message buffer has not yet been set up, mimicking code from the top of
the sysctl routine for retrieving the message buffer.
(2) Add a /l modifier to the trace command. This makes it print the
backtrace using printf() instead of db_printf(), which has the nice
side-effect of also putting it into the message buffer. A kernel with
ddb in it but disabled (ie, ddb.onpanic set to zero) will print a
backtrace (which ends up in the message buffer) before dumping (or
not, depending on the value of kern.dump_on_panic) and rebooting, but
if ddb is not disabled, the backtrace is not printed, and there's no
way to get it to display a backtrace such that you can retrieve it
after the dump. The backtrace printed by gdb is sometimes a little
different.
(3) Documentation for the above.
http://mail-index.netbsd.org/source-changes/2003/05/08/0068.html
There were some side-effects that I didn't anticipate, and fixing them
is proving to be more difficult than I thought, do just eject for now.
Maybe one day we can look at this again.
Fixes PR kern/21517.
space is advertised to UVM by making virtual_avail and virtual_end
first-class exported variables by UVM. Machine-dependent code is
responsible for initializing them before main() is called. Anything
that steals KVA must adjust these variables accordingly.
This reduces the number of instances of this info from 3 to 1, and
Simplify the way the bounds of the managed kernel virtual address
space is advertised to UVM by making virtual_avail and virtual_end
first-class exported variables by UVM. Machine-dependent code is
responsible for initializing them before main() is called. Anything
that steals KVA must adjust these variables accordingly.
This reduces the number of instances of this info from 3 to 1, and
simplifies the pmap(9) interface by removing the pmap_virtual_space()
function call, and removing two arguments from pmap_steal_memory().
Simplify the way the bounds of the managed kernel virtual address
space is advertised to UVM by making virtual_avail and virtual_end
first-class exported variables by UVM. Machine-dependent code is
responsible for initializing them before main() is called. Anything
that steals KVA must adjust these variables accordingly.
This reduces the number of instances of this info from 3 to 1, and
simplifies the pmap(9) interface by removing the pmap_virtual_space()
function call, and removing two arguments from pmap_steal_memory().
This also eliminates some kludges such as having to burn kernel_map
entries on space used by the kernel and stolen KVA.
This also eliminates use of VM_{MIN,MAX}_KERNEL_ADDRESS from MI code,
this giving MD code greater flexibility over the bounds of the managed
kernel virtual address space if a given port's specific platforms can
vary in this regard (this is especially true of the evb* ports).