in turn forces a flush of the vnode, whether or not it is involved in a dirop.
(This can happen during a remove or rmdir, when the directory is shrunk.)
Because of the nature of dirops, however, flushing a vnode involved in a dirop
is disallowed (and was marked with a panic). This patch has lfs_truncate
call a specialized vinvalbuf that only invalidates buffers following the new
end-of-file, and thus does not require a flush. Also the panic is demoted,
in case I missed any other path to lfs_vflush.
namely, toggle whether vnodes loaded only for cleaning (as opposed to
normal filesystem use) are freed to the *head* of the vnode free list,
rather than the tail. This should avoid a possible cache flushing
effect, if the cleaner cleans a segment containing a large number of
live inodes.
dirop is completely written to disk. This means that ordinary calls to
ufs vnops which would ordinarily call VOP_INACTIVE through vrele/vput,
don't. This patch detects that condition after such vnops have been
run, and calls VOP_INACTIVE if it would ordinarily have been called by
the ufs call.
if we are short on vnodes, lfs_vflush from another process can grab a
vnode that lfs_markv has already processed but not yet written; but
lfs_markv holds the seglock. When lfs_vflush gets around to writing it,
the context for copyin is gone. So, now lfs_markv calls copyin itself,
rather than having lfs_writeseg do it.
the LFS since the 4.4lite2 code was merged into NetBSD.
TODO updated to remove everything marked DONE in 4.4, and add in a list
of more current things to do.
Get rid of comments about the cleaner syscall code and missing fragment
support from README.
include:
- DIROP segregation is enabled, and greater care is taken
to make sure that a checkpoint completes. Fsck is not
needed to remount the filesystem.
- Several checks to make sure that the LFS subsystem does not
overuse various resources (memory, in particular).
- The cleaner routines, lfs_markv in particular, are completely
rewritten. A buffer overflow is removed. Greater care is taken
to ensure that inodes come from where lfs_cleanerd say they come
from (so we know nothing has changed since lfs_bmapv was called).
- Fragment allocation is fixed, so that writes beyond end-of-file
do the right thing.
as with user-land programs, include files are installed by each directory
in the tree that has includes to install. (This allows more flexibility
as to what gets installed, makes 'partial installs' easier, and gives us
more options as to which machines' includes get installed at any given
time.) The old SYS_INCLUDES={symlinks,copies} behaviours are _both_
still supported, though at least one bug in the 'symlinks' case is
fixed by this change. Include files can't be build before installation,
so directories that have includes as targets (e.g. dev/pci) have to move
those targets into a different Makefile.
to "options FFS_EI". The superblock and inodes (without blk addr) are
byteswapped at disk read/write time, other metadatas are byteswapped
when used (as they are acceeded directly in the buffer cache).
This required the addition of a "um_flags" field to struct ufsmount.
ffs_bswap.c contains superblock and inode byteswap routines also used
by userland utilities.
architectures), truncate them intelligently instead.
The truncation is done centralized in vnode_pager.c.
This prevents from wrap-over effects when parts of large (>2^32 byte) files
are mmapped.
Don't allow to mmap above the numerical range of vm_offset_t.
This is considered a temporary solution until the vm system handles the
object sizes/offsets more cleanly.
- added an "union inode_ext" to struct inode, for the per-fs extentions.
For now only ext2fs uses it.
- i_din is now an union:
union {
struct dinode ffs_din; /* 128 bytes of the on-disk dinode. */
struct ext2fs_dinode e2fs_din; /* 128 bytes of the on-disk dinode. */
} i_din
Added a lot of #define i_ffs_* and i_e2fs_* to access the fields.
- Added two macros: FFS_ITIMES and EXT2FS_ITIMES. ITIMES calls the rigth
macro, depending on the time of the inode. ITIMES is used where necessary,
FFS_ITIMES and EXT2FS_ITIMES in other places.
'const char *', and 'void *', respectively. The second arg is taken directly
from user arguments, and is const there, so must be const in the prototypes
and functions. The third arg is also taken directly from user arguments.
It doesn't have to be changed, but since it's cleaner to keep the type
the same as the user arg's type, and I'm already making the 'const char *'
change...
align 32bit integers. Use explicit sized typing at some other places.
XXX This still won't fix lfs for 64bit machines, as we have some
assumptions about sizeof(pointer)=sizeof(u_int32_t) in here, and (if I
looked right) a misaligned u_int64_t. The right fix (to cite cgd) will
be to seperate on-disk-representation from in-core, but I don't have
the time (at the moment) to do this.
gcc thinks that the 'q' modifier describes a "long long", and so -Wformat
whines when printing with 'q' on the alpha, since int64_t-sized types are
done with variations on "long" rather than "long long".
* Make 2nd and 3rd args timespecs, not timevals.
* Consistently pass a Boolean as the 4th arg (except in LFS).
Also, fix ffs_update() and lfs_update() to actually change the nsec fields.
* Change the argument names to vop_link so they actually make sense.
* Implement vop_link and vop_symlink for all file systems, so they do proper
cleanup.
* Require the file system to decide whether or not linking and unlinking of
directories is allowed, and disable it for all current file systems.