where segment 0 is being considered for writing. This allows for automated
checkpoint vailidity scanning, and could be used (in conjunction with the
existing LFCNREWIND) for e.g. snapshot dumps as well.
Include a regression test that does such scanning.
When writing the Ifile, loop through the dirty block list three times to
make sure that the checkpoint is always consistent (the first and second
times the Ifile blocks can cross a segment boundary; not so the third time
unless the segments are very small). Discovered by using the aforementioned
regression test.
My understanding is that the CLRSIG() is supposed to clear the signal
that was sent to the syncer process to prevent it from being delivered
to the syncer process in case unmounting fails, so that the syncer process
does not die while the filesystem is still mounted. The typical scenario
is, the syncher process is tsleep()ing in the kernel, and waking up when
it needs to do work. If someone sends a signal to it, eg. kill -TERM
the mfs process, then the kernel will try to unmount the mfs filesystem
before delivering the signal to the process. If that unmount fails, then
we should not really kill the process because that will hang the mount.
So we call CLRSIG() to stop the signal from being delivered.
So the first call to issignal() will return the signal number that was
sent to the syncer process (unless someone malicious was able to send
a lower numbered signal between the time tsleep() returned and we called
issignal()... something that is not really easy to do). But you are
right, we should not be calling it many times as a side effect of this
macro.
Rewrite CLRSIG() clear all the signals and call issignal() the correct
number of times.
explicitly (especially since we didn't know about VFREEING at all before),
but notice the EBUSY return from vget() instead.
Fix some more MP locking protocol issues, most of which were pointed out by
Christian Ehrhardt this morning on tech-kern.
instead of bytes for the index, and never search below fs->lfs_freehd.
Fix a bug in the previous version of the search (an erroneous assumption
that ino_t was signed).
Free the bitmap when we unmount the filesystem.
The writer daemon, if it does not need to flush the whole filesystem,
now only writes the vnodes for which the pagedaemon has requested pageouts
(although it does not pay attention to the page ranges the pagedaemon
supplies).
by Michel Oey, in which an aged LFS writes up to an extra Ifile block for
every file created; and paves the way for the truncation of the Ifile when
many files are deleted.
* Correct (weak) segment lock assertions in lfs_fragextend and lfs_putpages.
* Keep IN_MODIFIED set if we run out of avail in lfs_putpages.
* Don't try to (re)write buffers on a VBLK vnode; fixes a panic I found
while running with an LFS root.
* Raise priority of LFCNSEGWAIT to PVFS; PUSER is way too low for
something the pagedaemon is relying on.
- remove GOP_SIZE_READ/GOP_SIZE_WRITE flags.
they have not been used since the change.
- ufs_balloc_range: remove code which has been no-op since the change.
thanks Konrad Schroder for explaining the original intention of the code.
- ffs_gop_size: don't extend past eof, in the case of GOP_SIZE_MEM.
otherwise genfs_getpages end up to allocate pages past eof unnecessarily.
* Acknowledge that sometimes there are more dirty pages to be written to
disk than clean segments. When we reach the danger line,
lfs_gop_write() now returns EAGAIN. The caller of VOP_PUTPAGES(), if
it holds the segment lock, drops it and waits for the cleaner to make
room before continuing.
* Note and avoid a three-way deadlock in lfs_putpages (a writer holding
a page busy blocks on the cleaner while the cleaner blocks on the
segment lock while lfs_putpages blocks on the page).
- use vmspace rather than proc or lwp where appropriate.
the latter is more natural to specify an address space.
(and less likely to be abused for random purposes.)
- fix a swdmover race.
> ----------------------------
> revision 1.54
> date: 2001/08/26 01:25:12; author: iedowse; state: Exp; lines: +30 -12
> When compacting directories, ufs_direnter() always trusted DIRSIZ()
> to supply the number of bytes to be bcopy()'d to move an entry. If
> d_ino == 0 however, DIRSIZ() is not guaranteed to return a sensible
> length, so ufs_direnter could end up corrupting a directory during
> compaction. In practice I believe this can only happen after fsck_ffs
> has fixed a previously-corrupted directory.
>
> We now deal with any mid-block unused entries specially to avoid
> using DIRSIZ() or bcopy() on such entries. We also ensure that the
> variables 'dsize' and 'spacefree' contain meaningful values at all
> times. Add a few comments to describe better this intricate piece
> of code.
>
> The special handling of mid-block unused entries makes the dirhash-
> specific bugfix in the previous revision (1.53) now uncecessary,
> so this change removes it.
>
> Reviewed by: mckusick
> ----------------------------
> revision 1.53
> date: 2001/08/22 01:35:17; author: iedowse; state: Exp; lines: +2 -2
> When compressing directory blocks, the dirhash code didn't check
> that the directory entry was in use before attempting to find it
> in the hash structures to change its offset. Normally, unused
> entries do not need to be moved, but fsck can leave behind some
> unused entries that do. A dirhash sanity panic resulted when the
> entry to be moved was not found. Add a check that stops entries
> with d_ino == 0 from being passed to ufsdirhash_move().