"rv".
In sysctl_destroyv(), deal with deleting alias nodes, and pass a token
size_t to sysctl_destroy().
In sysctl_free(), check that "node" has not reached "rnode", not that
"pnode" has.
In sysctl_realloc(), don't bother setting sysctl_clen...the value is
unchanged.
Gone are the old kern_sysctl(), cpu_sysctl(), hw_sysctl(),
vfs_sysctl(), etc, routines, along with sysctl_int() et al. Now all
nodes are registered with the tree, and nodes can be added (or
removed) easily, and I/O to and from the tree is handled generically.
Since the nodes are registered with the tree, the mapping from name to
number (and back again) can now be discovered, instead of having to be
hard coded. Adding new nodes to the tree is likewise much simpler --
the new infrastructure handles almost all the work for simple types,
and just about anything else can be done with a small helper function.
All existing nodes are where they were before (numerically speaking),
so all existing consumers of sysctl information should notice no
difference.
PS - I'm sorry, but there's a distinct lack of documentation at the
moment. I'm working on sysctl(3/8/9) right now, and I promise to
watch out for buses.
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
checking against nprocs is wrong in any case btw - we do allow
maxproc higher than number of current processes, it would just mean
no new process could be started until number of processes would
be lower than the new limit
lookup and allocation, and any dependency on NPROC or MAXUSERS.
NO_PID changed to -1 (and renamed NO_PGID) to remove artificial limit
on PID_MAX.
As discussed on tech-kern.
people would read that list in a more timely fashion!), change the new
64-bit memory reporting sysctl nodes to report bytes. This should not
be a problem, since it's only a week old, and no applications use the
new nodes yet.
and in libkvm. Then teach ps how to show them to you.
Also, teach ps how to show the names for all the uids, the rest of the
group numbers, and the "group access list".
kernel config option) that controls whether the kernel dumps to the
dump device on panic. Dumps can still be forced via the ``sync''
command from ddb. Defaults to ``on''.
These are of use to userland code which previously depended on the
hard-coded values of LABELSECTOR and LABELOFFSET to figure out the
location of the disklabel for a particular platform.
With the introduction of umbrella ports such as evbarm, evbmips, etc,
the location of the disklabel may vary between kernels for the same
MACHINE. This sysctl will allow userland programs to remain independent
of the particular flavour of MACHINE in such cases.
that can be used to block a process after fork(2) or exec(2) calls. The
new process is created in the SSTOP state and is never scheduled for running.
This feature is designed so that it is esay to attach the process using gdb
before it has done anything.
It works also with sproc, kthread_create, clone...
was successfully changed. previously, successfully viewing the
current value would flush the cache :-/
- similarly, don't change hostid and sb_max unless the value was
successfully changed
adjusted via sysctl. file systems that have hash tables which are
sized based on the value of this variable now resize those hash tables
using the new value. the max number of FFS softdeps is also recalculated.
convert various file systems to use the <sys/queue.h> macros for
their hash tables.
for FreeBSD project. Besides huge speed boost compared with socketpair-based
pipes, this implementation also uses pagable kernel memory instead of mbufs.
Significant differences to FreeBSD version:
* uses uvm_loan() facility for direct write
* async/SIGIO handling correct also for sync writer, async reader
* limits settable via sysctl, amountpipekva and nbigpipes available via sysctl
* pipes are unidirectional - this is enforced on file descriptor level
for now only, the code would be updated to take advantage of it
eventually
* uses lockmgr(9)-based locks instead of home brew variant
* scatter-gather write is handled correctly for direct write case, data
is transferred by PIPE_DIRECT_CHUNK bytes maximum, to avoid running out of kva
All FreeBSD/NetBSD specific code is within appropriate #ifdef, in preparation
to feed changes back to FreeBSD tree.
This pipe implementation is optional for now, add 'options NEW_PIPE'
to your kernel config to use it.
only signal handler array sharable between threads
move other random signal stuff from struct proc to struct sigctx
This addresses kern/10981 by Matthew Orgass.
to support arbitrary number of ptys without need of kernel recompile
(the extra device special files in /dev/ still need to be created, of course)
upper limit of supported ptys is controlled via new sysctl variable
kern.maxptys (KERN_MAXPTYS), which is raise-only and defaults to 512.
instead test for (p->p_flag & I_INMEM), and don't access the U-area
(via p->p_stats) if that bit is clear. Fixes the hangs people have
seen when the system is paging and the user runs top/ps/w.
vslock the user pages for the data being copied out to userspace,
so that we won't sleep while holding a lock in case we need to
fault the pages in.
- Sprinkle some const and ANSI'ify some things while here.
* Handle KERN_PROC_SESSION that has been defined in <sys/sysctl.h> from
day one.
* Add handlers for KERN_PROC_GID and KERN_PROC_RGID.
* If "op" doesn't valid, return EINVAL.
"KERN_SYSVIPC_SEM_INFO" and "KERN_SYSVIPC_SHM_INFO" to return the
info and data structures for the relevent SysV IPC types. The return
structures use fixed-size types and should be compat32 safe. All
user-visible changes are protected with
#if !defined(_POSIX_C_SOURCE) && !defined(_XOPEN_SOURCE)
Make all variable declarations extern in msg.h, sem.h and shm.h and
add relevent variable declarations to sysv_*.c and remove unneeded
header files from those .c files.
Make compat14 SysV IPC conversion functions and sysctl_file() static.
Change the data pointer to "void *" in sysctl_clockrate(),
sysctl_ntptime(), sysctl_file() and sysctl_doeproc().
p_cpu member to struct proc. Use this in certain places when
accessing scheduler state, etc. For the single-processor case,
just initialize p_cpu in fork1() to avoid having to set it in the
low-level context switch code on platforms which will never have
multiprocessing.
While I'm here, comment a few places where there are known issues
for the SMP implementation.