(c) TNF
line from 4-clause UCB to 3-clause UCB license; in other words,
remove UCB's ad clause from the license TNF grants.
There is no point in TNF demanding that UCB's ad clause be followed
when even UCB doesn't demand it any longer.
Ok'd by board@ and agc@.
- move per VP data into struct sadata_vp referenced from l->l_savp
* VP id
* lock on VP data
* LWP on VP
* recently blocked LWP on VP
* queue of LWPs woken which ran on this VP before sleep
* faultaddr
* LWP cache for upcalls
* upcall queue
- add current concurrency and requested concurrency variables
- make process exit run LWP on all VPs
- make signal delivery consider all VPs
- make timer events consider all VPs
- add sa_newsavp to allocate new sadata_vp structure
- add sa_increaseconcurrency to prepare new VP
- make sys_sa_setconcurrency request new VP or wakeup idle VP
- make sa_yield lower current concurrency
- set sa_cpu = VP id in upcalls
- maintain cached LWPs per VP
process context ('reaper').
From within the exiting process context:
* deactivate pmap and free vmspace while we can still block
* introduce MD cpu_lwp_free() - this cleans all MD-specific context (such
as FPU state), and is the last potentially blocking operation;
all of cpu_wait(), and most of cpu_exit(), is now folded into cpu_lwp_free()
* process is now immediatelly marked as zombie and made available for pickup
by parent; the remaining last lwp continues the exit as fully detached
* MI (rather than MD) code bumps uvmexp.swtch, cpu_exit() is now same
for both 'process' and 'lwp' exit
uvm_lwp_exit() is modified to never block; the u-area memory is now
always just linked to the list of available u-areas. Introduce (blocking)
uvm_uarea_drain(), which is called to release the excessive u-area memory;
this is called by parent within wait4(), or by pagedaemon on memory shortage.
uvm_uarea_free() is now private function within uvm_glue.c.
MD process/lwp exit code now always calls lwp_exit2() immediatelly after
switching away from the exiting lwp.
g/c now unneeded routines and variables, including the reaper kernel thread
Remove p_raslock and rename p_lwplock p_lock (one lock is enough).
Simplify window test when adding a ras and correct test on VM_MAXUSER_ADDRESS.
Avoid unpredictable branch in i386 locore.S
(pad fields left in struct proc to avoid kernel bump)
containing signal posting, kernel-exit handling and sa_upcall processing.
XXX the pc532, sparc, sparc64 and vax ports should have their
XXX userret() code rearranged to use this.
* _UC_MACHINE_PC() - access the program counter
* _UC_MACHINE_INTRV() - access the integer return value register
* _UC_MACHINE_SET_PC() - set the program counter (this requires
special handling on some platforms).
<sys/bootblock.h>:
* Added definitions for the Master Boot Record (MBR) used by
a variety of systems (primarily i386), including the format
of the BIOS Parameter Block (BPB).
This information was cribbed from a variety of sources
including <sys/disklabel_mbr.h> which this is a superset of.
As part of this, some data structure elements and #defines
were renamed to be more "namespace friendly" and consistent
with other bootblocks and MBR documentation.
Update all uses of the old names to the new names.
<sys/disklabel_mbr.h>:
* Deprecated in favor of <sys/bootblock.h> (the latter is more
"host tool" friendly).
amd64 & i386:
* Renamed /usr/mdec/bootxx_dosfs to /usr/mdec/bootxx_msdos, to
be consistent with the naming convention of the msdosfs tools.
* Removed /usr/mdec/bootxx_ufs, as it's equivalent to bootxx_ffsv1
and it's confusing to have two functionally equivalent bootblocks,
especially given that "ufs" has multiple meanings (it could be
a synonym for "ffs", or the group of ffs/lfs/ext2fs file systems).
* Rework pbr.S (the first sector of bootxx_*):
+ Ensure that BPB (bytes 11..89) and the partition table
(bytes 446..509) do not contain code.
+ Add support for booting from FAT partitions if BOOT_FROM_FAT
is defined. (Only set for bootxx_msdos).
+ Remove "dummy" partition 3; if people want to installboot(8)
these to the start of the disk they can use fdisk(8) to
create a real MBR partition table...
+ Compile with TERSE_ERROR so it fits because of the above.
Whilst this is less user friendly, I feel it's important
to have a valid partition table and BPB in the MBR/PBR.
* Renamed /usr/mdec/biosboot to /usr/mdec/boot, to be consistent
with other platforms.
* Enable SUPPORT_DOSFS in /usr/mdec/boot (stage2), so that
we can boot off FAT partitions.
* Crank version of /usr/mdec/boot to 3.1, and fix some of the other
entries in the version file.
installboot(8) (i386):
* Read the existing MBR of the filesystem and retain the BIOS
Parameter Block (BPB) in bytes 11..89 and the MBR partition
table in bytes 446..509. (Previously installboot(8) would
trash those two sections of the MBR.)
mbrlabel(8):
* Use sys/lib/libkern/xlat_mbr_fstype.c instead of homegrown code
to map the MBR partition type to the NetBSD disklabel type.
Test built "make release" for i386, and new bootblocks verified to work
(even off FAT!).
Right now the only flag is used to indicate if a ksiginfo_t is a
result of a trap. Add a predicate macro to test for this flag.
* Add initialization macros for ksiginfo_t's.
* Add accssor macro for ksi_trap. Expands to 0 if the ksiginfo_t was
not the result of a trap. This matches the sigcontext trapcode semantics.
* In kpsendsig(), use KSI_TRAP_P() to select the lwp that gets the signal.
Inspired by Matthias Drochner's fix to kpsendsig(), but correctly handles
the case of non-trap-generated signals that have a > 0 si_code.
This patch fixes a signal delivery problem with threaded programs noted by
Matthias Drochner on tech-kern.
As discussed on tech-kern. Reviewed and OK's by Christos.
which is automatically included during kernel config, and add comments
to individual machine-dependant majors.* files to assign new MI majors
in MI file.
Range 0-191 is reserved for machine-specific assignments, range
192+ are MI assignments.
Follows recent discussion on tech-kern@
which caused the exception. To avoid an endless loop if
the user is ignoring or catching SIGFPE, adjust the saved
PC to skip over the offending instruction.
XXX: It's not clear that this is the correct behaviour,
XXX: but it's the only way to make sh5 pass the IEEEFP
XXX: regression tests in regress/lib/libc/ieeefp/except.
be inserted into ktrace records. The general change has been to replace
"struct proc *" with "struct lwp *" in various function prototypes, pass
the lwp through and use l_proc to get the process pointer when needed.
Bump the kernel rev up to 1.6V
enabled on amd64). Add a dmat64 field to various PCI attach structures,
and pass it down where needed. Implement a simple new function called
pci_dma64_available(pa) to test if 64bit DMA addresses may be used.
This returns 1 iff _PCI_HAVE_DMA64 is defined in <machine/pci_machdep.h>,
and there is more than 4G of memory.
http://mail-index.netbsd.org/source-changes/2003/05/08/0068.html
There were some side-effects that I didn't anticipate, and fixing them
is proving to be more difficult than I thought, do just eject for now.
Maybe one day we can look at this again.
Fixes PR kern/21517.
space is advertised to UVM by making virtual_avail and virtual_end
first-class exported variables by UVM. Machine-dependent code is
responsible for initializing them before main() is called. Anything
that steals KVA must adjust these variables accordingly.
This reduces the number of instances of this info from 3 to 1, and
simplifies the pmap(9) interface by removing the pmap_virtual_space()
function call, and removing two arguments from pmap_steal_memory().
This also eliminates some kludges such as having to burn kernel_map
entries on space used by the kernel and stolen KVA.
This also eliminates use of VM_{MIN,MAX}_KERNEL_ADDRESS from MI code,
this giving MD code greater flexibility over the bounds of the managed
kernel virtual address space if a given port's specific platforms can
vary in this regard (this is especially true of the evb* ports).
breakpoint address before it's used. Currently a no-op on all but sh5.
This is useful on sh5, for example, to mask off the instruction
type encoding in the bottom two address bits, and makes it possible
to do "db> break $rXX" instead of manually munging the address.
by the application, all NetBSD interfaces are made visible, even
if some other feature-test macro (like _POSIX_C_SOURCE) is defined.
<sys/featuretest.h> defined _NETBSD_SOURCE if none of _ANSI_SOURCE,
_POSIX_C_SOURCE and _XOPEN_SOURCE is defined, so as to preserve
existing behaviour.
This has two major advantages:
+ Programs that require non-POSIX facilities but define _POSIX_C_SOURCE
can trivially be overruled by putting -D_NETBSD_SOURCE in their CFLAGS.
+ It makes most of the #ifs simpler, in that they're all now ORs of the
various macros, rather than having checks for (!defined(_ANSI_SOURCE) ||
!defined(_POSIX_C_SOURCE) || !defined(_XOPEN_SOURCE)) all over the place.
I've tried not to change the semantics of the headers in any case where
_NETBSD_SOURCE wasn't defined, but there were some places where the
current semantics were clearly mad, and retaining them was harder than
correcting them. In particular, I've mostly normalised things so that
_ANSI_SOURCE gets you the smallest set of stuff, then _POSIX_C_SOURCE,
_XOPEN_SOURCE and _NETBSD_SOURCE in that order.
Tested by building for vax, encouraged by thorpej, and uncontested in
tech-userlevel for a week.
Add a workaround for what appears to be a bug in binutils whereby
the entry point of an SHmedia binary can sometimes specify
SHcompact code (LSB is clear).
- Clean up the way cpu-specific tlb/cache functions are configured
and used.
- Add a workaround for a problem whereby cpu* at superhyway? fails
to probe.
- Print more info about the cpu/cache.
- Move the RESVEC handlers back into generic sh5 code and ditch
the panic stack hack.
- Make the on-chip SCIF device the default console on Cayman.
- Add experimental support for booting via a standalone bootstrap
program (not yet committed) and using the boot parameters passed
in by it.
- Add a few more SH elf constants.
- Tick a couple of items off the TODO list.
came from kernel mode. Otherwise, print details of the exception
and send a SIGILL to the process.
The is necessary now that debug exceptions are handled here.
possible to use alternate system call tables. This is usefull for
displaying correctly the arguments in Mach binaries traces.
If NULL is given, then the regular systam call table for the process is used.
under some circumstances, leave turds in the icache following vmspace
teardown.
It's not yet clear if this is a pmap bug or a toolchain problem since
the hack is unecessary when the kernel is compiled with -O0. Of course
that could just be masking the problem due to increased icache pressure...
- Overhaul the TLB management code such that we now keep track of
the exact TLB slot at which a mapping was inserted, both for user-
space and kernel mappings. This addresses #2 on the TODO list.
original system call number, which can be negative for a Mach trap.
We cannot just replace code by realcode, because ktrsyscall uses it as
an index in the system call table, thus crashing the kernel when the
value is negative.
unmanaged mappings) so we can deal with cache aliases, make sure to
skip unmanaged/wired mappings (added via pmap_kenter_pa()) when doing
things like pmap_page_protect().
kqueue provides a stateful and efficient event notification framework
currently supported events include socket, file, directory, fifo,
pipe, tty and device changes, and monitoring of processes and signals
kqueue is supported by all writable filesystems in NetBSD tree
(with exception of Coda) and all device drivers supporting poll(2)
based on work done by Jonathan Lemon for FreeBSD
initial NetBSD port done by Luke Mewburn and Jason Thorpe