc.sc_dev)) != 0) { device_printf(dksc->sc_dev, "unable to detach instance\n"); goto done; } } done: cgd_unlock(); return error; } static void cgdstrategy(struct buf *bp) { struct cgd_softc *sc = getcgd_softc(bp->b_dev); DPRINTF_FOLLOW(("cgdstrategy(%p): b_bcount = %ld\n", bp, (long)bp->b_bcount)); /* * Reject unaligned writes. */ if (((uintptr_t)bp->b_data & 3) != 0) { bp->b_error = EINVAL; goto bail; } dk_strategy(&sc->sc_dksc, bp); return; bail: bp->b_resid = bp->b_bcount; biodone(bp); return; } static int cgdsize(dev_t dev) { struct cgd_softc *sc = getcgd_softc(dev); DPRINTF_FOLLOW(("cgdsize(0x%"PRIx64")\n", dev)); if (!sc) return -1; return dk_size(&sc->sc_dksc, dev); } /* * cgd_{get,put}data are functions that deal with getting a buffer * for the new encrypted data. * We can no longer have a buffer per device, we need a buffer per * work queue... */ static void * cgd_getdata(struct cgd_softc *sc, unsigned long size) { void *data = NULL; mutex_enter(&sc->sc_lock); if (!sc->sc_data_used) { sc->sc_data_used = true; data = sc->sc_data; } mutex_exit(&sc->sc_lock); if (data) return data; return kmem_intr_alloc(size, KM_NOSLEEP); } static void cgd_putdata(struct cgd_softc *sc, void *data, unsigned long size) { if (data == sc->sc_data) { mutex_enter(&sc->sc_lock); sc->sc_data_used = false; mutex_exit(&sc->sc_lock); } else kmem_intr_free(data, size); } static int cgd_diskstart(device_t dev, struct buf *bp) { struct cgd_softc *sc = device_private(dev); struct cgd_worker *cw = sc->sc_worker; struct dk_softc *dksc = &sc->sc_dksc; struct disk_geom *dg = &dksc->sc_dkdev.dk_geom; struct cgd_xfer *cx; struct buf *nbp; void * newaddr; daddr_t bn; DPRINTF_FOLLOW(("cgd_diskstart(%p, %p)\n", dksc, bp)); bn = bp->b_rawblkno; /* * We attempt to allocate all of our resources up front, so that * we can fail quickly if they are unavailable. */ nbp = getiobuf(sc->sc_tvn, false); if (nbp == NULL) return EAGAIN; cx = pool_get(cw->cw_cpool, PR_NOWAIT); if (cx == NULL) { putiobuf(nbp); return EAGAIN; } cx->cx_sc = sc; cx->cx_obp = bp; cx->cx_nbp = nbp; cx->cx_srcv = cx->cx_dstv = bp->b_data; cx->cx_blkno = bn; cx->cx_secsize = dg->dg_secsize; /* * If we are writing, then we need to encrypt the outgoing * block into a new block of memory. */ if ((bp->b_flags & B_READ) == 0) { newaddr = cgd_getdata(sc, bp->b_bcount); if (!newaddr) { pool_put(cw->cw_cpool, cx); putiobuf(nbp); return EAGAIN; } cx->cx_dstv = newaddr; cx->cx_len = bp->b_bcount; cx->cx_dir = CGD_CIPHER_ENCRYPT; cgd_enqueue(sc, cx); return 0; } cgd_diskstart2(sc, cx); return 0; } static void cgd_diskstart2(struct cgd_softc *sc, struct cgd_xfer *cx) { struct vnode *vp; struct buf *bp; struct buf *nbp; bp = cx->cx_obp; nbp = cx->cx_nbp; nbp->b_data = cx->cx_dstv; nbp->b_flags = bp->b_flags; nbp->b_oflags = bp->b_oflags; nbp->b_cflags = bp->b_cflags; nbp->b_iodone = cgdiodone; nbp->b_proc = bp->b_proc; nbp->b_blkno = btodb(cx->cx_blkno * cx->cx_secsize); nbp->b_bcount = bp->b_bcount; nbp->b_private = cx; BIO_COPYPRIO(nbp, bp); if ((nbp->b_flags & B_READ) == 0) { vp = nbp->b_vp; mutex_enter(vp->v_interlock); vp->v_numoutput++; mutex_exit(vp->v_interlock); } VOP_STRATEGY(sc->sc_tvn, nbp); } static void cgdiodone(struct buf *nbp) { struct cgd_xfer *cx = nbp->b_private; struct buf *obp = cx->cx_obp; struct cgd_softc *sc = getcgd_softc(obp->b_dev); struct dk_softc *dksc = &sc->sc_dksc; struct disk_geom *dg = &dksc->sc_dkdev.dk_geom; daddr_t bn; KDASSERT(sc); DPRINTF_FOLLOW(("cgdiodone(%p)\n", nbp)); DPRINTF(CGDB_IO, ("cgdiodone: bp %p bcount %d resid %d\n", obp, obp->b_bcount, obp->b_resid)); DPRINTF(CGDB_IO, (" dev 0x%"PRIx64", nbp %p bn %" PRId64 " addr %p bcnt %d\n", nbp->b_dev, nbp, nbp->b_blkno, nbp->b_data, nbp->b_bcount)); if (nbp->b_error != 0) { obp->b_error = nbp->b_error; DPRINTF(CGDB_IO, ("%s: error %d\n", dksc->sc_xname, obp->b_error)); } /* Perform the decryption if we are reading. * * Note: use the blocknumber from nbp, since it is what * we used to encrypt the blocks. */ if (nbp->b_flags & B_READ) { bn = dbtob(nbp->b_blkno) / dg->dg_secsize; cx->cx_obp = obp; cx->cx_nbp = nbp; cx->cx_dstv = obp->b_data; cx->cx_srcv = obp->b_data; cx->cx_len = obp->b_bcount; cx->cx_blkno = bn; cx->cx_secsize = dg->dg_secsize; cx->cx_dir = CGD_CIPHER_DECRYPT; cgd_enqueue(sc, cx); return; } cgd_iodone2(sc, cx); } static void cgd_iodone2(struct cgd_softc *sc, struct cgd_xfer *cx) { struct cgd_worker *cw = sc->sc_worker; struct buf *obp = cx->cx_obp; struct buf *nbp = cx->cx_nbp; struct dk_softc *dksc = &sc->sc_dksc; pool_put(cw->cw_cpool, cx); /* If we allocated memory, free it now... */ if (nbp->b_data != obp->b_data) cgd_putdata(sc, nbp->b_data, nbp->b_bcount); putiobuf(nbp); /* Request is complete for whatever reason */ obp->b_resid = 0; if (obp->b_error != 0) obp->b_resid = obp->b_bcount; dk_done(dksc, obp); dk_start(dksc, NULL); } static int cgd_dumpblocks(device_t dev, void *va, daddr_t blkno, int nblk) { struct cgd_softc *sc = device_private(dev); struct dk_softc *dksc = &sc->sc_dksc; struct disk_geom *dg = &dksc->sc_dkdev.dk_geom; size_t nbytes, blksize; void *buf; int error; /* * dk_dump gives us units of disklabel sectors. Everything * else in cgd uses units of diskgeom sectors. These had * better agree; otherwise we need to figure out how to convert * between them. */ KASSERTMSG((dg->dg_secsize == dksc->sc_dkdev.dk_label->d_secsize), "diskgeom secsize %"PRIu32" != disklabel secsize %"PRIu32, dg->dg_secsize, dksc->sc_dkdev.dk_label->d_secsize); blksize = dg->dg_secsize; /* * Compute the number of bytes in this request, which dk_dump * has `helpfully' converted to a number of blocks for us. */ nbytes = nblk*blksize; /* Try to acquire a buffer to store the ciphertext. */ buf = cgd_getdata(sc, nbytes); if (buf == NULL) /* Out of memory: give up. */ return ENOMEM; /* Encrypt the caller's data into the temporary buffer. */ cgd_cipher(sc, buf, va, nbytes, blkno, blksize, CGD_CIPHER_ENCRYPT); /* Pass it on to the underlying disk device. */ error = bdev_dump(sc->sc_tdev, blkno, buf, nbytes); /* Release the buffer. */ cgd_putdata(sc, buf, nbytes); /* Return any error from the underlying disk device. */ return error; } /* XXX: we should probably put these into dksubr.c, mostly */ static int cgdread(dev_t dev, struct uio *uio, int flags) { struct cgd_softc *sc; struct dk_softc *dksc; DPRINTF_FOLLOW(("cgdread(0x%llx, %p, %d)\n", (unsigned long long)dev, uio, flags)); sc = getcgd_softc(dev); if (sc == NULL) return ENXIO; dksc = &sc->sc_dksc; if (!DK_ATTACHED(dksc)) return ENXIO; return physio(cgdstrategy, NULL, dev, B_READ, minphys, uio); } /* XXX: we should probably put these into dksubr.c, mostly */ static int cgdwrite(dev_t dev, struct uio *uio, int flags) { struct cgd_softc *sc; struct dk_softc *dksc; DPRINTF_FOLLOW(("cgdwrite(0x%"PRIx64", %p, %d)\n", dev, uio, flags)); sc = getcgd_softc(dev); if (sc == NULL) return ENXIO; dksc = &sc->sc_dksc; if (!DK_ATTACHED(dksc)) return ENXIO; return physio(cgdstrategy, NULL, dev, B_WRITE, minphys, uio); } static int cgdioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l) { struct cgd_softc *sc; struct dk_softc *dksc; int part = DISKPART(dev); int pmask = 1 << part; int error; DPRINTF_FOLLOW(("cgdioctl(0x%"PRIx64", %ld, %p, %d, %p)\n", dev, cmd, data, flag, l)); switch (cmd) { case CGDIOCGET: return cgd_ioctl_get(dev, data, l); case CGDIOCSET: case CGDIOCCLR: if ((flag & FWRITE) == 0) return EBADF; /* FALLTHROUGH */ default: sc = getcgd_softc(dev); if (sc == NULL) return ENXIO; dksc = &sc->sc_dksc; break; } switch (cmd) { case CGDIOCSET: cgd_busy(sc); if (DK_ATTACHED(dksc)) error = EBUSY; else error = cgd_ioctl_set(sc, data, l); cgd_unbusy(sc); break; case CGDIOCCLR: cgd_busy(sc); if (DK_BUSY(&sc->sc_dksc, pmask)) error = EBUSY; else error = cgd_ioctl_clr(sc, l); cgd_unbusy(sc); break; case DIOCGCACHE: case DIOCCACHESYNC: cgd_busy(sc); if (!DK_ATTACHED(dksc)) { cgd_unbusy(sc); error = ENOENT; break; } /* * We pass this call down to the underlying disk. */ error = VOP_IOCTL(sc->sc_tvn, cmd, data, flag, l->l_cred); cgd_unbusy(sc); break; case DIOCGSECTORALIGN: { struct disk_sectoralign *dsa = data; cgd_busy(sc); if (!DK_ATTACHED(dksc)) { cgd_unbusy(sc); error = ENOENT; break; } /* Get the underlying disk's sector alignment. */ error = VOP_IOCTL(sc->sc_tvn, cmd, data, flag, l->l_cred); if (error) { cgd_unbusy(sc); break; } /* Adjust for the disklabel partition if necessary. */ if (part != RAW_PART) { struct disklabel *lp = dksc->sc_dkdev.dk_label; daddr_t offset = lp->d_partitions[part].p_offset; uint32_t r = offset % dsa->dsa_alignment; if (r < dsa->dsa_firstaligned) dsa->dsa_firstaligned = dsa->dsa_firstaligned - r; else dsa->dsa_firstaligned = (dsa->dsa_firstaligned + dsa->dsa_alignment) - r; } cgd_unbusy(sc); break; } case DIOCGSTRATEGY: case DIOCSSTRATEGY: if (!DK_ATTACHED(dksc)) { error = ENOENT; break; } /*FALLTHROUGH*/ default: error = dk_ioctl(dksc, dev, cmd, data, flag, l); break; case CGDIOCGET: KASSERT(0); error = EINVAL; } return error; } static int cgddump(dev_t dev, daddr_t blkno, void *va, size_t size) { struct cgd_softc *sc; DPRINTF_FOLLOW(("cgddump(0x%"PRIx64", %" PRId64 ", %p, %lu)\n", dev, blkno, va, (unsigned long)size)); sc = getcgd_softc(dev); if (sc == NULL) return ENXIO; return dk_dump(&sc->sc_dksc, dev, blkno, va, size, DK_DUMP_RECURSIVE); } /* * XXXrcd: * for now we hardcode the maximum key length. */ #define MAX_KEYSIZE 1024 static const struct { const char *n; int v; int d; } encblkno[] = { { "encblkno", CGD_CIPHER_CBC_ENCBLKNO8, 1 }, { "encblkno8", CGD_CIPHER_CBC_ENCBLKNO8, 1 }, { "encblkno1", CGD_CIPHER_CBC_ENCBLKNO1, 8 }, }; /* ARGSUSED */ static int cgd_ioctl_set(struct cgd_softc *sc, void *data, struct lwp *l) { struct cgd_ioctl *ci = data; struct vnode *vp; int ret; size_t i; size_t keybytes; /* key length in bytes */ const char *cp; struct pathbuf *pb; char *inbuf; struct dk_softc *dksc = &sc->sc_dksc; cp = ci->ci_disk; ret = pathbuf_copyin(ci->ci_disk, &pb); if (ret != 0) { return ret; } ret = vn_bdev_openpath(pb, &vp, l); pathbuf_destroy(pb); if (ret != 0) { return ret; } inbuf = kmem_alloc(MAX_KEYSIZE, KM_SLEEP); if ((ret = cgdinit(sc, cp, vp, l)) != 0) goto bail; (void)memset(inbuf, 0, MAX_KEYSIZE); ret = copyinstr(ci->ci_alg, inbuf, 256, NULL); if (ret) goto bail; sc->sc_cfuncs = cryptfuncs_find(inbuf); if (!sc->sc_cfuncs) { ret = EINVAL; goto bail; } (void)memset(inbuf, 0, MAX_KEYSIZE); ret = copyinstr(ci->ci_ivmethod, inbuf, MAX_KEYSIZE, NULL); if (ret) goto bail; for (i = 0; i < __arraycount(encblkno); i++) if (strcmp(encblkno[i].n, inbuf) == 0) break; if (i == __arraycount(encblkno)) { ret = EINVAL; goto bail; } keybytes = ci->ci_keylen / 8 + 1; if (keybytes > MAX_KEYSIZE) { ret = EINVAL; goto bail; } (void)memset(inbuf, 0, MAX_KEYSIZE); ret = copyin(ci->ci_key, inbuf, keybytes); if (ret) goto bail; sc->sc_cdata.cf_blocksize = ci->ci_blocksize; sc->sc_cdata.cf_mode = encblkno[i].v; /* * Print a warning if the user selected the legacy encblkno8 * mistake, and reject it altogether for ciphers that it * doesn't apply to. */ if (encblkno[i].v != CGD_CIPHER_CBC_ENCBLKNO1) { if (strcmp(sc->sc_cfuncs->cf_name, "aes-cbc") && strcmp(sc->sc_cfuncs->cf_name, "3des-cbc") && strcmp(sc->sc_cfuncs->cf_name, "blowfish-cbc")) { log(LOG_WARNING, "cgd: %s only makes sense for cbc," " not for %s; ignoring\n", encblkno[i].n, sc->sc_cfuncs->cf_name); sc->sc_cdata.cf_mode = CGD_CIPHER_CBC_ENCBLKNO1; } else { log(LOG_WARNING, "cgd: enabling legacy encblkno8\n"); } } sc->sc_cdata.cf_keylen = ci->ci_keylen; sc->sc_cdata.cf_priv = sc->sc_cfuncs->cf_init(ci->ci_keylen, inbuf, &sc->sc_cdata.cf_blocksize); if (sc->sc_cdata.cf_blocksize > CGD_MAXBLOCKSIZE) { log(LOG_WARNING, "cgd: Disallowed cipher with blocksize %zu > %u\n", sc->sc_cdata.cf_blocksize, CGD_MAXBLOCKSIZE); sc->sc_cdata.cf_priv = NULL; } /* * The blocksize is supposed to be in bytes. Unfortunately originally * it was expressed in bits. For compatibility we maintain encblkno * and encblkno8. */ sc->sc_cdata.cf_blocksize /= encblkno[i].d; (void)explicit_memset(inbuf, 0, MAX_KEYSIZE); if (!sc->sc_cdata.cf_priv) { ret = EINVAL; /* XXX is this the right error? */ goto bail; } kmem_free(inbuf, MAX_KEYSIZE); bufq_alloc(&dksc->sc_bufq, "fcfs", 0); sc->sc_data = kmem_alloc(MAXPHYS, KM_SLEEP); sc->sc_data_used = false; /* Attach the disk. */ dk_attach(dksc); disk_attach(&dksc->sc_dkdev); disk_set_info(dksc->sc_dev, &dksc->sc_dkdev, NULL); /* Discover wedges on this disk. */ dkwedge_discover(&dksc->sc_dkdev); return 0; bail: kmem_free(inbuf, MAX_KEYSIZE); (void)vn_close(vp, FREAD|FWRITE, l->l_cred); return ret; } /* ARGSUSED */ static int cgd_ioctl_clr(struct cgd_softc *sc, struct lwp *l) { struct dk_softc *dksc = &sc->sc_dksc; if (!DK_ATTACHED(dksc)) return ENXIO; /* Delete all of our wedges. */ dkwedge_delall(&dksc->sc_dkdev); /* Kill off any queued buffers. */ dk_drain(dksc); bufq_free(dksc->sc_bufq); (void)vn_close(sc->sc_tvn, FREAD|FWRITE, l->l_cred); sc->sc_cfuncs->cf_destroy(sc->sc_cdata.cf_priv); kmem_free(sc->sc_tpath, sc->sc_tpathlen); kmem_free(sc->sc_data, MAXPHYS); sc->sc_data_used = false; dk_detach(dksc); disk_detach(&dksc->sc_dkdev); return 0; } static int cgd_ioctl_get(dev_t dev, void *data, struct lwp *l) { struct cgd_softc *sc; struct cgd_user *cgu; int unit, error; unit = CGDUNIT(dev); cgu = (struct cgd_user *)data; DPRINTF_FOLLOW(("cgd_ioctl_get(0x%"PRIx64", %d, %p, %p)\n", dev, unit, data, l)); /* XXX, we always return this units data, so if cgu_unit is * not -1, that field doesn't match the rest */ if (cgu->cgu_unit == -1) cgu->cgu_unit = unit; if (cgu->cgu_unit < 0) return EINVAL; /* XXX: should this be ENXIO? */ error = cgd_lock(false); if (error) return error; sc = device_lookup_private(&cgd_cd, unit); if (sc == NULL || !DK_ATTACHED(&sc->sc_dksc)) { cgu->cgu_dev = 0; cgu->cgu_alg[0] = '\0'; cgu->cgu_blocksize = 0; cgu->cgu_mode = 0; cgu->cgu_keylen = 0; } else { mutex_enter(&sc->sc_lock); cgu->cgu_dev = sc->sc_tdev; strncpy(cgu->cgu_alg, sc->sc_cfuncs->cf_name, sizeof(cgu->cgu_alg)); cgu->cgu_blocksize = sc->sc_cdata.cf_blocksize; cgu->cgu_mode = sc->sc_cdata.cf_mode; cgu->cgu_keylen = sc->sc_cdata.cf_keylen; mutex_exit(&sc->sc_lock); } cgd_unlock(); return 0; } static int cgdinit(struct cgd_softc *sc, const char *cpath, struct vnode *vp, struct lwp *l) { struct disk_geom *dg; int ret; char *tmppath; uint64_t psize; unsigned secsize; struct dk_softc *dksc = &sc->sc_dksc; sc->sc_tvn = vp; sc->sc_tpath = NULL; tmppath = kmem_alloc(MAXPATHLEN, KM_SLEEP); ret = copyinstr(cpath, tmppath, MAXPATHLEN, &sc->sc_tpathlen); if (ret) goto bail; sc->sc_tpath = kmem_alloc(sc->sc_tpathlen, KM_SLEEP); memcpy(sc->sc_tpath, tmppath, sc->sc_tpathlen); sc->sc_tdev = vp->v_rdev; if ((ret = getdisksize(vp, &psize, &secsize)) != 0) goto bail; if (psize == 0) { ret = ENODEV; goto bail; } /* * XXX here we should probe the underlying device. If we * are accessing a partition of type RAW_PART, then * we should populate our initial geometry with the * geometry that we discover from the device. */ dg = &dksc->sc_dkdev.dk_geom; memset(dg, 0, sizeof(*dg)); dg->dg_secperunit = psize; dg->dg_secsize = secsize; dg->dg_ntracks = 1; dg->dg_nsectors = 1024 * 1024 / dg->dg_secsize; dg->dg_ncylinders = dg->dg_secperunit / dg->dg_nsectors; bail: kmem_free(tmppath, MAXPATHLEN); if (ret && sc->sc_tpath) kmem_free(sc->sc_tpath, sc->sc_tpathlen); return ret; } /* * Our generic cipher entry point. This takes care of the * IV mode and passes off the work to the specific cipher. * We implement here the IV method ``encrypted block * number''. * * XXXrcd: for now we rely on our own crypto framework defined * in dev/cgd_crypto.c. This will change when we * get a generic kernel crypto framework. */ static void blkno2blkno_buf(char *sbuf, daddr_t blkno) { int i; /* Set up the blkno in blkno_buf, here we do not care much * about the final layout of the information as long as we * can guarantee that each sector will have a different IV * and that the endianness of the machine will not affect * the representation that we have chosen. * * We choose this representation, because it does not rely * on the size of buf (which is the blocksize of the cipher), * but allows daddr_t to grow without breaking existing * disks. * * Note that blkno2blkno_buf does not take a size as input, * and hence must be called on a pre-zeroed buffer of length * greater than or equal to sizeof(daddr_t). */ for (i=0; i < sizeof(daddr_t); i++) { *sbuf++ = blkno & 0xff; blkno >>= 8; } } static struct cpu_info * cgd_cpu(struct cgd_softc *sc) { struct cgd_worker *cw = sc->sc_worker; struct cpu_info *ci = NULL; u_int cidx, i; if (cw->cw_busy == 0) { cw->cw_last = cpu_index(curcpu()); return NULL; } for (i=0, cidx = cw->cw_last+1; i= maxcpus) cidx = 0; ci = cpu_lookup(cidx); if (ci) { cw->cw_last = cidx; break; } } return ci; } static void cgd_enqueue(struct cgd_softc *sc, struct cgd_xfer *cx) { struct cgd_worker *cw = sc->sc_worker; struct cpu_info *ci; mutex_enter(&cw->cw_lock); ci = cgd_cpu(sc); cw->cw_busy++; mutex_exit(&cw->cw_lock); workqueue_enqueue(cw->cw_wq, &cx->cx_work, ci); } static void cgd_process(struct work *wk, void *arg) { struct cgd_xfer *cx = (struct cgd_xfer *)wk; struct cgd_softc *sc = cx->cx_sc; struct cgd_worker *cw = sc->sc_worker; cgd_cipher(sc, cx->cx_dstv, cx->cx_srcv, cx->cx_len, cx->cx_blkno, cx->cx_secsize, cx->cx_dir); if (cx->cx_dir == CGD_CIPHER_ENCRYPT) { cgd_diskstart2(sc, cx); } else { cgd_iodone2(sc, cx); } mutex_enter(&cw->cw_lock); if (cw->cw_busy > 0) cw->cw_busy--; mutex_exit(&cw->cw_lock); } static void cgd_cipher(struct cgd_softc *sc, void *dstv, const void *srcv, size_t len, daddr_t blkno, size_t secsize, int dir) { char *dst = dstv; const char *src = srcv; cfunc_cipher *cipher = sc->sc_cfuncs->cf_cipher; size_t blocksize = sc->sc_cdata.cf_blocksize; size_t todo; char blkno_buf[CGD_MAXBLOCKSIZE] __aligned(CGD_BLOCKALIGN); DPRINTF_FOLLOW(("cgd_cipher() dir=%d\n", dir)); if (sc->sc_cdata.cf_mode == CGD_CIPHER_CBC_ENCBLKNO8) blocksize /= 8; KASSERT(len % blocksize == 0); /* ensure that sizeof(daddr_t) <= blocksize (for encblkno IVing) */ KASSERT(sizeof(daddr_t) <= blocksize); KASSERT(blocksize <= CGD_MAXBLOCKSIZE); for (; len > 0; len -= todo) { todo = MIN(len, secsize); memset(blkno_buf, 0x0, blocksize); blkno2blkno_buf(blkno_buf, blkno); IFDEBUG(CGDB_CRYPTO, hexprint("step 1: blkno_buf", blkno_buf, blocksize)); /* * Handle bollocksed up encblkno8 mistake. We used to * compute the encryption of a zero block with blkno as * the CBC IV -- except in an early mistake arising * from bit/byte confusion, we actually computed the * encryption of the last of _eight_ zero blocks under * CBC as the CBC IV. * * Encrypting the block number is handled inside the * cipher dispatch now (even though in practice, both * CBC and XTS will do the same thing), so we have to * simulate the block number that would yield the same * result. So we encrypt _six_ zero blocks -- the * first one and the last one are handled inside the * cipher dispatch. */ if (sc->sc_cdata.cf_mode == CGD_CIPHER_CBC_ENCBLKNO8) { static const uint8_t zero[CGD_MAXBLOCKSIZE]; uint8_t iv[CGD_MAXBLOCKSIZE]; memcpy(iv, blkno_buf, blocksize); cipher(sc->sc_cdata.cf_priv, blkno_buf, zero, 6*blocksize, iv, CGD_CIPHER_ENCRYPT); memmove(blkno_buf, blkno_buf + 5*blocksize, blocksize); } cipher(sc->sc_cdata.cf_priv, dst, src, todo, blkno_buf, dir); dst += todo; src += todo; blkno++; } } #ifdef DEBUG static void hexprint(const char *start, void *buf, int len) { char *c = buf; KASSERTMSG(len >= 0, "hexprint: called with len < 0"); printf("%s: len=%06d 0x", start, len); while (len--) printf("%02x", (unsigned char) *c++); } #endif static void cgd_selftest(void) { struct cgd_softc sc; void *buf; for (size_t i = 0; i < __arraycount(selftests); i++) { const char *alg = selftests[i].alg; int encblkno8 = selftests[i].encblkno8; const uint8_t *key = selftests[i].key; int keylen = selftests[i].keylen; int txtlen = selftests[i].txtlen; aprint_verbose("cgd: self-test %s-%d%s\n", alg, keylen, encblkno8 ? " (encblkno8)" : ""); memset(&sc, 0, sizeof(sc)); sc.sc_cfuncs = cryptfuncs_find(alg); if (sc.sc_cfuncs == NULL) panic("%s not implemented", alg); sc.sc_cdata.cf_blocksize = 8 * selftests[i].blocksize; sc.sc_cdata.cf_mode = encblkno8 ? CGD_CIPHER_CBC_ENCBLKNO8 : CGD_CIPHER_CBC_ENCBLKNO1; sc.sc_cdata.cf_keylen = keylen; sc.sc_cdata.cf_priv = sc.sc_cfuncs->cf_init(keylen, key, &sc.sc_cdata.cf_blocksize); if (sc.sc_cdata.cf_priv == NULL) panic("cf_priv is NULL"); if (sc.sc_cdata.cf_blocksize > CGD_MAXBLOCKSIZE) panic("bad block size %zu", sc.sc_cdata.cf_blocksize); if (!encblkno8) sc.sc_cdata.cf_blocksize /= 8; buf = kmem_alloc(txtlen, KM_SLEEP); memcpy(buf, selftests[i].ptxt, txtlen); cgd_cipher(&sc, buf, buf, txtlen, selftests[i].blkno, selftests[i].secsize, CGD_CIPHER_ENCRYPT); if (memcmp(buf, selftests[i].ctxt, txtlen) != 0) { hexdump(printf, "was", buf, txtlen); hexdump(printf, "exp", selftests[i].ctxt, txtlen); panic("cgd %s-%d encryption is broken [%zu]", selftests[i].alg, keylen, i); } cgd_cipher(&sc, buf, buf, txtlen, selftests[i].blkno, selftests[i].secsize, CGD_CIPHER_DECRYPT); if (memcmp(buf, selftests[i].ptxt, txtlen) != 0) { hexdump(printf, "was", buf, txtlen); hexdump(printf, "exp", selftests[i].ptxt, txtlen); panic("cgd %s-%d decryption is broken [%zu]", selftests[i].alg, keylen, i); } kmem_free(buf, txtlen); sc.sc_cfuncs->cf_destroy(sc.sc_cdata.cf_priv); } aprint_verbose("cgd: self-tests passed\n"); } MODULE(MODULE_CLASS_DRIVER, cgd, "blowfish,des,dk_subr,bufq_fcfs"); #ifdef _MODULE CFDRIVER_DECL(cgd, DV_DISK, NULL); devmajor_t cgd_bmajor = -1, cgd_cmajor = -1; #endif static int cgd_modcmd(modcmd_t cmd, void *arg) { int error = 0; switch (cmd) { case MODULE_CMD_INIT: #ifdef _MODULE mutex_init(&cgd_spawning_mtx, MUTEX_DEFAULT, IPL_NONE); cv_init(&cgd_spawning_cv, "cgspwn"); error = config_cfdriver_attach(&cgd_cd); if (error) break; error = config_cfattach_attach(cgd_cd.cd_name, &cgd_ca); if (error) { config_cfdriver_detach(&cgd_cd); aprint_error("%s: unable to register cfattach for" "%s, error %d\n", __func__, cgd_cd.cd_name, error); break; } /* * Attach the {b,c}devsw's */ error = devsw_attach("cgd", &cgd_bdevsw, &cgd_bmajor, &cgd_cdevsw, &cgd_cmajor); /* * If devsw_attach fails, remove from autoconf database */ if (error) { config_cfattach_detach(cgd_cd.cd_name, &cgd_ca); config_cfdriver_detach(&cgd_cd); aprint_error("%s: unable to attach %s devsw, " "error %d", __func__, cgd_cd.cd_name, error); break; } #endif break; case MODULE_CMD_FINI: #ifdef _MODULE /* * Remove {b,c}devsw's */ devsw_detach(&cgd_bdevsw, &cgd_cdevsw); /* * Now remove device from autoconf database */ error = config_cfattach_detach(cgd_cd.cd_name, &cgd_ca); if (error) { (void)devsw_attach("cgd", &cgd_bdevsw, &cgd_bmajor, &cgd_cdevsw, &cgd_cmajor); aprint_error("%s: failed to detach %s cfattach, " "error %d\n", __func__, cgd_cd.cd_name, error); break; } error = config_cfdriver_detach(&cgd_cd); if (error) { (void)config_cfattach_attach(cgd_cd.cd_name, &cgd_ca); (void)devsw_attach("cgd", &cgd_bdevsw, &cgd_bmajor, &cgd_cdevsw, &cgd_cmajor); aprint_error("%s: failed to detach %s cfdriver, " "error %d\n", __func__, cgd_cd.cd_name, error); break; } cv_destroy(&cgd_spawning_cv); mutex_destroy(&cgd_spawning_mtx); #endif break; case MODULE_CMD_STAT: error = ENOTTY; break; default: error = ENOTTY; break; } return error; }