kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe
This merge changes the device switch tables from static array to
dynamically generated by config(8).
- All device switches is defined as a constant structure in device drivers.
- The new grammer ``device-major'' is introduced to ``files''.
device-major <prefix> char <num> [block <num>] [<rules>]
- All device major numbers must be listed up in port dependent majors.<arch>
by using this grammer.
- Added the new naming convention.
The name of the device switch must be <prefix>_[bc]devsw for auto-generation
of device switch tables.
- The backward compatibility of loading block/character device
switch by LKM framework is broken. This is necessary to convert
from block/character device major to device name in runtime and vice versa.
- The restriction to assign device major by LKM is completely removed.
We don't need to reserve LKM entries for dynamic loading of device switch.
- In compile time, device major numbers list is packed into the kernel and
the LKM framework will refer it to assign device major number dynamically.
NULL for root PCI busses. For busses behind a bridge, it points to
a persistent copy of the bridge's pcitag_t. This can be very useful
for machine-dependent PCI bus enumeration code.
* Implement a machine-dependent pci_enumerate_bus() for sparc64 which
uses OFW device nodes to enumerate the bus. When a PCI bus that is
behind a bridge is attached, pci_attach_hook() allocates a new PCI
chipset tag for the new bus and sets it's "curnode" to the OFW node
of the bridge. This is used as a starting point when enumerating
that bus. Root busses get the OFW node of the host bridge (psycho).
* Garbage-collect "ofpci" and "ofppb" from the sparc64 port.
indicating an unhandled "command". ERESTART is -1, which can lead to
confusion. ERESTART has been moved to -3 and EPASSTHROUGH has been
placed at -4. No ioctl code should now return -1 anywhere. The
ioctl() system call is now properly restartable.
disable_intr, enable_intr, disable_interrupt, enable_interrupt,
disable_ext_intr, enable_ext_intr.
New functions:
for external interrupt:
_cpu_intr_suspend and _cpu_intr_resume.
for exception:
_cpu_exception_suspend and _cpu_exception_resume.
This will allow improvements to the pmaps so that they can more easily defer expensive operations, eg tlb/cache flush, til the last possible moment.
Currently this is a no-op on most platforms, so they should see no difference.
Reviewed by Jason.
Three different IRQ:s can be selected for each event, 9, 11, or 13
(which selects hardware priority). More events to be added as they
are discovered. Do not use shb_intr_establish() to register IRQ 9, 11
or 13 anymore.
- pmap_enter()
- pmap_remove()
- pmap_protect()
- pmap_kenter_pa()
- pmap_kremove()
as described in pmap(9).
These calls are relatively conservative. It may be possible to
optimize these a little more.
driver by Tohru Nisimura (a very good framework for a FB driver,
BTW!), using bits of Marcus's original driver for the hardware
access.
The main advantage of this version is that is uses rasops (which
is faster than the rcons stuff) and wsfont, so you can select the
console font in the kernel config file. Using the BOLD8x16 font,
you get an 80x30 console (vast improvement compared to the Gallant12x22
font).
we probe, defaulting to Japanese if we don't know what
kind of keyboard we have.
XXX This should be done differently, if we ever want to
support multiple keyboards.